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Abstract 
 

Scientific workflows are groups of scientific application tasks organized in oriented graphs. These scientific workflows are characterized 

by a large number of tasks requiring sufficient resources for their execution. Tasks with all available input data can be computed simulta-

neously. Cloud computing is an appropriate environment for the implementation of scientific workflows. Although the cloud computing 

environment has unlimited resources and can run some scientific workflow tasks simultaneously, scheduling scientific workflow tasks 

using pay-as-you-go cloud computing resources is an NP-complete problem. This difficulty is due to constraints on the part of the cloud 

resource provider and the part of the user (customer). The algorithm tries to find efficient schedules that take into account several re-

quirements of client service (QoS) such as deadlines, budgets, and resource providers’ profits, i.e., the minimization of energy consump-

tion and many others. There have been several papers recommending effective solutions to workflow schedule problems. This paper 

reviews existing and more recent papers on the plan of scientific workflows in pay-as-you-go IaaS cloud computing environments, focus-

ing on future directions for algorithms that can improve the optimal solution. 
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1. Introduction 

Scientific workflows are commonly used to model a scientific application [1]. They describe a set of processing that allows data to be 

analyzed in a structured and distributed way and have been used to achieve significant scientific advances in various fields. The emer-

gence of Cloud Computing has brought many benefits to the deployment of large-scale scientific workflows [2]. In particular, Cloud 

Computing as a service resource provides an easily accessible, flexible, and scalable infrastructure for deploying scientific workflows 

[3]. Infrastructure as a service (IaaS) is a cloud service model that offers essential computing, storage, and networking resources on de-

mand, on a pay-as-you-go basis. IaaS, along with Software as a Service (SaaS) and Platform as a Service (PaaS), is one of the three ma-

jor categories of cloud computing services. IaaS cloud providers offer the ability to run workflows on their infrastructure by leasing 

compute resources, storage resources, and more [4]. These resources are billed based on usage [5]. Thus, the resource usage of a work-

flow can be adjusted according to the desired execution time or the budgeted resources to be used [6]. Scheduling algorithms are essen-

tial to take advantage of the benefits of cloud computing to efficiently automate the execution of scientific workflows in distributed envi-

ronments [7]. These algorithms are an essential component of workflow management systems that are responsible for orchestrating the 

execution of tasks across a set of computing resources while preserving data dependencies. The decisions made by these scheduling algo-

rithms are usually guided by a set of user-defined Quality of Service (QoS) requirements. A scientific workflow in a distributed system is 

often scheduled by allocating tasks to resources and coordinating their execution in a way that maintains dependencies. [8]. 

The mapping is also done in such a way that different user requirements are met. The scheduling objectives are determined by these crite-

ria, which are typically expressed in terms of performance indicators like execution time [9], [10], service utilization cost [11], and non-

functional requirements such as security and energy consumption [12]. Two smaller issues need to be taken into account when planning 

how a workflow will be carried out in a cloud computing environment [13], [14]. The first is known as resource provisioning, which 

consists of selecting and procuring the computing resources that will be used to execute each task in the scientific workflow. Thus a fun-

damental question arises, namely how to find the right configuration of resources needed to run a scientific workflow? This means hav-

ing methods capable of determining the number of computing cores (virtual machines) to rent. The second issue pertains to the job allo-
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cation or scheduling phase, wherein every task is assigned to the most appropriate resource. Some authors in the literature creating algo-

rithms for cloud resources frequently refer to the combination of these two sub-problems as “scheduling” [15], [16]. 

In this paper, we look at various recent algorithms for IaaS cloud computing’s scientific workflow scheduling. This study concentrated 

on workflow scheduling approaches, how workflows enter the scheduler, how to provision cloud resources into the scheduler, QoS 

measurements, and cloud resource usage. Readers will have a better understanding of the issue of scheduling scientific workflows in 

cloud computing and new directions for future study as a result of the examination of the various classifications established in this article. 

The rest of the document is structured as follows: Section 2 introduces scientific workflows as a whole, and Section 3 shows how to plan 

scientific workflows in a cloud computing environment. We have the survey in Section 4, which presents some recent scientific work-

flow scheduling algorithms studied in the literature. Section 5 first presents a table that classifies the algorithms studied according to 

certain targeted characteristics and then presents the discussion. Before the conclusion of Section 7, we will have, in Section 6, some 

open issues. Figure 1 shows the organization of the paper. 

 

 
Fig. 1: Flow of the Article. 

2. Scientific workflows: an overview 

The notion of workflow first appeared in the electronic imaging and computer-aided management industry [17], in order to automate 

work processes within organizations. In addition, today’s processing chains (workflows) benefit from a runtime environment that is able 

to guarantee compliance with the service level agreement (SLA) between the providers of the resources in that environment and its cus-

tomers while guaranteeing QoS and provider gains. There are two main categories of uses that use the notion of workflow: experimental 

protocols in fields such as biology, astronomy, physics, neuroscience, chemistry, etc. and the processing chains used in commercial, fi-

nancial, and pharmaceutical domains (called business processes). They give rise to several diverse but related, lines of research. In this 

thesis, we focus on scientific workflows. According to the WfMC (Workflow Management Coalition) [18], we can retain the following 

definition of workflow independently of the specific domains:” Workflows are automated business processes that can be completed en-

tirely or in part. They involve the transfer of papers, data, or tasks from one participant to another for processing in accordance with pro-

tocol guidelines”. However, several definitions have been proposed according to the categories of use, so with regard to the scientific 

workflow we will retain the following definition: A scientific workflow is the description of a process to achieve a scientific goal, gener-

ally consisting of a set of tasks and data dependencies between them. In scientific workflows, tasks are typically data analysis steps or 

computing procedures for scientific simulations. Acquisition, integration, reduction, visualization, and publication (e.g., in a shared data-

base) of scientific data are common components or processes in scientific workflows. A scientific workflow’s actions are arranged (dur-

ing design time) and coordinated (during run time) according to the data flow and any additional dependencies that the workflow design-

er has indicated. 

2.1. Scientific workflow description 

In order to automate processing and save time, scientists very often need to gather software tasks and interconnect them to form an appli-

cation. At the entrance of the application, data begins to be processed by the tasks which have no dependency on other tasks, then these 

transmit the results to the following ones. Generally, the structure of such an application is represented by a directed graph without cycle: 

DAG (Directed Acyclic Graph). In this graph, each node (vertex) is a task and the arcs are the dependency constraints. This addiction 

also models communication between two tasks. In the literature, the notion of workflow is generally defined as an abstract structure of an 

application described by a DAG. Other models for describing workflows have existed for a few decades. Regardless of the workflow 
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model, research distinguishes the execution of an application equipped with a workflow structure that performs processing on a set of 

input data and the parallel execution of several tasks of the same application [19]. 

2.2. Workflow characteristics 

Data-intensive parallel applications (including scientific workflows) are commonly used in the majority of disciplines often leveraging 

rich and varied data resources as well as parallel and distributed computing platforms. Workflows provide a systematic way to describe 

the methods needed to represent a parallel application. They act as a liaison between IT infrastructure experts and subject matter experts 

in the field. Scientific Workflow Management Systems (SWfMS) handle a range of dispersed resources and carry out intricate analyses. 

Workflows are becoming more and more important as a result of the sharp rise in data volumes and diversity across all fields. They ena-

ble researchers to develop processing and analysis strategies to draw conclusions from a variety of data sources and take advantage of a 

vast array of computing and data platforms. To carry out a study, scientific workflows are very often modeled in the form of DAGs as 

mentioned above. A scientific workflow, as shown in Figure 2, is a set of nodes and arcs. The nodes represent the tasks of the workflow 

and the arcs between the different tasks represent either a data dependency, mainly a transfer of data, or a flow dependency between two 

tasks. Each of the tasks composing the scientific workflow has an estimated duration, requires an input dataset to start its execution, and 

produces an output dataset at the end. When output data produced by one task is consumed as input by another, this creates a data de-

pendency between the two tasks. The dependency between the two is represented by a directed arc in the DAG. Input data that is not 

generated by any of the workflow tasks is called scientific workflow input data. Conversely, output data that is not consumed by a task is 

called scientific workflow output data. 

 

 
Fig. 2: A DAG Representing A Sample 10-Task Workflow [20]. 

2.3. Workflow management systems 

Scientific workflows are used to model complex applications in DAG (Directed Acyclic Graph) format with nodes and arcs that easily 

express the entire data process with its dependencies [21]. When multiple data (input and output) are consumed and produced during 

science experiments, this makes workflows data-intensive. As the complexity of scientific applications increases, the need for using Sci-

entific Workflow Management Systems also increases to automate and orchestrate end-to-end processing (execution). In order to process 

data at scale, they must be run in a distributed environment such as the cloud. The workflow management system is an efficient frame-

work for managing massive data sets in a computing environment (grid or cloud). Nowadays, there are several workflow management 

systems for grid and cloud computing, of which the most popular are: KEPLER [22], TAVERNA [23], TRIANA [24], ASKALON [25], 

PEGASUS [26]. Workflow management is mainly the coordination of the tasks that constitute the organizational whole of the workflow. 

Thus, the workflow management system is mainly the set of tools essential for better organization (defining, mapping, and executing) 

tasks while relying on the different data inputs and outputs (as shown in Figure 2). 

KEPLER [22] is a cross-project collaboration to develop a scientific workflow management system in which scientific workflows can be 

designed and executed. KEPLER is an open-source Java framework developed and maintained by the Kepler community and is a deriva-

tive of Ptolemy [27]. It is designed to help the scientific community analyze and model a wide range of scientific applications. This 

framework supports the visual representation of processes. Using a visual representation simplifies the creative effort. 

TAVERNA [23] is an open-source, Java-based workflow management system created by the myGrid team that designs and executes 

scientific workflows. The main objective of Taverna is to extend support to the field of life sciences, chemistry, and medicine, in order to 

run scientific workflows and support experimentation on silicon, where experiments are performed by computer simulation and closely 

mirror the real world. It supports web services, Java application programming interfaces (APIs), R scripts, and tabular data files (CSV). 

TRIANA [24] is a scientific workflow management system based on the Java language and uses a graphical interface with data analysis 

tools. TRIANA has various built-in tools for image manipulation, signal analysis, and more, allowing researchers to integrate their own 

tools. To run the workflows, TRIANA has a workflow engine called Triana Controlling Service (TCS). 

The ASKALON project [25] is developed by the University of Innsbruck (USA). It provides an ideal environment based on new ser-

vices, tools, and methodologies for running parallel applications in cloud and grid environments. Its goal is to simplify the development 

and optimization of parallel applications. Workflows are described using AGWL (Abstract Grid Workflow Language). It allows re-

searchers design applications using modeling instead of programming and optimize parallel applications based on constraints (dependen-

cies). 

PEGASUS [26] is an open-source workflow management system developed at the University of Southern California, which integrates a 

number of technologies to run parallel applications in heterogeneous environments such as grids, clusters, and clouds. It has been used in 

a number of scientific fields such as bioinformatics, gravitational wave physics, ocean science, etc. 

One of the most important elements of workflow management systems is the scheduling module, which we will present in the next sec-

tion. 
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3. Scheduling of scientific workflows in the cloud computing 

3.1. Cloud workflow scheduling system 

Fig. 3 shows the architecture of the cloud workflow scheduling system. We can see that the system consists of four modules: an estima-

tion module, a scheduling module, a reservation module, and an execution module. To schedule a scientific workflow onto an IaaS cloud, 

seven steps should be taken [28]: 

1) At first, the estimation module acquires the workflow specification and the QoS requirement from the user, and the virtual ma-

chines (VM) specification from the cloud service provider. 

2) Based on the acquired information, the estimation module will estimate the execution time of each task on every kinds of VM. 

3) Then, taking the execution time matrix, the scheduling module will make a complete execution plan about how many VMs should 

be leased, when to lease and release them, and which task should be assigned to which VM. The scheduling module consists of 

two components: optimization algorithm and simulation. The optimization algorithm generates schedules and gives them to the 

simulation component to judge whether the schedules can satisfy the constraints and how good the schedules are. Then utilizing 

the simulation results, the optimization algorithm keeps finding better schedules until the stop criterion is met. 

4) After getting a near-optimal schedule, the scheduling module tells the reservation module the amount and the types of the required 

VMs and gives the execution plan to the execution module. 

5) The reservation module then leases VMs from the service provider and prepares them ready. 

6) When the execution module is informed that the runtime environment is prepared, it starts sending commands to the cloud to exe-

cute the workflow, telling the cloud which VM should be started or power-off. 

7) During the execution, it collects the information about the real runtime of tasks and returns such information to the estimation 

module as feedback. If there is another similar workflow that is going to be executed, the feedback information can help in improv-

ing the precision of execution time estimation. After running the whole workflow, the execution module is also responsible for re-

turning the final result to the user. Among these four modules, the former two, estimation module and scheduling module, are the 

core of the whole scheduling system, because they together decide whether an effective and economical schedule can be generated. 

Workflow scheduling is a process that ”maps” and manages the execution of interdependent tasks onto distributed resources. It al-

locates appropriate resources for workflow tasks so that execution can be completed while satisfying user-imposed goals and con-

straints. Proper scheduling can have a significant impact on system performance. In general, the task mapping problem on distrib-

uted services belongs to a class of problems known as NP-complete [29], [30]. 

 

 
Fig. 3: Architecture of the Cloud Workflow Scheduling System [28]. 

3.2. Scheduling taxonomy 

The algorithms developed in this survey focus only on IaaS clouds. This part aims to give a clear explanation for each model presented 

and used in the classification table of Section 5. These are the application model, resource model, and scheduling model. 

 

 
Fig. 4: Application Model Taxonomy. 

3.2.1. Application model 

Users submit requests to service providers as a workflow. However, applications have the ability to be planned and executed on the IaaS 

cloud based on their dynamics. The purpose of dynamicity for workflow scheduling algorithms is to manage the execution of a single 

workflow, multiple workflows, or sets of workflows. 

a) Single workflow 

In the literature, several algorithms, in the case of articles [5] [31 - 48] focus on the independent and sequential scheduling of scientific 

workflows that arrive at different times. 

The class’s algorithms are made to optimize a single workflow’s schedule. This is still the most often used paradigm in cloud computing; 

it is the one from the past that is utilized in grids and clusters. It is assumed that the scheduler controls the independent and sequential 
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execution of workflows. The scheduling algorithm can therefore concentrate on maximizing the quality of service needs for a single user 

and a single DAG [49]. 

b) Multiple workflows 

Although the workflows being scheduled in this category are comparable to those in the workflow ensembles category, they are not nec-

essarily related to one another and may differ in terms of structure, size, input data, application, etc. More crucially, scheduling is seen as 

a dynamic process where workflows with different configurations are continuously arriving for execution and the workload is constantly 

changing since the quantity and kind of workflows are unknown in advance. One more distinction is that every workflow instance has 

distinct QoS requirements of its own [49]. 

The algorithms in [50 - 52] each schedule, at the same time, several scientific workflows of different sizes, which arrive in the platform 

for execution. In this scheduling, the objective is to meet the quality of service requirements demanded by each submitted workflow. For 

example, [51] in particular proposes a multi-objective optimization model for several workflows, taking into account the fairness of each 

workflow through the clustering method, and presents cluster-based resource allocation approaches to improve the optimization. 

c) Workflow ensembles 

Many scientific applications consist of multiple instances of the procedure. These connected processes are referred to as ensembles and 

are grouped because when they are executed collectively, they yield the intended result [53]. While the quantity and input data of the 

workflows in an ensemble vary, they often share a similar structure. The goal of scheduling algorithms is to use the resources at hand to 

carry out each workflow on the ensemble. The fact that the QoS requirements are intended for numerous workflows rather than just one 

must be understood by policies. For instance, an ensemble with 100 workflows and a 1-hour deadline must finish all of the workflows 

before the deadline. Because of this, algorithms typically include the quantity of work (i.e., the number of workflows that have been fin-

ished) in their scheduling objectives. Another characteristic of workflow ensembles is that the number of instances is usually known in 

advance, and therefore the planning strategy can use it when executing tasks [49]. 

In the literature, few algorithms are interested in scheduling Workflow ensembles. The EMO [54] algorithm, for example, is based on a 

meta-heuristic like the genetic algorithm to schedule Workflow ensembles. 

3.2.2. Resource model 

For the resource model, the algorithms adopt a resource provisioning strategy which can be static or dynamic. In the static resource pro-

visioning strategy, all decisions regarding the configuration of the virtual machine pool are made prior to the execution of the workflow. 

For the dynamic resource provisioning strategy, on the other hand, all initial decisions at runtime are made by selecting which VMs to 

keep active, which to lease and which to release as the workflow is executed [49]. Figure 4 shows the different types of resource provi-

sioning strategies. 

 

 
Fig. 5: Resource Model Taxonomy. 

 

a) Static 

In static resource provisioning, the resources are rented and kept active during the workflow’s execution after the VM pool has been 

established. The resources are given back to the supplier when the application expires. Estimating the capacity of the resources required 

to satisfy the scheduling goals is the main focus of these methods. The benefit is that the algorithm may concentrate entirely on assigning 

jobs to virtual machines (VMs) once the resource provisioning decision has been made. The effects of VM provisioning and deprovision-

ing delays are greatly dampened and become much more manageable. Nevertheless, this model disregards the cloud pricing paradigm 

and does not capitalize on resource elasticity. Because VMs will be billed even during periods when they are idle, this might lead to 

schedules that are not cost-effective and do not meet QoS requirements [49]. 

Several algorithms [54 - 56], [31], [34], [35], [37 - 40], [43], [44], [46,] work with static resource provisioning. Before starting the actual 

scheduling, the number of resources needed is already known in advance. The reservation of resources can therefore be done with the 

cloud infrastructure provider. 

b) Dynamic 

This tactic works well with algorithms that use either dynamic or static resource provisioning. With this approach, algorithms can be 

updated as the workflow is carried out, both in terms of the quantity and kind of virtual machines (VMs) utilized to schedule activities. 

Certain algorithms are able to make adaptive choices in response to task restrictions and cost awareness. For example, idle virtual ma-

chines (VMs) can be shut down to save money, and a fresh VM can be deployed so that the job being planned can finish before its dead-

line. An additional method to accomplish this would be to estimate the capacity of resources required by activities on a regular basis to 

fulfill the limitations of the application and modify the virtual machine pool accordingly. Some methods rely their scaling decisions on 

performance measures like task throughput and overall virtual machine utilization. For instance, if the budget permits it and the utiliza-

tion increases over a predetermined level or if the quantity of tasks completed per second falls below a predetermined threshold, more 

virtual machines (VMs) may be provisioned. Finally, while creating the static schedule, static algorithms that make advantage of elastic 

virtual machine pools do so by ascertaining the VMs’ lease terms. The projected start time of the first task issued to a virtual machine 

(VM) and the estimated finish time of the last work assigned to it set limits on these leasing periods [49].  

Some algorithms in [33], [32], [5], [36], [41], [42], [45], [50], [52] use the dynamic provisioning strategy. At the beginning of application 

scheduling, the number of resources to be used remains unknown. It is only during the scheduling process that the need for the number of 

resources arises until the end. 
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3.2.3. Scheduling model 

In the scheduling system of scientific workflows, many studies have been done in the IaaS environment of cloud computing. For these 

studies, the different authors define a scheduling model. In this model, two strategies emerge: the optimization strategy and the schedul-

ing objectives, which are the different metrics to be considered in the optimization. Figure 5 shows the general scheduling model used in 

the scheduling process of workflows in the cloud. 

 
Fig. 6: Scheduling Model Taxonomy. 

 

a) Optimization strategy 

• Heuristic 

Numerous strategies for optimizing scientific workflows based on heuristics have been proposed such as BAGS [31], PDPPS [32], 

BDAS [33], FDHEFT [34], GRP-HEFT [36], NBWS [37], CTTSW [38], CTTWSDP [41], SRPSM [50], BDDC+BDC [42], MOWOS 

[56], MHPSLP [43] [51], SMWDSA [52], REWS [46], EViMA [45]. Heuristics are generally a collection of guidelines designed to solve 

certain problems [57]. These guidelines are particular to the issue at hand and are made to ensure that a rough solution is found in a rea-

sonable amount of time. In the scheduling scenario under discussion, a heuristic technique makes use of the workflow application’s fea-

tures and the cloud’s attributes to find a timetable that satisfies the user’s quality of service (QoS) needs. Heuristic-based scheduling 

algorithms’ primary benefit is their performance efficiency; they typically discover workable solutions in a reasonable amount of time. In 

comparison to meta-heuristic-based approaches, they are also more predictable and simpler to use [49]. 

• Meta-heuristic 

Examples of meta-heuristics applied to scheduling scientific workflows in the cloud are the genetic algorithm, GA [54, 39], and particle 

swarm optimization PSO [44]. While heuristics are specifically tailored to address a given problem, meta-heuristics are all-purpose algo-

rithms that address optimization issues [57]. These are higher-level tactics that use heuristics particular to a certain problem to identify a 

close to ideal solution. Meta-heuristic techniques are often more computationally costly and take longer to execute than heuristic-based 

algorithms, but they also have a tendency to find more desirable schedules as they use a guided search to investigate many possibilities. 

Defining operations to prevent exploring invalid solutions (e.g., data dependency violations) to facilitate convergence, modeling an es-

sentially unbound number of resources, and pruning the search space using heuristics based on the cloud resource model are some of the 

challenges involved in using meta-heuristics to solve the workflow scheduling problem in clouds [49]. 

• Hybrid 

To optimize the scheduling of a collection of workflow tasks, hybrid algorithms may employ meta-heuristic techniques. Using heuristics, 

one further approach is to integrate optimal solutions for smaller and/or simplified versions of the problem. Because algorithms analyze a 

narrower problem area than heuristic-based methods, they may be able to make better optimization decisions while requiring less compu-

ting time [49]. Some works use the hybrid strategy for scheduling workflows, such as [35] which combines AG and ABC, [40] which 

combines HEFT and ACO, [55] with PSO and GWO. 

b) Scheduling objectives 

Much of the work focuses on optimizing the metrics presented below: 

• Cost 

Minimization of costs: Cloud platform algorithms must take infrastructure leasing into account. Should they neglect to do so, using cloud 

storage, renting virtual machines, and moving data might get quite costly. Algorithms incorporate this goal by either attempting to lower 

its value or by placing a limit on the total amount of money allocated to resources, primarily budget [49]. The subsequent equation might 

be used to convey it [58]: 

 

                                                                                                                                                                                  (1) 

 

Where Costex is the execution cost and Costtr is the transfer cost. 

• Budget 

It is the cost that the consumers pay for the usage of the cloud resources [59]. 

• Makespan 

Makespan minimization: the makespan of a workflow is the time at which the last workflow task finishes its execution [60]. In order to 

calculate it, use the following equation [61]: 

 

                                                                                                                                                                           (2) 

 

Where FTime denotes the Finish time of the last task and STime is the starting time of the first task. 

• Deadline 

It is the time limit for the execution of the workflow [62] and its supporting is an important QoS requirements. 

• Energy consumption 

Minimizing energy consumption: To minimize their negative effects on the environment, people, businesses, and governments all over 

the world are becoming more concerned about lowering their carbon footprints [49]. 
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• Reliability 

Reliability awareness: it is the probability that the task can be completed successfully. To achieve this, scheduling mechanisms like ac-

tive replications and backup/restart plans that account for resource and temporal redundancy may be used [63]. 

• Security 

Security awareness: attackers may misuse some cloud features and components to launch cloud-specific attacks [64]. A secure scheduler 

produces safe scheduling to mitigate the effects of security attacks. 

• Fairness 

Li et al. [51] define a new metric for fairness. Fair resource allocation across various processes is a genuine challenge for multi-workflow 

scheduling, albeit it goes beyond costs and makespan. The slowness that each workflow would encounter when sharing resources with 

other workflows is the basis for defining fairness. 

• Resource utilization 

VM Utilization Maximization: Algorithms attempt to eliminate idle time slots in their schedules since they are considered a waste of 

money in leased virtual machines (VMs) because they were paid for but not used. But these wasted time slots frequently result from a 

workflow’s execution, mostly because of job dependencies and performance standards [49]. 

4. Survey 

In 2016, Zhu et al. [54] proposed an evolutionary multi-objective optimization algorithm to solve the workflow scheduling problem in 

the cloud IaaS infrastructure by simultaneously minimizing the makespan and the execution cost. This algorithm, based on the genetic 

algorithm, is a meta-heuristic consisting of a system for coding solutions, initializing the population, evaluating the fitness function, and 

applying new genetic operators. Simulation results show that this algorithm has the best solutions compared to other scheduling algo-

rithms for QoS optimization in the literature. 

In 2017, Rodriguez and Buyya [31] proposed a budget-based algorithm called BAGS in which different resource sourcing and schedul-

ing strategies are used for different topological structures. This algorithm consists of four main steps. The first is an offline strategy that 

partitions the DAG into BoTs before it is executed. The second is an online budget distribution phase that is repeated throughout the 

execution of the workflow. It allocates part of the remaining budget to tasks that have not yet been scheduled. The third step is responsi-

ble for creating a resource supply plan for the BoTs as their tasks become available for execution. Finally, the ready tasks are scheduled 

and executed according to their corresponding supply plans. The simulation results demonstrate the responsiveness of the proposed algo-

rithm to environmental uncertainties and its ability to generate high-quality schedules that meet the budget constraint while achieving 

faster execution times compared to state-of-the-art algorithms. 

Singh et al. [32] in 2018, proposed a Partition Problem-based Dynamic Provisioning and Scheduling (PDPPS) algorithm to reduce the 

execution cost of scheduling a time-bound workflow using dynamic resource provisioning in a single cloud environment. This algorithm 

has two phases. A first phase is an approach that uses a delay determination method for each bot and the k-means clustering technique to 

determine the speed of the virtual machines that would be used in the scheduling. The second phase is a dynamic VM provisioning ap-

proach for task-to-VM mapping, using the partition problem, which is a variant of the subset-sum problem. They incorporate a model 

used by many cloud service providers today, based on centralized storage for data transfer, that can help with data recovery in the event 

of a virtual machine failure in the middle of a task execution. They establish that PDPPS works better than existing approaches such as 

IC-PCP and DPDS via simulations. 

In 2019, Arabnejad et al., [33] presented a new heuristic scheduling algorithm - Budget and Deadline Aware Scheduling (BDAS) to 

schedule both budget and deadline-constrained workflows in Infrastructure as a Service (IaaS) clouds. In order to find the most feasible 

scheduling and the best instance type to furnish, the BDAS algorithm employs a novel time-cost trade-off factor. BDAS is divided into 

five main phases: Scientific Workflow division, allocation of funds, deadline distribution, job selection, and virtual machine instance 

selection. BDAS was assessed and contrasted with three previously published algorithms (BDHEFT, RCT, and RTC) based on a variety 

of measures. In terms of success rate, the BDAS algorithm shows over 84% success in all datasets, while the worst performance occurs 

in the BDHEFT algorithm which fails in about 60% of different test cases in EPIGENOMICS and LIGO. 

Zhou et al. [34] in 2019, focus on the scientific workflow scheduling problem of simultaneously minimizing cost and time under task 

precedence constraints in the workflow. They design a heterogeneous fuzzy dominance sort (FDHEFT) algorithm to solve the cloud 

workflow scheduling problem. Just like MOHEFT, FDHEFT is an improved form of HEFT that is separated into two primary stages: the 

tasks of the prioritizing phase and the instance selection phase. The scheduling priorities of every activity in the workflow are assigned 

during the task prioritizing phase. The optimal instance for every task in the schedule list is then found during the instance selection 

phase. The extensive experiments are based on actual Amazon EC2 pricing and resource parameters, and the results demonstrated that 

the proposed FDHEFT can explore better trade-offs between cost and workflow scheduling with significantly lower execution times 

compared to a number of similar approaches. 

In 2019, Gao et al. [35] developed a Pareto-based multi-objective workflow scheduling algorithm, called HGAABC, to simultaneously 

optimize the makespan and execution cost of the workflow. They extend HGAABC to cope with commercial IaaS cloud computing sys-

tems providing a limited number of instances and a flexible mix of instance types. In terms of the pay-per-use price model, they translate 

each job into a matching VM instance series type by integrating the operation and exploration capabilities in ABC and GA, respectively. 

To produce a workable schedule given a mapping of tasks to virtual machines (VMs) and a mapping of VMs to their types, a decoding 

heuristic is provided. These mappings are evolved by a hybrid algorithm that combines the principles of GA and ABC. In the GA algo-

rithm, the solutions are called chromosomes which are recursively improved by the selection, crossover and mutation operators. In the 

second half of the iteration cycle, the resultant chromosomes are sent to the ABC algorithm. Worker bees, spectator bees, and scout bees 

are the three kinds of bees that gradually enrich the solutions, which are referred to as food sources in the ABC algorithm. 

In 2019, the authors of the paper [5] propose an onliNe multi-workflOw Scheduling Framework, named NOSF, for IaaS clouds. By dy-

namically allocating VM resources for randomly arrived workflows based on the online status of scheduled tasks, NOSF not only cap-

tures the stochasticity of task execution time on VMs but also mitigates the propagated impacts of the fluctuated task execution time on 

each VM. The scheduling process of workflows in NOSF consists of three phases: workflow preprocessing, VM allocation, and feedback 

process. 

They conduct extensive simulations on realistic workflow datasets, and validate the superiority of NOSF, by comparing it to two existing 

algorithms, in terms of VM rental cost and deadline violation probability reduction (average 50.5 and 55.7 percent, respectively), as well 

as improving resource utilization efficiency (average 32.6 percent). 
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In 2020, Faragardi et al. [36] suggested the Greedy Resource Provisioning and Modified HEFT (GRP-HEFT) scheduling algorithm and 

method for resource provisioning for the effective execution of workflows, to reduce the lifetime of a certain scientific workflow within 

the hourly cost model’s budgetary constraints. GRP-HEFT contains two parts: a resource provisioning algorithm that specifies how many 

and what types of instances are extracted from the infinite pool of resources offered by cloud providers and a scheduling algorithm that 

determines the assignment of tasks to the obtained instances and the order of execution of the tasks within each instance. They compare 

their algorithm with three different baseline algorithms that are considered state-of-the-art. According to the results of large-scale work-

flows with 1000 tasks, in all experiments, they strictly outperform these algorithms. 

In 2020, Kalyan et al. [37] presented an algorithm called NBWS (Normalization-based Budget Constraint Workflow Scheduling) that 

generates a workflow schedule that minimizes execution time while respecting the budget constraint. To minimize execution time, the 

NBWS algorithm maps workflow tasks to resources that have the earliest finish time within the allocated budget. This budget-

constrained algorithm consists of finding a viable workflow schedule subject to the user-defined budget. The proposed NBWS consists of 

two distinct stages, namely the task selection stage and the elastic resource selection stage. For the simulation, the CloudSim tool is used 

and the obtained results are compared with basic algorithms such as BDHEFT, BHEFT, and IC-Loss on various real-world scientific 

workflows. 

Mboula et al. [38] in 2020, suggested a novel workflow scheduling technique with the goal of minimizing processing expenses and exe-

cution times: Effective Workflow Scheduling with a Cost-Time Trade-off (CTTWS). Implicit Requested Instance Types Range (IRITR) 

evaluation is a novel idea used by the CTTWS scheduling algorithm to identify a range of virtual machine instance types that best suit 

the workflow execution and prevent overbids and underbids, which can result in budget and deadline violations, respectively. As a result, 

no task uses a slower instance than those of the IRITR, and the root tasks are carried out on comparatively fast instances that speed up 

execution and may be reused. Based on their cost ratio, time ratio, and success rate, they contrast BDAS and CTTWS. This study shows 

that CTTWS is more effective than BDAS and outperforms BDAS by up to 38.4% in scheduling success. 

In 2021, the authors [40] suggested using the ant colony algorithm (ACO) in conjunction with the heterogeneous earliest finish time 

(HEFT) to reduce both the makespan and the cost. The main goal of this work is to improve the process of allocating workflow jobs to 

virtual machines by using a metaheuristic algorithm. Planning a workflow often involves two stages. Setting a priority for reliant chores 

came first. The second is utilized to plan out tasks that are prepared. The outcomes show that HEFT-ACO is a viable strategy to deal with 

QoS problems related to cloud workflow resource allocation. 

In 2021, the authors of [41] developed the CTTWSDP (Cost-Time Trade-off efficient Workflow Scheduling with Dynamic provisioning) 

algorithm. The latter uses a cost-time trade-off function on heterogeneous instances and dynamic virtual machine provisioning with a 

restricted number of rented virtual machines to identify the most practical scheduling. CTTWSDP also presented an improved evaluation 

of the Implicit Requested Instance Type Range (IRITR), which is a scheduling concept developed in their prior work [38]. The goal of 

the IRITR assessment is to identify a range of virtual machine instance types that are most appropriate for executing the workflow, pre-

venting underbids and overbids that could violate deadlines and the budget, respectively. The simulations’ outcomes demonstrate the 

proposal’s efficacy. CTTWSDP achieves a higher success rate of 17.09-76.06% compared to four leading algorithms in the literature. 

In 2021, Rajasekar et al. [50] suggested a resource provisioning and scheduling technique designed specifically for WaaS platforms. The 

method can be made more dynamic and scalable to enhance the platform and workload. It aims to lower the overall execution cost of 

infrastructure resources by meeting every workflow deadline constraint and allows containers to address inefficient resource use. Accord-

ing to what we know, this method specifically addresses virtual machine sharing in the context of cloud-as-a-service (WaaS) by imple-

menting the use of containers in scheduling and resource provisioning heuristics. In comparison to other current algorithms, their testing 

results demonstrate its cost-effectiveness, responsiveness to environmental uncertainties, and ability to meet deadlines. 

Taghinezhad-Niar et al. [42] suggested in 2021, two algorithms to account for time and money restrictions when developing scientific 

workflows on cloud IaaS platforms: Budget Deadline Delicate Cloud (BDDC) and Budget Deadline Cloud (BDC). BDDC is a heuristic 

algorithm that distributes budgets and deadlines for each level taking into account the overall task execution time to acquire economic 

costs for each level. Meanwhile, BDC distributes timelines to each level, and the budget is considered the remaining cost in each pro-

gramming cycle. BDDC and BDC are suitable for low-budget environments. In general, BDDC and BDC run other algorithms providing 

higher success and higher quality of service and utilization. 

In 2021 [55], the authors proposed an algorithm, named PSO–GWO, which is a combination of Particle Swarm Optimization and Grey 

Wolf Optimization. The basic idea of the PSO–GWO algorithm is to run the PSO algorithm to the first half of iterations and the best 

solution generated by the PSO (gbest) is initialized by the alpha wolf and for the later half run GWO algorithm. The best solution gener-

ated by the GWO is stored in alpha wolf and considered to be the best mapping of tasks and VMs. The PSO–GWO algorithm is tested on 

the scientific workflow like montage, cybershake, inspiral and sipht. The suggested approach seeks to minimize the overall cost of execu-

tion. The experiment’s findings demonstrate that, when compared to the normal Particle Swarm Optimization and Grey Wolf Optimiza-

tion algorithms, the PSO–GWO algorithm reduces both the average total execution time and cost. 

In order to simultaneously decrease execution cost and execution makespan, Konjaang et al. [56] expanded their prior work ”Cost Opti-

mised Heuristic Method (COHA)” and developed a revolutionary workflow scheduling algorithm called Multi-Objective Workflow Op-

timization Strategy (MOWOS) in 2021. To shorten their scheduling time, MOWOS uses a task-splitting method to divide huge activities 

into smaller ones. Additionally, MOWOS introduces two new task allocation techniques dubbed MaxVM selection and MinVM selec-

tion. The goal of MOWOS’s design is to make it possible for all tasks to complete their assignments on time and within budget. When 

compared to the state-of-the-art work, the suggested algorithm performs much better in large and extra-large workflow jobs than in small 

and medium workflow tasks. 

The authors [43] in 2022 proposed a hybrid algorithm called MHPSLP which is an improvement of the article [65] with two different 

mathematical methods, they were put to use for scientific workflow scheduling and resource provisioning. They introduce a linear math-

ematical model to fairly distribute the delays on the tasks according to their execution time in each workflow level in the static phase, 

then they replace their provisioning method with a linear mixed-numbers programming method to select optimal combinations of re-

sources to reduce workflow costs. The advantage of this method compared to the compared scheduling algorithms is the reduction of the 

cost of the task executed within a time constraint. 

The authors of the paper [51] in 2022 focus on scheduling computing resources under multi-objective optimization for multiple work-

flows. In particular, these authors propose a multi-objective optimization model for multiple workflows considering the fairness of each 

workflow through the DFS-CST-based clustering method and present resource allocation approaches based on clusters to improve opti-

mization. For this, they define the fairness of the multi-workflow scheduling considering the fairness of individual execution time and 

cost, then they design a resource allocation based on the cluster strategy to reduce the communication time. It is possible to plan a cloud 
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simulation workflow by using the experimental results, which demonstrate that the suggested approach outperforms the comparative 

algorithms without appreciably sacrificing individual fairness or overall time and cost. 

In the paper [44] in 2022, to improve the ability of multi-objective evolutionary algorithms (MOEAs) to converge to non-dominated 

solutions, an improved multi-objective particle swarm optimization algorithm (IMaOPSO) is proposed by the authors, for dynamic 

scheduling of workflows in the cloud environments. The objective of the proposed approach is to address multi-objective QoS require-

ments in the context of cloud users and providers by minimizing makespan, cost and maximizing reliability for users, and minimizing 

energy consumption for providers. Addressing more than three objectives simultaneously in workflow planning is an aspect of innova-

tion in this work that has not been addressed so far. MaOPSO uses a set of dynamically determining reference points based on the search 

process, allowing the algorithm to converge to non-dominated solutions. 

Ye et al. [52] in 2022 presented an efficient stochastic multi-workflow dynamic scheduling algorithm called SMWDSA to schedule mul-

ti-workflows with deadline constraints for optimizing multi-workflow scheduling cost. The proposed SMWDSA consists of three stages 

including multi-workflows preprocessing, multi-workflow scheduling, and scheduling feedback. In SMWDSA, a novel task sub-

deadlines assignment strategy is designed to assign the task sub-deadlines to each task of multi-workflow for meeting workflow deadline 

constraints. Then, they propose a task scheduling method based on the minimal time slot availability to execute tasks for minimizing 

workflow scheduling costs while meeting workflow deadlines. Finally, a scheduling feedback strategy is adopted to update the priorities 

and sub-deadlines of unscheduled tasks, for further minimizing workflow scheduling costs. 

In 2022, Ye et al. [46] propose a workflow scheduling algorithm named REWS to reduce energy consumption and satisfy workflow reli-

ability constraints. In REWS, a new sub-reliability constraint prediction strategy is adopted to break down the workflow reliability con-

straint into task sub-reliability constraints and the effectiveness of this strategy is proved. Moreover, an update method is adopted to ad-

just the task sub-reliability constraint for reducing energy consumption. In addition, a brief system framework which consists of five 

parts: workflow analyzer, reliability decomposer, resource manager, workflow scheduler, and feedback processer is built to support the 

algorithm implementation of REWS. They conduct the experiments using both synthetic data and real-world data to evaluate the pro-

posed REWS approach. 

Konjaang et al. [45] in 2022 developed a heuristic scheduling technique to solve the workflow task scheduling problem in a cloud com-

puting environment. Moreover, workflow execution normally contains some time gaps (idle time), which may increase the execution cost 

of workflow tasks. This paper has proposed a slack time harvesting algorithm that is effective in making use of idle time. Finally, an 

energy-efficient VM Mapping Algorithm (EViMA) is proposed to support the scheduling model to achieve its aim of managing cloud 

resources to generate energy optimal schedules. EViMA is supported by four sub-algorithms including Highly Critical Workflow Task 

Selection Algorithm (HiCTSA), Low Critical Workflow Task Selection Algorithm (LoCTSA), VM Power Regulating Algorithm (VM-

PRA), and Slack Time Harvesting Method (STiHaM). EViMA produced the best solution that manages the use of cloud resources better, 

to reduce energy consumption, makespan, and execution cost. 

In 2021, the paper [39] proposed an industrial workflow scheduling algorithm based on an adaptive genetic algorithm (GA) that utilizes 

multiple, software-defined cloud data center resources not only to improve energy utilization but also to keep the cost of execution to a 

minimum as well. First, a novel workflow broker based on SDNWB is used to deploy industrial workflow tasks across multiple software-

defined data centers while automating task provisioning and data provisioning for this algorithm. Secondly, an adaptive genetic algo-

rithm (GA) and SDNWB are combined for green planning of industrial workflow applications. The evaluation shows that this proposed 

method can increase the usage of green energy for the execution of industrial workflow up to three times with a slight increase of cost. 

By determining the dynamic threshold value for scheduling jobs on virtual machines, [66] suggested a task’s dynamic priority for work-

flow scheduling using MONWS, which applies the min-max algorithm to reduce finish time and maximize resource utilization. MONWS 

produced 35% improvements in makespan, 8% increases in maximum average cloud utilization, and 4% cost reductions when compared 

to existing algorithms based on the testing results.  

5. Summary table of used algorithms and discussion 

In this section, we will present the table of studied algorithms, and then we will analyze the table in the discussions. 

5.1. Summary table of used algorithms 

Ref Authors   Algorithm Wf Dy RPS Opt Stra S O  Sim T 

[54] Zhu et al., 2015 EMO Ensemble Static Meta- M, C  Amazon 
       Heuristic   EC2 

[31] Rodriguez et al., BAGS Single Static Heuristic D, C  CloudSim 

 2017          
[32] Singh et al., 2018 PDPPS Single Dynamic Heuristic D, C  Java 

[33] Arabnejad et al., BDAS Single Dynamic Heuristic M, C  CloudSim 

 2018          
[34] Zhou et al., 2019 FDHEFT Single Static Heuristic M, C  JMetal 

[35] Gao et al., 2019  HGAABC Single Static Hybrid M, C  WorkflowSim 

[5] Liu et al., 2019  NOSF Single Dynamic Heuristic C, RU Java 
[36] Faragardi et al., GRP- Single Dynamic Heuristic M, C  CloudSim 

 2019   HEFT       
[37] Kalyan et al., 2020 NBWS Single Static Heuristic M, C  CloudSim 

[38] Ndamlabin et al., CTTWS Single Static Heuristic D, C  WorkflowSim 

 2020          
[39] Wen et al., 2020  GA Single Static Meta- D, C, CloudSim 

       Heuristic EC   

[40] Belgacem et al., HEFT- Single Static Hybrid M, C  WorkflowSim 
 2022   ACO       

[41] Ndamlabin et al., CTTWSDP Single Dynamic Heuristic D, C  WorkflowSim 

 2021          
           

[50] Rajasekar et al., SRPSM Multiple Dynamic Heuristic D, C  CloudSim 

 2021          
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[42] Taghinezhad et al., BDDC + Single Dynamic Heuristic D, C  Aneka 

 2021   BDC       

[55] Arora et al., 2022 PSO–GWO Single Static Hybrid M, C  WorkflowSim 

[56] Konjaang et al., MOWOS Single Static Heuristic M, C  WorkflowSim 

 2021          
[43] Hariri et al., 2022 MHPSLP Single Static Heuristic D, C  N/A 

[51] Feng et al., 2022 N/A Multiple Dynamic Heuristic M,C,F WorkflowSim 

[44] Saeedi et al., 2020 IMaOPSO Single Static Meta- M, C, WorkflowSim 
       Heuristic R, EC  

[52] Ye et al., 2022  SMWDSA Multiple Dynamic Heuristic D, C  WorkflowSim 

[46] Ye et al., 2022  REWS Single Static Heuristic R, EC Java 
[45] Konjaang et al., EViMA Single Dynamic Heuristic M, C, WorkflowSim 

 2022       EC   

[66] Pillareddy et al., MONWS Single Dynamic Heuristic M, C  CloudSim 
 2023          

Table 1: Summarize Related Works 

 

These columns in this table include the information below: Ref = Reference of article, RPS = Resource Provisioning Strategy, Wf Dy = 

Workflow Dynamicity, Opt Stra = Optimization Strategy (M = Makespan, C = Cost, D = Deadline, R = Reliability, RU = Resource Uti-

lization, F = Fairness, EC = Energy Comsumption), SO = Scheduling Objectives, Sim T = Simulation Tool. 

5.2. Discussion 

In relation to the scheduling of scientific workflows in cloud computing IaaS infrastructures, the table 1 contains 24 papers classified 

from 2016 to 2023. These papers are classified according to some parameters, such as the dynamicity of scientific workflows, resource 

provisioning strategies, optimization strategies, scheduling objectives (metrics), and simulation tools.  

 

• Workflow dynamicity 

 

 
Fig. 7: Classification of Workflow Dynamicity. 

 

Figure 7 shows the dynamicity of the workflows that arrive in a cloud system and have to be executed. Statistics show that 83% of the 

articles studied deal with a single workflow, 13% deal with multiple workflows and 4% deal with workflows ensembles. Among all these 

works selected between 2016 and 2022, we note that the majority of authors focus more on scheduling single workflows than multiple 

workflows and even less on scheduling workflow ensembles. 

 

• Resource provisioning strategy 

 

 
Fig. 8: Classification of Resource Provisioning Strategy. 

 

Several studies demonstrate the importance of the resource provisioning strategy and these studies show that the resource provisioning 

strategy affects the scheduling objectives or metrics. Figure 8, shows the classification of the resource provisioning strategy. The strategy 

can be static (57%) or dynamic (43%) for the studies presented in the table. It is clear that when the resource provisioning strategy is 

static, the resources (VMs) are already reserved for the execution of the tasks of the different scientific workflows and can observe some 
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inactive time slots. For the dynamic resource provisioning strategy, resources are continuously provisioned as needed for the workflow 

tasks execution. It may happen in this case that the appropriate resources are not available at a given time. An ideal strategy must there-

fore be chosen that does not impact the optimization of metrics during workflow scheduling. 

 

• Optimization strategy 

 

 
Fig. 9: Classification of Optimization Strategy. 

 

For the optimization strategy presented in figure 8, we note that the majority of studies are done through heuristics (74%) and few studies 

use meta-heuristics (13%) and hybrid methods (13%). The heuristic strategies quickly find solutions to the problems at a lower cost and 

in a short time, contrary to the meta-heuristics and hybrid strategies. However, Meta-heuristics approaches produce better optimization 

results. Thus, hybrid (Heuristic / Meta-heuristic) approaches are likely recommended in dynamic environments like Cloud.  

 

• Scheduling objectives (metrics) 

 

 
Fig. 10: Classification of Scheduling Objectives (Metrics) in the IaaS Cloud. 

 

In the scheduling process of scientific workflows in cloud computing, the objective is to optimize some metrics which can be Cost, 

Makespan, Deadline, Reliability, Energy consumption, Resource utilization, and Fairness. Figure 10, shows a classification of the sched-

uling objectives (metrics) optimized in the different presented works. For the range of articles in the table, it is clear that the majority 

focus on metrics such as Cost (42%), Makespan (24%), and Deadline (18%), and few works focus on Reliability (4%), Energy consump-

tion(8%), Resource utilization(2%), Fairness(2%). It should be noted that several works optimize two metrics at a time such as 

Makespan, Cost, and Deadline, Cost but few works optimize more than two metrics 

 

• Simulation tools 

 

 
Fig. 11: Ranking of Simulation Tools. 
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Figure 11 gives a ranking of simulation tools for scientific workflows according to their usage preference. 

It appears, from figure 11, that WorkflowSim is the most used tool by the authors and is as much used as all the other tools combined. 

CloudSim comes in second position in this ranking and is half as used as Workflowsim. It should be noted that Workflowsim is an exten-

sion of Cloudsim to simulate scientific workflows in distributed environments such as cloud computing. 

6. Open issues 

As future directions in the work of scheduling scientific workflows in IaaS infrastructures of cloud computing, we have a few points: 

6.1. Scalability 

Resources can’t scale endlessly; thus, when a resource limit is reached, a service provider may choose to assign jobs to other providers in 

a transparent manner to consumers in order to minimize fines for SLA violations. A situation like this creates opportunities for SLA 

management studies. 

6.2. Elasticity 

In the context of cloud computing, elasticity refers to the dynamic placement and (re)sizing of an application’s resources in accordance 

with the load that it is subjected to through addition, deletion, migration, and configuration changes. This problem is one of the main 

objectives and a major challenge of cloud computing. 

6.3. Dynamic scheduling 

It would be interesting to think about how the cloud environment is dynamic in order to choose the optimal resource allocation using 

continuously updated information. 

6.4. Scaling up 

By taking advantage of available computing power and scaling up in a cloud environment, it is possible to consider the parallelization of 

algorithms to increase their robustness and solve the multi-objective scheduling problem for large-scale workflows. 

6.5. Communications between datacenters and a datacenter reputation 

In a multi-datacenter cloud environment, workflows are submitted from any datacenter in the cloud. A workflow is submitted to the data-

center closest to its submission location. In order to comply with the Service Level Agreement (SLA) between each customer and the 

providers of the cloud resources, a datacenter may find itself obliged to transfer some or all of the tasks of a scientific workflow to a dat-

acenter whose reputation for efficiency in executing a certain type of scientific workflow is known. It would be desirable to think of a 

distributed method where there is communication between datacenters in a cloud for the execution of scientific workflows. This will 

improve reliability and other optimization metrics. 

6.6. Simulation environment 

The majority of workflow scheduling techniques are implemented in cloud simulators like CloudSim and WorkflowSim. To see if the 

suggested methods work in practice, it will be best to simulate algorithms in real cloud computing environments. 

7. Conclusion 

Cloud computing swiftly evolved into a computer resource renting environment where users could also carry out their scientific opera-

tions. Finding effective scientific workflow scheduling algorithms that maximize a variety of metrics relating to QoS, the use of cloud 

resources, or environmental conservation is a challenge for scientists. 

The study of algorithms for scheduling scientific workflows in a cloud computing environment is described in this paper. This study 

concentrated on workflow scheduling techniques, the way workflows arrive in the scheduler, the method for provisioning cloud re-

sources to the scheduler, metrics for QoS, the use of cloud resources, or environmental protection factors taken into account by schedul-

ing algorithms. 

In this article, a taxonomy covering the study’s subject is also offered. It is based on a thorough analysis of scientific workflow schedul-

ing techniques. The taxonomy is accompanied by a categorization of the examined algorithms that exemplifies the most recent methods 

for the planning of scientific workflows in diverse aspects. The simulation tools for these scheduling techniques are likewise categorized. 

It was feasible to provide readers with an overview of the issue of scheduling scientific workflows in cloud computing and with fresh 

directions for future research thanks to the analysis of these various classifications. 
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