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Abstract 

This paper presents the chaos synchronization by designing different 
type of controller. Firstly, we propose the synchronization of bi-
directional coupled chaotic Rikitake systems via hybrid feedback 
control. Secondly, we study the synchronization of unidirectionally 
coupled Rikitake systems using hybrid feedback control. Lastly, we 
investigate the synchronization of unidirectionally coupled Rikitake 
chaotic systems using tracking control. Comparing all results finally 
we conclude that tracking control is more effective than feedback 
control. Simulation results are presented to show the efficiency of 
synchronization schemes. 

Keywords: Chaotic system, Chaos synchronization, Chaos control, Rikitake 
system. 

 

1 Introduction 

Since the pioneer works by Ott.E, Grebogi and Yorke [1] and Pecorra and Carroll 

[2] , chaos control and synchronization has received increasing attention due to its 

theoretical challenges and its potential applications to various disciplines. 

Synchronization in biological systems is one of the fascinating area that has 

attracted a lots of renewed attention. 

Historically, the analysis of synchronization phenomena in the evaluation 

dynamical system has been a subject of active investigation since the earlier days 

of physics. Chaos synchronization become very important topics in the non-linear 

science over the last two decades, due to its potential applications in many areas 
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such as secure communication, information processing, biological system, 

chemical reaction, neural networks and in engineering. Usually two dynamical 

systems are called synchronized if the distance between their corresponding states 

converges to zero as time goes to infinity. This type of synchronization is known 

as identical synchronization [1]. Using linear and non linear feedback control 

chaos synchronization have been presented in various chaotic systems. 

Synchronization of unified chaotic system using adaptive feedback control was 

studied by Lu and Chen in 2002 [3]. In 2005, Park [4] has studied controlling 

chaotic systems via nonlinear feedback control. Chen et.al. [5] proposed 

generating hyper chaotic Lu attractor via state feedback control. Synchronization 

between two different noise perturbed chaotic system with fully unknown 

parameters was proposed by Sun Y.Cao in 2007 [6].  Poria et.al. [7] have 

investigated adaptive synchronization of two coupled chaotic Neuronal systems.   

Khan et.al. [8] have investigated control strategies for unified chaotic system 

using different type of control. Recently in 2009 Tarai et.al. [9,10] have observed 

generalized synchronization of bidirectionally coupled chaotic system . 

  

In this paper firstly, we discuss the synchronization between two bidirectionally 

coupled chaotic Rikitake system via hybrid feedback control. Secondly, we study 

the synchronization between two identical Rikitake system using hybrid feedback 

control and lastly, we investigates the synchronization of two identical Rikitake 

chaotic systems using tracking control. 

 

2 Design of Hybrid Controller of Bidirectionally 
Couple Chaotic System 

 
 A dynamical system can be written as   

                           ( )x f x                                                                   (1) 

                                              

This system can also be expressed as 

                           ( )  x Ax B x                                                             (2) 

 where n nA R  , n mB R  are constant matrix, ( ) : n nx R R  is non-linear   

vector functions. We consider the following type bidirectionally coupled chaotic 

systems 

                           1[ ( ) ]   x Ax B x u                                                     (3) 

                           2[ ( ) ]   y Ay B y u                                                    (4) 

where nx R , ny R , n nA R  , n mB R  , : n nR R   is non-linear vector 

functions. The synchronization errors between the systems (3) and (4) are defined 

as 1 2 1 1 2 2( , ,........, ) ( , ,....., )T T

n n ne e e e x y x y x y     . Then the error dynamical 

system is  
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                         1 2[ ( ) ( ) ]     e Ae B x y u u                                         (5) 

In order to make the system (3) and (4) synchronizable, the coupling functions 1u  

and 2u  should be properly chosen. 

Let 1 11 12u u u   and 2 21 22u u u  , where 11 ( )u y  , 12u Ky   and  

21 ( )u x  , 22u Kx   and 

1

2

3

0 0

0 0

0 0

k

K k

k

 
 

  
 
 

, denote the feedback matrix. 

Obviously 11u , 21u  are non-linear controller and 12u , 22u  are linear controller, so  

1u  and 2u  are hybrid controller. 

 

Theorem: If the matrix A BK has all eigen values with negative real parts, then 

origin will be a asymptotically stable fixed point of the system (5). 

 

 Proof: Choosing the controller 1u  and 2u  properly, the error system (5) can be 

written as  

 

                 ( ) e A BK e                                                                        (6) 

Now by the theory of linear dynamical system if the matrix  A BK  has all eigen 

values with negative real parts, then the origin of the error system will be globally 

asymptotically stable fixed point. Therefore in this case the bi-directionally 

coupled systems (3) and (4) will synchronize. 

 

Example. We shall now discuss efficiency of our scheme taking coupled chaotic  

Rikitake systems. The Rikitake system can be described by the following system 

of differential equations. 

                       

1 2 3 2 1

2 3 2 1 2 2

3 1 2

( )

1

 

  

 

x x x a x

x x b x a x

x x x

                                                       (7) 

 where 1 2 3, , nx x x R  are state variables and 2 2,a b  are real constants. System (7) 

is found to be chaotic when 2 2a   and 2 5b  . 

 

According to our choice of controller the coupled systems are 

                       

1 2 3 2 1 2 3 1 1

2 3 2 1 2 2 1 3 2 2

3 1 2 1 2 3 3 3

( )

2

   

    

    

x x x a x y y k y

x x b x a x y y k y

x x x y y y k y

                                      (8) 

and 
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1 2 3 2 1 2 3 1 1

2 3 2 1 2 2 1 3 2 2

3 1 2 1 2 3 3 3

( )

2

   

    

    

y y y a y x x k x

y y b y a y x x k x

y y y x x x k x

                                      (9) 

Therefore the error system is 

                       

1 2 1 1

2 2 1 2 2 2

3 3 3

( )

( )

( 1)

  

   

 

e a k e

e b e k a e

e k e

                                                          (10) 

Now for suitable choice of K the matrix A BK has all eigen values with negative 

real parts, then the drive system synchronizes with the response system. 

     

 

 
Fig.1-Fig.3. represents the trajectories of (x1, y1), (x2, y2) and (x3, y3) and 

Fig.4. shows time evolution of the synchronization error. 

We choose 

2 0 0

5 2 0

0 0 1

A

 
 

   
  

, 

1 0 0

0 1 0

0 0 1

B

 
 

  
 
 

, and 

1 0 0

0 1 0

0 0 .5

K

 
 

  
 
 

. 

For numerical simulation, Fourth order Runge-Kutta method is used. We select 

the parameters 2 2( , ) (2,5)a b  . The initial conditions of system (8) and (9) are 

chosen as 1 2 3( (0), (0), (0)) (10,6,3)x x x   and 1 2 3( (0), (0), (0)) ( 3, 2, 5)y y y     , so 

the initial synchronization errors are 1 2 3( (0), (0), (0)) (13,8,8).e e e  The trajectories 

of the 1x , state of the drive system and 1y , state of the response system are shown 

in Fig.1. The trajectories of 2x  and 2y  are shown in Fig.2. and the trajectories of 

3x  and 3y are shown in Fig.3. Figures confirm the synchronization between the 

two chaotic bidirectionally systems. Time evolution of the synchronization error 

goes to zero which are shown in Fig.4.  
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3 Synchronization of Coupled Rikitake Systems Via 
Hybrid Feedback Control 

 
In this section, we discuss the synchronization of coupled Rikitake systems via 

hybrid feedback control. The Rikitake system (7) can be rewritten as 

 
   

                      

1 2 1 2 3

2 2 2 2 1 3

3 3 3 1 2

0 0 1 0 0

0 0 1 0

0 0 1 0 0 1 1

       
       

          
                

x a x x x

x b a x x x

x x x x x

     (11) 

Comparing equation (3.1) with equation (2.2), we get 

               

2

2 2

0 0

0

0 0 1

a

A b a

 
 

   
  

, 

1 0 0

0 1 0

0 0 1

B

 
 

  
 
 

, 

2 3

1 3

3 1 2

( )

1

x x

x x x

x x x

 
 

   
   

 

            Now, 

1

2

3

2 0 0

5 2 0

0 0 1

k

A BK k

k

  
 

     
   

 where 2 2a   and 2 5b  . 

The characteristic equation of A BK  is 

 
3 2

1 2 3 1 2 1 3 2 3 1 2 3 1 2 3( 5) ( 3 3 4 8) ( 2)( 2)( 1) 0k k k k k k k k k k k k k k k                 

 
According to Routh-Hurwitz, the matrix A BK is negative definite if 

              

1 2 3

1 2 1 3 2 3 1 2 3

1 2 3

1 2 3 1 2 1 3 2 3 1 2 3 1 2 3

5 0

3 3 4 8 0

( 2)( 2)( 1) 0

( 5)( 3 3 4 8) ( 2)( 2)( 1)

k k k

k k k k k k k k k

k k k

k k k k k k k k k k k k k k k

   

      

   

            

(12) 

are satisfied when 1 21, 1k k   and 3 .5k   then A BK is negative definite. 

Therefore the controller 1u  and 2u  can be chosen as  

        

2 3 2 3

1 1 3 1 3

1 2 1 2 3 3

x x y y

u x x y y

x x y y x y

 
 

  
     

 and 

1 1 1

2 2 2 2

3 3 3

0 0

( ) 0 0

0 0

k x y

u K x y k x y

k x y

  
  

     
    

 

Therefore the response system becomes 
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1 2 1 1 2 3

2 2 1 2 2 2 1 3

3 3 3 1 2

( 1)

( 1)

1
( ) 1

2

    

     

   

y a y x x x

y b y a y x x x

y x y x x

                         (13) 

 
Fig.5-Fig.7. represents the trajectories of (x1, y1), (x2, y2) and (x3, y3) and 

Fig.8. shows time evolution of the synchronization error. 

 

For numerical simulation,we select the parameter 2 2( , ) (2,5)a b  . The initial 

conditions of system (11) and (13) are chosen as  

1 2 3( (0), (0), (0)) (10,6,3)x x x   and 1 2 3( (0), (0), (0)) ( 3, 2, 5)y y y     , so the initial 

values of errors are (13,8,8). The trajectories of 1x , state of the drive system and 

1y , state of the response system are shown in Fig.5. The trajectories of 2x  and 2y

are shown in Fig.6. and the trajectories of 3x  and 3y are shown in Fig.7. Figures 

confirm the synchronization behavior between the coupled systems. Time 

evolution of the synchronization errors converges to zero which are shown in 

Fig.8. 

 

4 Design of Tracking Controller 

For discuss the synchronization of unidirectional coupled chaotic system via 

tracking control we assume that system (2) is the drive system. By introducing 

control variable nU R , then the controlled response system is given by 

                        ( )   y Ay B y U                                                          (14)

where ny R  denote the state vector of the response system. The main problem is 
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to design a controller U  which synchronizes the state of both drive and response 

systems. We substract (2) from (14) and we get 

                   

                         ( ( ) ( ))    e Ae B y x U                                          (15) 

where e y x  . The aim is to make lim ( ) 0t e t  . Let the Lyapunov error 

function be 
1

( )
2

TV e e e , where ( )V e  is a positive definite function. Assuming 

that the parameters of the drive  and response systems are known and state of both 

system are measurable. We may achieve the synchronization by selecting the 

controller U  to make the first derivative ( )V e  i.e. ( ) 0V e & . Then the state of the 

response and drive system synchronized asymptotically globally. 

 

Example: 
 Synchronization of Rikitake system via tracking control 

 

Let dynamical system (7) be the drive system, then the controlled response  

Rikitake system is given by the following 

         

                        

1 2 3 2 1 1

2 3 2 1 2 2 2

3 1 2 3

( )

1

  

   

  

y y y a y u

y y b y a y u

y y y u

                                                 (16) 

Let us define the error between the trajectories of the response and drive Rikitake 

system as i i ie y x    ( 1,2,3)i  . Therefore the error system is 

 

                       

1 2 1 2 3 2 3 1

2 2 1 1 3 1 3 2 2 2

3 1 2 1 2 3

    

     

  

e a e y y x x u

e b e x x y y a e u

e x x y y u

                                          (17) 

If we choose the controller as 

                       

                      

1 2 3 2 3

2 1 3 1 3 2 1

3 1 2 1 2 3

u x x y y

u x x y y b e

u y y x x e

 

  

  

                                                          (18) 

 

Then the synchronization between the coupled Rikitake systems will occur. 
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Fig.9-Fig.11.represents the trajectories of (x1, y1), (x2, y2) and (x3, y3) and                       

Fig.12. shows time evolution of the synchronization errors. 

 

The parameters of Rikitake system are 2 2( , ) (2,5)a b  . The initial conditions for 

the driving system and driven system are given respectively by 

1 2 3( (0), (0), (0)) (10,6,3)x x x   and 1 2 3( (0), (0), (0)) ( 3, 2, 5)y y y     , so the initial 

values of error system are 1 2 3( (0), (0), (0)) (13,8,8)e e e  . The trajectories of 1x , 

state of the drive system and 1y , state of the response system are shown in Fig.9. 

The trajectories of  2x  and 2y  are shown in Fig.10. and the trajectories of 3x  and 

3y are shown in Fig.11. Figures confirm the synchronization behavior between the 

system. Time evolution of the synchronization errors go to zero which are shown 

in Fig.12. 

 

5 Conclusions 

 
This paper investigates the synchronization by designing different type controller, 

which include bi-directional coupled chaotic systems using hybrid feedback 

control and unidirectional coupled chaotic systems using hybrid feedback control 

and tracking control. We apply above three controller methods for Rikitake 

system to prove the feasibility and effectiveness of the proposed scheme. 

Comparing all results finally we conclude from numerical simulation results that 

tracking control is more effective than feedback control. 
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