Comparative Analysis of Metaheuristic Algorithms for Solving The Travelling Salesman Problems

Authors

  • Saman M. Almufti

    Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq
  • Awaz Ahmed Shaban

    Department of Computer System, Ararat Technical Institute, Duhok, Iraq

How to Cite

Almufti, S. M., & Shaban, A. A. . (2025). Comparative Analysis of Metaheuristic Algorithms for Solving The Travelling Salesman Problems. International Journal of Scientific World, 11(2), 26-30. https://doi.org/10.14419/7fk7k945

Received date: June 17, 2025

Accepted date: July 25, 2025

Published date: July 30, 2025

DOI:

https://doi.org/10.14419/7fk7k945

Keywords:

Traveling Salesman Problem (TSP); Metaheuristic Algorithms; Swarm Intelligence; TSPLIB Benchmark; ‎Combinatorial Optimization; Ant Colony Optimi-zation; Grey Wolf Optimizer; Cat Swarm Optimization; ‎Algorithm Performance Analysis.

Abstract

This study presents a comprehensive comparative analysis of nine state-of-the-art metaheuristic optimization algorithms applied to the classical Traveling Salesman Problem (TSP), a fundamental benchmark in ‎combinatorial optimization. The selected algorithms—Ant Colony Optimization (ACO), Lion Algorithm ‎‎(LA), Cuckoo Search (CS), Grey Wolf Optimizer (GWO), Vibrating Particles System (VPS), Social Spider ‎Optimization (SSO), Cat Swarm Optimization (CSO), Bat Algorithm (BA), and Artificial Bee Colony ‎‎(ABC)—are evaluated on three standardized TSPLIB benchmark instances: berlin52, eil76, and pr1002. ‎The evaluation framework encompasses multiple performance metrics, including best-found cost, mean ‎solution quality, standard deviation, and convergence behavior, over 30 independent runs per instance. ‎The results offer empirical insights into each algorithm’s strengths, limitations, and scalability across ‎problem sizes. Notably, ACO, GWO, and CSO demonstrate superior balance between solution accuracy ‎and robustness, making them promising candidates for large-scale combinatorial problems. This work not ‎only provides an up-to-date performance landscape of leading swarm-based and evolutionary metaheuristics but also guides algorithm selection for real-world optimization applications requiring adaptability ‎and computational efficiency‎.

Author Biography

  • Saman M. Almufti, Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq
    Swarm intellignce

References

  1. . Almufti, S. M. (2022a). Hybridizing Ant Colony Optimization Algorithm for optimizing edge-detector techniques. Academic Journal of Nawroz University, 11(2), 135–145. https://doi.org/10.25007/ajnu.v11n2a1320.
  2. . Almufti, S. M. (2022b). Vibrating particles system algorithm: Overview, modifications and applications. Academic Journal of Nawroz University, 10(3), 31–41.
  3. . Almufti, S. M. (2022c). Lion algorithm: Overview, modifications and applications. International Research Journal of Science, Technology, Educa-tion, and Management, 2(2), 176–186.
  4. . Almufti, S. M. (2023). Fusion of water evaporation optimization and great deluge: A dynamic approach for benchmark function solving. Fusion: Practice and Applications, 13(1), 19–36.
  5. . Almufti, S. M. . (2025). Metaheuristics Algorithms: Overview, Applications, and Modifications. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-454-2.
  6. . Almufti, S. M., & Alkurdi, A. A. H. (2022). Artificial bee colony algorithm performances in solving constraint-based optimization problems. Jour-nal of Computer & Information Management Studies, 21(1).
  7. . Almufti, S. M., & Shaban, A. A. (2018). U-turning ant colony algorithm for solving symmetric traveling salesman problem. Academic Journal of Nawroz University, 7(4), 45–49.
  8. . Almufti, S. M., & Shaban, A. A. (2025). A deep dive into the artificial bee colony algorithm: Theory, improvements, and real-world applications. International Journal of Scientific World, 11(1), 178–187. https://doi.org/10.14419/v9d3s339.
  9. . Almufti, S. M., Maribojoc, R. P., & Pahuriray, A. V. (2022b). Ant-based system: Overviews, modifications, and applications from 1992 to 2022. Polaris Global Journal of Scholarly Research and Trends, 1(1), 10. https://doi.org/10.58429/pgjsrt.v1n1a85.
  10. . Almufti, S. M., Shaban, A. A., Ali, R. I., & Dela Fuente, J. A. (2023). Overview of Metaheuristic Algorithms. Polaris Global Journal of Scholarly Research and Trends, 2(2), 10–32. https://doi.org/10.58429/pgjsrt.v2n2a144.
  11. . Amiri, B., Shahbahrami, A., & Mirjalili, S. (2019). Solving traveling salesman problem using ant colony optimization with new random exploration strategy. Mathematics and Computers in Simulation, 161, 74–84. https://doi.org/10.1016/j.matcom.2019.01.004.
  12. . Chu, S. C., Roddick, J. F., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim International Conference on Artificial Intelligence (pp. 854–858). Springer. https://doi.org/10.1007/11801603_94.
  13. . Cuevas, E., González, J. R., Zaldivar, D., Rojas, R., & Pérez-Cisneros, M. (2013). Social spider optimization. Applied Soft Computing, 13(12), 4923–4937. https://doi.org/10.1016/j.asoc.2013.07.030.
  14. . Dehghani, M., Montazeri, Z., & Gandomi, A. H. (2021). Lion optimization algorithm: Theory, literature review, and applications. Applied Soft Computing, 105, 107329. https://doi.org/10.1016/j.asoc.2021.107329.
  15. . Dervis, K. (2010). An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University.
  16. . Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transac-tions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892.
  17. . Fister, I., Fister, D., Yang, X. S., & Brest, J. (2015). A comprehensive review of bat algorithm and its applications. Artificial Intelligence Review, 42, 895–919.
  18. . Ihsan, R. R., Almufti, S. M., Ormani, B. M. S., Asaad, R. R., & Marqas, R. B. (2021). A survey on cat swarm optimization algorithm. Asian Jour-nal of Research in Computer Science, 10(2), 22–32. https://doi.org/10.9734/ajrcos/2021/v10i230237.
  19. . Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algo-rithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x.
  20. . Marqas, R. B., Almufti, S. M., Ahmed, H. B., & Asaad, R. R. (2021). Grey wolf optimizer: Overview, modifications and applications. Internation-al Research Journal of Science, Technology, Education, and Management, 1(1), 44–56. https://doi.org/10.14419/efkvvd44.
  21. . Marqas, R. B., Almufti, S. M., Othman, P. S., & Abdulrahman, C. M. (2020). Evaluation of EHO, U-TACO and TS metaheuristics algorithms in solving TSP. Journal of Xi’an University of Architecture & Technology, 12(4), 3245–3246.
  22. . Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  23. . Sahoo, G., & Tripathy, R. (2020). Comparative study of nature-inspired algorithms for TSP. International Journal of Computer Applications, 175(6), 1–6.
  24. . Shaban, A. A., & Ibrahim, I. M. (2025). Swarm intelligence algorithms: A survey of modifications and applications. International Journal of Scien-tific World.
  25. . Shaban, A. A., & Yasin, H. M. (2025). Applications of the artificial bee colony algorithm in medical imaging and diagnostics: A review. Interna-tional Journal of Scientific World, 11(1), 21–29.
  26. . Shaban, A. A., Almufti, S. M., Asaad, R. R., & Marqas, R. B. (2025). Swarm-based optimisation strategies for structural engineering: A case study on welded beam design. FMDB Transactions on Sustainable Computer Letters, 3(1), 1–11.
  27. . Shaban, A. A., Dela Fuente, J. A., Salih, M. S., & Ali, R. I. (2023). Review of swarm intelligence for solving symmetric traveling salesman prob-lem. Qubahan Academic Journal, 3(2), 10–27. https://doi.org/10.48161/qaj.v3n2a141.
  28. . Wang, G. G., Deb, S., & Coelho, L. D. S. (2015). Elephant herding optimization. In Proceedings of the 2015 International Symposium on Compu-tational Intelligence and Design (pp. 1–6). https://doi.org/10.1109/ISCID.2015.134.
  29. . Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Springer. https://doi.org/10.1007/978-3-642-12538-6_6.
  30. . Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Compu-ting (NaBIC) (pp. 210–214). IEEE. https://doi.org/10.1109/NABIC.2009.5393690.
  31. . Zebari, A. Y., Almufti, S. M., & Abdulrahman, C. M. (2020). Bat algorithm (BA): Review, applications and modifications. International Journal of Scientific World, 8(1), 1–7. Science Publishing Corporation. https://doi.org/10.14419/ijsw.v8i1.30120.

Downloads

How to Cite

Almufti, S. M., & Shaban, A. A. . (2025). Comparative Analysis of Metaheuristic Algorithms for Solving The Travelling Salesman Problems. International Journal of Scientific World, 11(2), 26-30. https://doi.org/10.14419/7fk7k945

Received date: June 17, 2025

Accepted date: July 25, 2025

Published date: July 30, 2025