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Abstract 

In this study, artificial neural networks (ANNs) have been used for 
performance analysis of a CO2/NH3 cascade refrigeration system using 
a data set, obtained from a thermodynamic model implemented in EES. 
Thermodynamic parameters of the system are estimated in terms of 
condensing temperature of ammonia, evaporating temperature of 
carbon dioxide, condensing temperature of carbon dioxide and 
temperature difference in cascade condenser. The computer program 
has been performed under MATLAB environment using neural 
network toolbox. New formulation obtained from ANN for this couple 
of refrigerants is presented for the calculation of target values. The 
total R value obtained when unknown data were used to the networks 
was 0.999992 which is very satisfactory. It can be used where a very 
accurate and fast estimation, simulation or optimization of the system 
performance is of interest to engineers. 

Keywords: Ammonia, Carbon dioxide, Cascade refrigeration system, Neural 
Networks 

 

1 Introduction 

A great number of cases in industrial refrigeration systems, deal with low 

temperature applications such as storage of frozen food, liquefaction of petroleum 

vapor, manufacturing of dry ice, and rapid freezing systems, where an evaporation 

temperature between -30 ˚C and -55 ˚C is of interest to designers and engineers. 
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Since there is a high temperature difference between the heat source and heat sink, 

ordinary single stage vapor compression refrigeration systems are neither feasible 

nor economical to be utilized in these cases [1], due to the solidification 

temperature, low operating pressure of the refrigerant and difficulty of operating 

compressors which are expected to compress the refrigerants with extremely large 

specific volumes [2]. Cascade refrigeration systems divide the compression 

process into two separated steps, use two different refrigerants through two 

circuits linked together thermally via a heat exchanger.  

Environmental problems and harmful effects of fluorocarbons on ozone depletion 

have led the manufacturers to replace them with natural refrigerants such as 

ammonia and carbon dioxide [1]. CO2/NH3 cascade refrigeration system uses 

ammonia in high temperature cycle and carbon dioxide in low temperature cycle. 

Ammonia is toxic with a pungent smell and flammable to some extent. It can not 

be used in low temperature cycle, because below -35 ˚C, it has a vapor pressure 

lower than atmosphere pressure which may cause air leakage into the system [3]. 

On the contrary, carbon dioxide is neither toxic nor flammable. Having a positive 

vapor pressure at temperatures below -35 ˚C, it is a suitable choice for low 

temperature cascade cycle [4]. 

Up to this time, CO2/NH3 cascade refrigeration system has been studied with 

various methods and viewpoints via experimental and numerical investigations. 

Bingming and Alberto Dopazo et al. [5, 6] carried out a series of experiments to 

analyze the performance of CO2/NH3 cascade refrigeration systems. They 

investigated the effect of some operation parameters on the system performance 

and also compared the performance of cascade system with CO2/NH3 ‎with that of 

two-stage NH3 system and single-stage NH3 system with or without economizer. 

Rezayan et al. [1] optimized the system with respect to a set of system parameters, 

considering the total annual cost of the system, including costs of input exergy 

and annualized capital cost of the system. Lee et al. [4] thermodynamically 

analyzed the system, to determine the optimal condensing temperature of the 

cascade-condenser given various design parameters, to maximize the COP and 

minimize the exergy destruction. Getu and Bansal [7] presented a thermodynamic 

analysis of CO2/NH3 cascade refrigeration system to optimize a set of design and 

operating parameters of the system. In their work, a multilinear regression 

analysis was employed in terms of subcooling, superheating, evaporating, 

condensing, and cascade heat exchanger temperature difference in order to 

develop mathematical expressions for maximum COP, an optimum evaporating 

temperature of ammonia and an optimum mass flow ratio of ammonia to that of 

carbon dioxide in the cascade system.  

Utilization of artificial neural networks with modeling and prediction aims 

particularly in energy systems is becoming increasingly popular in the last twenty 

years. Ertunc et al. [8] applied ANN approach to predict the performance of a 

refrigeration system with an evaporative condenser. Using a data set obtained 

from steady-state test runs of an experiment, they showed that refrigeration 

systems, even complex ones, can alternatively be modeled using ANNs within a 
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high degree of accuracy. Neural networks method has been applied to a variable 

speed vapor compression refrigeration system by Navarro-Esbrı´a et al. [9]. They 

accurately predicted the performance of the system with low cost data requirement 

in terms of input variables and training data. Sencan [10] presented a new 

formulation for the analysis of ammonia-water absorption refrigeration system 

using artificial neural networks. The same author used artificial neural networks 

(ANNs) and adaptive neuro-fuzzy (ANFIS) for performance analysis of single-

stage vapor compression refrigeration system with internal heat exchanger using 

refrigerants R134a, R404a, R407c. He inferred a new formulation obtained from 

ANN for the calculation of the COP [11]. 

From the previous studies, it can be seen that although artificial neural networks 

algorithm has been employed to model a limited number of single stage vapor 

compression refrigeration systems, it has not been applied to a CO2/NH3 cascade 

refrigeration system yet. In spite of the fact that CO2/NH3  cascade refrigeration 

system has been studied through various methods and viewpoints, a general 

explicit expression, capable for fast and accurately estimating the system 

parameters and easily be imported in different programming languages or 

spreadsheet programs has not been extracted so far. 

In the present work, at first, a thermodynamic model is developed. By 

implementation and running the model in EES, the required data pattern in order 

to train and test a neural network is generated. Weight and bias matrixes will be 

presented to develop an explicit mathematical expression for a set of dependent 

variables such as COP, exergetic efficiency, exergy destruction, mass flow rate of 

both HTC and LTC circuits in terms of four independent variable temperatures: 

condensing temperature of ammonia, evaporating temperature of carbon dioxide, 

condensing temperature of carbon dioxide and temperature difference in cascade 

condenser. 

 

2 Thermodynamic Model 

A schematic diagram of cascade refrigeration system is shown in Fig. 1. The 

system consists of high temperature circuit (HTC) with ammonia, and low 

temperature circuit (LTC) with carbon dioxide as the refrigerant. These two 

circuits are thermally coupled via a heat exchanger called cascade condenser. This 

part of the system plays the role of condenser for LTC and evaporator for HTC. 

The LTC evaporator which has the temperature TE is exposed to the cold space 

which has the temperature TCL and absorbs the cooling load QL. HTC condenser, 

rejects the heat QH at the condensing temperature TC to the ambient which has the 

temperature T0. 
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Fig. 1. Schematic diagram of CO2/NH3 cascade refrigeration system. 

 

Evaporation of ammonia and condensation of carbon dioxide occur in cascade 

condenser at the temperatures TME and TMC respectively. For convenience, 

cascade condenser temperature difference, defined by ΔTcas=TMC-TME is 

sometimes utilized instead of TME or TMC. T-s and P-h diagrams of the cycle are 

shown in Fig. 2 and Fig. 3 respectively. Energy and exergy balance equations for 

each components yield: 

For evaporator: 

1 4( )LQ m h h  ,     (1) 

0
, 4 1(1 ) ( )D evap L L

CL

T
Ex Q m ex ex

T
    .     (2) 

For LTC compressor: 
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, , 1 2( ).D LTC Comp LEx m ex ex       (4) 

For LTC expansion valve: 

43 hh  ,     (5) 

, ,exp 3 4( )D LTC LEx m ex ex  .     (6) 
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Fig. 2. T-s diagram of CO2/NH3 cascade refrigeration system. 

 

Fig. 3. P-h diagram of CO2/NH3 cascade refrigeration system. 
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8 35 2( ) ( )M H LQ m h h m h h    ,    (7) 

, , 2 3 8 5( ) ( )D cas cond L HEx m ex ex m ex ex    .    (8) 

For HTC compressor: 

6 5 6 5
,

( ) ( )H S L
HTC Comp

S m e m e

m h h m h h
W

    

 
  ,     (9) 

, , 5 6( )D HTC Comp HEx m ex ex  .     (10) 

For HTC expansion valve: 

87 hh  ,     (11) 

, ,exp 7 8( )D HTC HEx m ex ex  .     (12) 

For condenser: 

67( )H HQ m h h  ,     (13) 

0
, 6 7(1 ) ( )D cond L H

C

T
Ex Q m ex ex

T
    ,     (14) 

where in equations (3) and (9) em  is the combined mechanical and compressor 

motor efficiency and is equal to 0.93 and s , the isentropic efficiency, for screw 

compressors is determined using the following equations. 

For the HTC compressor [12]: 

83955.001026.000097.0 2  pPs rr .    (15) 

For the LTC compressor [13]: 

89810.009238.000476.0 2  pPs rr .    (16) 

Power of condenser and evaporator fans can be neglected due to their small values 

in comparison to HTC and LTC compressors. The total exergy input to the system 

is equal to: 

, ,in HTC Comp LTC CompEx W W  .    (17) 

Exergy at each point of the cycle is defined by:  

)()( 000 ssThhex nnn  ,    (18) 

where  8,7,6,5,4,3,2,1n  

And the total exergy output, or exergy product is: 
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The value of exergy destruction and exergetic efficiency of the overall system can 

be obtained by [14]: 

,D tot in outEx Ex Ex  ,    (20) 

 
,

1
D tot

in

Ex

Ex

   .    (21) 

In order to simulate the cycle, the system of equations, consisting of the equations 

(1) to (21) was given to EES and solved simultaneously for a set of predefined 

values for condensing temperature of ammonia, evaporating temperature of 

carbon dioxide, condensing temperature of carbon dioxide and temperature 

difference in cascade condenser using a parametric table. The range of variable 

values used is presented in the Table 1. 

Table 1: Thermodynamic parameter ranges of system parameters 

 Parameter Range 

In
p
u

t 

p
ar

am
et

er
s Condensing temperature of ammonia (Tc), ˚C ‎ 40-64 

Evaporating temperature of carbon dioxide (TE), ˚C ‎ -56 to -47 

Condensing temperature of carbon dioxide (TMC), ˚C ‎ -11 to 1 

Temperature difference in cascade condenser (ΔTcas), ˚C ‎ 2-12 

O
u

tp
u

t 
 

p
ar

am
et

er
s 

COP 0.363 – 1.208 

Exergetic efficiency (ε) 0.1114 – 0.3709 

Exergy destruction (ExD), kW 0.5207 – 2.448 

Power consumption of HTC compressor (kW) 0.3731 – 2.22 

Power consumption of LTC compressor (kW) 0.3426 – 0.8631 

Mass flow rate of HTC (mH), kg/s 0.001248 – 0.001925 

Mass flow rate of LTC (mL), kg/s 0.003856 – 0.004383 

3 Artificial Neural Networks (ANNs) 

Neural networks have been made up of simple elements that operate in parallel, 

inspired by biological nervous systems. There are several connections, so called 

“weights” between elements whose values tells the network how to perform our 

desired function. The process in which those values are adjusted is called 

“training”. Training a network causes a particular input to be led to a specific 

target output, it compares the output and target until the network output matches 

the target. Depending upon the complexity, sometimes it is necessary to have a 

large number of input/target pairs to train a network. ANNs differ from the 

traditional modeling approaches in that they are trained to learn solutions rather 

than being programmed to model a specific problem in the normal way. They are 
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usually used to address problems that are intractable or cumbersome to solve with 

traditional methods [15-17]. They can also be used as an alternative approach to 

obtain a simple mathematical correlation between input and output values with 

high accuracy. 

4 ANN Development 

In this work, a data set, composed of 5460 pairs of input and target values, 

obtained from thermodynamic analysis of the system was given to train and test 

the network. There were four inputs and seven outputs for the system. The input 

parameters are condensing temperature of ammonia, evaporating temperature of 

carbon dioxide, condensing temperature of carbon dioxide and temperature 

difference in cascade condenser. The output parameters were COP values, 

exergetic efficiency, exergy destruction, and mass flow rate of both HTC and LTC 

circuits. Henceforth, the input and target values are presented in matrix form as 

follows. The matrixes X and Y are composed of the input and target values 

respectively. 

 TcasMCEC TTTT X ,      (22) 

, , ,Y
T

D tot HTC Comp LTC Comp HTC LTCCOP Ex W W m m    .   (23) 

Neglecting the values of the fan power consumption, the main target values, COP 

and exergetic efficiency do not depend upon the cooling capacity. Hence, for 

convenience, the system has been analyzed in terms of a unit refrigeration 

capacity of 1 kW. It must be noted that exergy destruction and compressor power 

calculated values, are all a unit index and must be multiplied by the magnitude of 

actual cooling capacity in terms of kW in order to obtain the correct results. The 

range of input and output values are given in Table 1. In Fig. 4 the selected ANN 

structure was shown. It consists of an input layer, a hidden layer and an output 

layer. As shown in the figure, the number of input and output layers is four and 

seven respectively. 

 

Fig. 4. The selected ANN structure. 
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Feed-forward backpropagation was used for learning algorithm with one hidden 

layer. The training function selected for the algorithm was Levenberg-Marquardt 

(LM). Adaptation learning function was selected to be gradient descent with 

momentum weight and bias learning function (LEARNGDM) which was standard 

for the network. A schematic diagram of the network is shown in Fig. 5. 

 Fig. 5. Block diagram of the network in detail. 

 

5 Main Results 

In order to estimate the target values, the number of neurons in hidden layer varies 

in the range of 1-8 for determining the best approach. The best approach, which 

has minimum errors, is obtained from a network with 8 hidden neurons. Table 2 

compares the accuracy of ANN model based on different number of hidden 

neurons in terms of the root absolute fraction of variance (R) and mean square 

error (MSE) values according to the equations given below: 

 

Table 2: Accuracy of ANN model based on different number of hidden neurons 

Number of the hidden neurons MSE R 

1 0.0038309900 0.9249590000 

2 0.0003182170 0.9795730000 

3 0.0000882414 0.9891420000 

4 0.0000049019 0.9994970000 

5 0.0000025572 0.9997560000 

6 0.0000007296 0.9999600000 

7 0.0000002542 0.9999810000 

8 0.0000000910 0.9999920000 
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where o is the output value, t is the target value, and N is the number of patterns 

[18]. Fig. 6 which was obtained from a network with 8 hidden neurons, shows the 

decrease of the MSE at each epoch during the training process. 

 

Fig. 6. Training performance at each epoch in terms of MSE. 

Corresponding to this diagram, the best validation performance is 9.3692e-008 at 

epoch 882. Mathematical formulation in matrix form, obtained from ANN model 

is presented here. According to the structure of the ANN model, normalized target 

parameters including the COP values, exergetic efficiency, exergy destruction, 

power consumption and mass flow rate of HTC & LTC are all defined by the 

following equation: 

][]))[][]([(][][ .. IIInormIIInorm TANSIG BBXWWY  ,  (26) 

where the WI and WII are the weight matrixes of the layers. The BI and BII present 

the bias matrixes which must be added to the product of each layer corresponding 

to ANN methodology, illustrated in Fig. 5. Both weight and bias matrixes 

obtained from the trained network are presented in Appendix A. The matrix Xnorm 

contains the normalized form of the input parameters. Input data normalization 

should be done using a simple linear correlation according to the following 

equation in terms of the actual, minimum and maximum values listed in Table 1. 

It will map the actual value of each element onto a normal value between -1 and 1. 
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where X is a general notation, refers to all the input matrix elements including TC, 

TE, TMC and ∆Tcas. A hyperbolic tangent sigmoid transfer function (TANSIG) 

used in the first layer of ANN model. This function is defined as follows: 

aa
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ee
aaTANSIG
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
 )tanh()( .    (28) 

Elements of the matrix Ynorm. are all in normal form and must be converted back 

to their actual values. This procedure requires another linear correlation in terms 

of the normal, maximum and minimum calculated values listed in Table 1. 

min

minmax

2

))(1(
Y

YYY
Y norm 


 .    (29) 

In order to verify the results of this formulation and investigate the validity of the 

weight and bias matrixes, a set of input temperatures used for estimating the target 

values. Comparison of the actual and predicted values is shown in a set of 

diagrams shown in Fig. 7. 
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Fig. 7. COP vs. actual values of output parameters. 

Fig. 8 compares the COP values obtained from the thermodynamic model, the 

COP values predicted by ANN method and the COP values measured in an 

experimental study done by Yabusita et. al. [19]. These results appear to be in 

good agreement with each other. 
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thermodynamic model. 

6 Conclusions 

Target data matrix, whose elements are COP values, exergetic efficiency, exergy 

destruction, power consumption and mass flow rate of HTC & LTC cycles of a 

CO2/NH3 cascade refrigeration system was estimated depending upon the input 

data matrix including condensing temperature of ammonia, evaporating 

temperature of carbon dioxide, condensing temperature of carbon dioxide and 

temperature difference in cascade condenser using ANNs. The R value for 

abovementioned parameters is 0.999992 which can be considered very 

satisfactory. From ANN model an explicit mathematical formulation was derived 

in matrix form. This correlates the matrix of target data to the matrix of input data 

using formulations of the ANN model via transfer functions, mapping procedures 

for normalizing the values, weights of neurons and bias matrixes. The values 

estimated by ANN formulations were found to be in good agreement with the 

values obtained form the thermodynamic model and experiment. Taking into 

account the assumptions applied to the analysis, this formulation, as an alternative 

method, can be easily implemented in all programming languages for the aims of 

simulation or optimization. It can also be used where a very accurate and fast 

estimation of system performance is of interest to engineers. 
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Appendix A. Weight and Bias Matrixes Obtained from ANN 

Training Process Pertaining to the First and Second Layers. 
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