
Journal of Advanced Computer Science and Technology, 1 (4) (2012) 187-194

©Science Publishing Corporation

www.sciencepubco.com/index.php/JACST

Introducing Software-Based Fault Handling

Mechanism to Cope with Electromagnetic

Interference (EMI) in Digital Electronic Circuits

1
Jinadu Olayinka,

2*
Arobieke Oluwole,

3
Kayode Idowu,

4
Osafehiniti Samuel

1
Department of Computer Science, Rufus Giwa polytechnic, Owo

2,3,4
Dept of Electrical Electronics Engineering Technology, Rufus Giwa

Polytechnic, Owo

* E-mail of the corresponding author: oluarobieke@yahoo.com

Abstract

Digital circuits operating under radiation are subject to different
kinds of permanent and transient effects. Most electromagnetic (EM)
environment in which electronic systems have to operate is becoming
increasingly hostile while dependence on electronics is widespread and
increasing. The need for digital architectures to survive faults and
remain dependable despite the multiple-fault injection nature of the
electromagnetic interference (EMI) in microprocessors calls for the
introduction of a software-based fault handling mechanism.
Redundancy, which is a common answer to increasing error-coverage
in most safety-critical applications offers higher dependability but for
most low-cost computer based systems (including Digital Signal
Processors), another technique is implemented for effectiveness. This
paper implements the duplicate j-instruction rule on high-level
programming to detect faulty jumps. Code redundancy and
consistency checks cover the fault to increase system reliability.

Keywords: Digital Circuits, Digital Signal Processing, Redundancy, Fault
Handling Mechanism, EMI.

1 Introduction and Motivation

Digital technology, a study and development of devices that stores and

manipulates numbers has realised numerous digital devices including those that

 188

translate words (text), voices (audio) and pictures (graphics) into numbers (digits)

for the computer to process and those that equally translates these numbers

(digits) back into pictures, voices or words as the situation requires. Digital audio,

speech recognition, cable modem, radar, high-definition televisions etc are but a

few of the modern computer and communication applications that relies solely on

digital signal processing as corroborated in Keshab (2009). The much flexibility

in digital signal processing arises from the fact that most operations are

implemented by simple program (algorithm) unlike in analog systems, where a re-

design of the hardware must be carried out.

Digital circuits are circuits designed to respond at input voltages at one or finite

number of levels and, similarly, to produce output voltages at one or finite levels

(McGrawHill, 2004). Digital circuits functions on a number of different logic

gates. Shenoi (2006) affirmed that digital circuits are becoming more and more

popular as technology requires the electronic devices used day-to-day to become

smaller and smaller, making the items more readily accessible regardless of

location or circumstance

Signal processors are processing units capable of processing discrete-time signals.

A signal is any physical quantity that varies with time, space or other independent

variables (Monsoon, 1999). Signals can be described mathematically as a function

of one or more independent variables, therefore enabling digital processes such as

filtering, measurements, generations and reconstructions to be effected via linear

or quadratic computations. Chen and Jan (2005) asserted that most of the

technology of this information age is based on the theory of digital signal

processing.

Shenoi (2006) explained that with the Digital Signal Processors (DSPs), these

operations are specified mathematically using algorithms, implemented either in

hardware or software. The availability of these efficient algorithms for the various

digital signal processes, coupled with rapid development in integrated circuit

technology has spurred the development of powerful; special-purpose digital

hardwares. Reabaudengo et al (1999) further explained that these systems are

capable of performing even complex digital signal processing functions and tasks

evident in EMI environments.

Fault tolerance is a technique of providing, by redundancy, services complying

with the specification in spite of faults having occurred or occurring. Fault

tolerance is a method that assumes that a system has unavoidable and undetectable

faults. It makes provision for the system to operate currently even in the presence

of fault(s). Laprie (1995) defines this concept as a measure of reliability.

In digital circuits, faults are physical defects occurring in components while errors

are the manifestation of these defects. Most often, it is an incorrect behaviour

caused by a fault. However, the presence of faults may not ensure an error but

transient or permanent faults are categorised by their duration. Faults in digital

circuits exist as a deviation of one or more logic variables from their design-

189 Jinadu Olayinka et. al.

specified values within the systems; fault handling is a method of using

redundancy to enable recovery even without explicit error detection.

Redundancy is a common answer to the increasing demand of high dependability

in most safety-critical applications but for most low-cost computer based systems,

another technique is proposed for effectiveness. The society’s reliance on

computer automations for domestic and industrial applications required software

fault-tolerance more necessarily than the hardware fault-tolerance (Gray and

Siewiorekc, 1991). Having this same view, Chen and Jan (2005) asserted that

digital systems can be implemented by combining digital hardware and software

fault-tolerance, each of which performs its own set of specified operations,

enabling the effectiveness of introducing a software-based fault handling

mechanism into the EMI digital signal processing environments.

To provide software reliability, information redundancy is implemented to

provide the technique of handling the errors and hardware voting method is also

simulated to provide the software redundancy.

Though, on-line fault detection through hardware redundancy is a viable solution

in many different applications, but it is not feasible where cost is a critical issue.

Software fault-tolerance is the ability of software to detect and recover fault that is

happening or has already happened as the software is running in order to provide

service in accordance with the specifications (Lyu, 1995). Although, systems

hardware redundancy is unacceptable in some of these critical applications as in

EMI environment, but Chris (1998) and Murray et al (2000) both affirmed that

software redundancy is a design modification that can possibly be introduced to

improve the system fault-tolerance. This technique creates a redundant system,

because the software-based solution is efficient when it is not isolated from its

hardware fault-tolerance counterpart.

2 Motivational Objective

The need for exploiting the high-computing performance of state-of-the-art

processors (including the Digital Signal Processors) coupled with cost

containment, provides a strong motivation for introducing feasible alternatives to

existing traditional solutions. This software-based fault handling technique

provides a low-cost solution of enhancing the reliability of the computer systems

without modifying the hardware.

Therefore, the aims of this work are to:

(i) Develop an algorithm suitable for fault handling

mechanisms in Digital Electronic Circuits and

(ii) Implement the above using C programming language

 190

3 Design Procedures

In order to estimate the correctness of the adopted techniques, some benchmarks

such as (integer matrix multiplication, filtering, summation of floating point

numbers and library functions) of C program were considered. For this research,

code modification approach for a conditioned loop was implemented on a block of

C program code. Tests between two variables a and b for jump calls and further

computations was implemented using the Control Flow Graphing shown in

Figures 1a and 1b.

Semantically, most of the Control Flow faults in the program was identified using

the Software Error Detection (SED) method and data redundancy techniques was

adopted (Benso, 1997). The strategy of source-code modification is the

partitioning of the program code into basic blocks BB for the two different

modifications to detect the transient bit-flip fault in memory location containing

the data. This approach, according to Gray and Siewiorek (1991) is a form of

electromagnetic interference, which introduces transient faults because the

microprocessors use registers to store data.

The first modification corresponds to duplicating some or all of the program

variables to introduce data redundancy and modifying all the operators to manage

the introduced replica of the variable. The second aims at introducing consistency

checks into the control flow to periodically verify the consistency between the two

copies of each variable.

3.1 Definitions

A basic block BB is a sequence of consecutive instructions in which in the

absence of faults, the control flow enters at the beginning and leaves at the end. It

does not contain any instruction (such as jump, branch or call instructions) that

may change the control flow except for the last one. High-level programming

define specific structure to delimit the borders of each block, as evident in using

the symbol “{“ used in C programming (Bjarne, 1997).

Namjoo (1993) explained that a program can be represented by a graph having set

of nodes and set of edges. Adopting this definition, the source code in Fig 1a is

represented by a corresponding Control Flow Graph (CFG) indicated in Fig 1b.

(Goloubeva et al, 2003).

From Fig.1b, the graph has a set of nodes V and a set of edges E ,  EVP , ,

where  ni vvvvV ,...,,...,, 21 and  mi eeeeE ,...,,...,, 21 . Each node iv represents

a basic block BB while each edge ie represents the branch jibr , from iv to jv .

Though, these edges jibr , are not necessarily explicit branch instructions, they

represent jumps, subroutine calls and return instructions.

Any illegal and incorrect branch indicates a control flow error. This would be

checked by code redundancy and consistence checks.

191 Jinadu Olayinka et. al.

0 i = 0;

while (i < n) {

1 If (a[i] < b [i])

2 x[i] = a [i];

3 Else x[i] = b[i];

4 i++; }

5

Fig 1a) Source code with basic block BB b) CFG for the source

program segment

3.2 Code Transformation Rules

A code is a special program integer variable during any program execution

(Goloubeva et al, 2003). To check the control flow, code redundancy is used by

the implementation of two given assertions. At the beginning of the BB , the first

(set) assertion, the code is updated to store the value corresponding to the

currently transverse BB . The second (test) assertion then verifies the run time

value of the code variable at the beginning if it corresponds to the value at the end.

The consistency checks are performed before each code variable update by means

of the set.

3.3 Methodology of using Hidden branches: Escaping faults

Considering the program CFG  EVP , , for each node iv , the set of nodes

successor of iv is defined as  ivsuc while the set of nodes predecessor of iv is

defined as  ivpred . A node iv belongs to  ivsuc if and only if jibr , is included

in E . Similarly, jv belongs to  ivpred if and only if ijbr , is included in E .

A code as a special program integer implements the masking operation. During

program execution, the special program integer variable (called code) is updated

through the set assertion defined above while the consistency check is performed

before each code variable update is achieved by means of the test assertions.

During the execution of P, jibr , is illegal if jibr , is not included in E . With a

 0

 2 3

 4

 5

 1

 192

code = B0;
ERR_CODE = 0;
i = 0;
ERR_CODE |= (code != B0);
code = code ^ (B0 ^ B1);
while (i < n) {
...
ERR_CODE |= (code = B4) && (code != B6);
code = (code & M1_4_6) ^ M2_4_6_7;
i1 = i; i++; i1++;
ERR_CODE |= (code != B7) || (i != i1);
code = code ^ (B7 ^ B8);
}
ERR_CODE |= ((code!= B1) && (code != B8)) ||
(i<n);
if (ERR_CODE) error;

legal branch jibr , included in E transformed in different branch kibr , included in

E , kibr , is incorrect because these illegal and incorrect branches will indicate a

Control Flow Errors, caused by transient or permanent faults.

The new value of the code variable is calculated from the old value of the code

variable applying the set and test assertion rules described by the expression 1.1

   21& MMcodecode  (1.1)

where 1M represents a constant mask depending on the identifiers of the nodes

belonging to  ivpred ; while 2M represent a constant masks depending on the

identifier of the current node and nodes belonging to  ivpred . The code fault is

masked by an ORed combination of M1 and M2.

Choosing the identifiers of the BB to make the new value of the code variable

equal to the targeted value is necessary to avoid an aliasing effect of the masking

technique. This is achievable only if the old value of the code variable is legal

according to the program CFG. For set assertion at the beginning and end of the

BB , masks 1M and 2M is defined as 1.2 and 1.3 respectively.

  
ij IMIM 1&2 12  (1.2)

 and ii IIMM 21;1 21  (1.3)

When a BB iv is entered, the code variable is set to an integer variable value iI1

and when the BB iv is exited, the code variable is set to another integer variable

value I2i.

Test assertions introduced at the end of the BB iv is implemented as in expression

1.4

  iIcodeCODEERR 1!|_  (1.4)

where the ERR-CODE is the control flow error. If the newly introduced test

produce incorrect result, an error is detected as shown in Fig. 2 (source code) but

if no error is signalled, the fault is masked.

Fig.2 Source code for masking fault using code redundancy technique

193 Jinadu Olayinka et. al.

All illegal and incorrect branches indicate control flow errors, which are due to

transient or permanent faults. The source code avoids the duplication of the whole

set of variables therefore the life time of each variable can be determined.

4 Result and Discussions

The new code transformation rules suggested when applied produces an effect-

less (EL) program output because the faults does not modify the results produced

by the program. This technique identifies most (transient or permanent) faults

leading to program control flow errors because there is fault free execution of the

target application.

Calculated jumps, subroutines and other branches become efficient eliminating

control flow errors. The source code modification is a variable duplication

approach while code consistency check implements data redundancy. These

techniques improve fault-tolerance in EMI environments in digital signal

processing. An exhaustive application of these approaches dramatically increases

system resources (CPU time and memory) overheads through masked fault-

coverage. The fault-free behaviour therefore offers more dependable and reliable

system.

Finally, to provide a balance trade-off between fault-coverage and resource

overheads, there is the need to optimize the automatic modification of the source

codes. The number of variables to be duplicated and the granularity (set and test

assertions) of the consistency and code redundancy checks must be tuned. This is

suggested for further research.

References

[1] Avizeinis S. A. (1995) “The N-version Approach to Fault Tolerant Software”

IEEE Transactions of Software Engineering. Vol. SE-11 No 12 Pg. 1491-

1501.

[2] Benso A., Corno F., Prinetto P.. Reubandengo M. And Sonza Reorda M.

(1997). “FATO: a software Fault Tolerance approach”, IEEE International

On-Line Testing Workshop.

[3] Bjarne Stroustrup (1997). “The C++ Programming Language. Third edition.

Addison Wesley, Longman.

[4] Chen J. H. and Jan T. S. (2005) “A system dynamics model of the

semiconductor industry development” Journal of the Operational Research

Society, Vol 56 pp 1141-1150.

[5] Chris Incio (1998) “Software Fault Tolerance: Dependable Embedded

System”. A paper presented at Carnegie Mellon University.

 194

[6] Goloubeva O., Rebaudengo M., Sonza Rieorda M. and Violante M. (2003)

“Soft-Error Detection using Control Flow Assertion” Proc. on Defects and

Fault Tolerance in VLSI Systems Pg. 581-588.

[7] Gray J. and Siewiorek D.P. (1991) “High-Availability Computer Systems”

1st edition. IEEC Computer, USA.

[8] Keshab K. Parhi (2009). “VLSI Digital Signal Processing Systems: Design

and Implementation”. 1st edition. Wiley Inc., USA.

[9] Laprie J. (1995). “Conceptual Framework for System Fault tolerance”. 1st

edition. John Wiley Inc., USA.

[10] Lyu M.R. (1995). “Software Fault Tolerance” 1st edition Chichester,

England, John Wiley & Sons Inc.

[11] Monsoon H.H. (1999). “Digital Signal Processing Schaum Outline Series”

1st edition McGraw-Hill Companies Inc. USA.

[12] Murray P, Fleming R, Harry P and Vickers P. (2000) “Somersault Software

Fault Tolerance” HP Labs Whitepaper, California.

[13] Namjoo M. (1993) . “CERBERUS-16: An Architecture for a General

Purpose Watchdog Processor”. Proc. Symposium on Fault Tolerant

Computing. Pp 216-219.

[14] Rebaudengo M., Sonza Rieorda M., Torchiano M. and Violante M. (1999).

“Soft-error Detection through Software Fault Tolerant Techniques”. DFT’99:

IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems. Pp 210-218.

[15] Shenoi B.A. (2006) “Introduction to Digital Signal Processing and Filter

Design” 1st edition. John Wiley & Sons Inc.

