Comparative Analysis of Metaheuristic Algorithms for Solving The Travelling Salesman Problems
DOI:
https://doi.org/10.14419/7fk7k945Keywords:
Traveling Salesman Problem (TSP); Metaheuristic Algorithms; Swarm Intelligence; TSPLIB Benchmark; Combinatorial Optimization; Ant Colony Optimi-zation; Grey Wolf Optimizer; Cat Swarm Optimization; Algorithm Performance Analysis.Abstract
This study presents a comprehensive comparative analysis of nine state-of-the-art metaheuristic optimization algorithms applied to the classical Traveling Salesman Problem (TSP), a fundamental benchmark in combinatorial optimization. The selected algorithms—Ant Colony Optimization (ACO), Lion Algorithm (LA), Cuckoo Search (CS), Grey Wolf Optimizer (GWO), Vibrating Particles System (VPS), Social Spider Optimization (SSO), Cat Swarm Optimization (CSO), Bat Algorithm (BA), and Artificial Bee Colony (ABC)—are evaluated on three standardized TSPLIB benchmark instances: berlin52, eil76, and pr1002. The evaluation framework encompasses multiple performance metrics, including best-found cost, mean solution quality, standard deviation, and convergence behavior, over 30 independent runs per instance. The results offer empirical insights into each algorithm’s strengths, limitations, and scalability across problem sizes. Notably, ACO, GWO, and CSO demonstrate superior balance between solution accuracy and robustness, making them promising candidates for large-scale combinatorial problems. This work not only provides an up-to-date performance landscape of leading swarm-based and evolutionary metaheuristics but also guides algorithm selection for real-world optimization applications requiring adaptability and computational efficiency.
References
- . Almufti, S. M. (2022a). Hybridizing Ant Colony Optimization Algorithm for optimizing edge-detector techniques. Academic Journal of Nawroz University, 11(2), 135–145. https://doi.org/10.25007/ajnu.v11n2a1320.
- . Almufti, S. M. (2022b). Vibrating particles system algorithm: Overview, modifications and applications. Academic Journal of Nawroz University, 10(3), 31–41.
- . Almufti, S. M. (2022c). Lion algorithm: Overview, modifications and applications. International Research Journal of Science, Technology, Educa-tion, and Management, 2(2), 176–186.
- . Almufti, S. M. (2023). Fusion of water evaporation optimization and great deluge: A dynamic approach for benchmark function solving. Fusion: Practice and Applications, 13(1), 19–36.
- . Almufti, S. M. . (2025). Metaheuristics Algorithms: Overview, Applications, and Modifications. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-454-2.
- . Almufti, S. M., & Alkurdi, A. A. H. (2022). Artificial bee colony algorithm performances in solving constraint-based optimization problems. Jour-nal of Computer & Information Management Studies, 21(1).
- . Almufti, S. M., & Shaban, A. A. (2018). U-turning ant colony algorithm for solving symmetric traveling salesman problem. Academic Journal of Nawroz University, 7(4), 45–49.
- . Almufti, S. M., & Shaban, A. A. (2025). A deep dive into the artificial bee colony algorithm: Theory, improvements, and real-world applications. International Journal of Scientific World, 11(1), 178–187. https://doi.org/10.14419/v9d3s339.
- . Almufti, S. M., Maribojoc, R. P., & Pahuriray, A. V. (2022b). Ant-based system: Overviews, modifications, and applications from 1992 to 2022. Polaris Global Journal of Scholarly Research and Trends, 1(1), 10. https://doi.org/10.58429/pgjsrt.v1n1a85.
- . Almufti, S. M., Shaban, A. A., Ali, R. I., & Dela Fuente, J. A. (2023). Overview of Metaheuristic Algorithms. Polaris Global Journal of Scholarly Research and Trends, 2(2), 10–32. https://doi.org/10.58429/pgjsrt.v2n2a144.
- . Amiri, B., Shahbahrami, A., & Mirjalili, S. (2019). Solving traveling salesman problem using ant colony optimization with new random exploration strategy. Mathematics and Computers in Simulation, 161, 74–84. https://doi.org/10.1016/j.matcom.2019.01.004.
- . Chu, S. C., Roddick, J. F., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim International Conference on Artificial Intelligence (pp. 854–858). Springer. https://doi.org/10.1007/11801603_94.
- . Cuevas, E., González, J. R., Zaldivar, D., Rojas, R., & Pérez-Cisneros, M. (2013). Social spider optimization. Applied Soft Computing, 13(12), 4923–4937. https://doi.org/10.1016/j.asoc.2013.07.030.
- . Dehghani, M., Montazeri, Z., & Gandomi, A. H. (2021). Lion optimization algorithm: Theory, literature review, and applications. Applied Soft Computing, 105, 107329. https://doi.org/10.1016/j.asoc.2021.107329.
- . Dervis, K. (2010). An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University.
- . Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transac-tions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892.
- . Fister, I., Fister, D., Yang, X. S., & Brest, J. (2015). A comprehensive review of bat algorithm and its applications. Artificial Intelligence Review, 42, 895–919.
- . Ihsan, R. R., Almufti, S. M., Ormani, B. M. S., Asaad, R. R., & Marqas, R. B. (2021). A survey on cat swarm optimization algorithm. Asian Jour-nal of Research in Computer Science, 10(2), 22–32. https://doi.org/10.9734/ajrcos/2021/v10i230237.
- . Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algo-rithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x.
- . Marqas, R. B., Almufti, S. M., Ahmed, H. B., & Asaad, R. R. (2021). Grey wolf optimizer: Overview, modifications and applications. Internation-al Research Journal of Science, Technology, Education, and Management, 1(1), 44–56. https://doi.org/10.14419/efkvvd44.
- . Marqas, R. B., Almufti, S. M., Othman, P. S., & Abdulrahman, C. M. (2020). Evaluation of EHO, U-TACO and TS metaheuristics algorithms in solving TSP. Journal of Xi’an University of Architecture & Technology, 12(4), 3245–3246.
- . Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- . Sahoo, G., & Tripathy, R. (2020). Comparative study of nature-inspired algorithms for TSP. International Journal of Computer Applications, 175(6), 1–6.
- . Shaban, A. A., & Ibrahim, I. M. (2025). Swarm intelligence algorithms: A survey of modifications and applications. International Journal of Scien-tific World.
- . Shaban, A. A., & Yasin, H. M. (2025). Applications of the artificial bee colony algorithm in medical imaging and diagnostics: A review. Interna-tional Journal of Scientific World, 11(1), 21–29.
- . Shaban, A. A., Almufti, S. M., Asaad, R. R., & Marqas, R. B. (2025). Swarm-based optimisation strategies for structural engineering: A case study on welded beam design. FMDB Transactions on Sustainable Computer Letters, 3(1), 1–11.
- . Shaban, A. A., Dela Fuente, J. A., Salih, M. S., & Ali, R. I. (2023). Review of swarm intelligence for solving symmetric traveling salesman prob-lem. Qubahan Academic Journal, 3(2), 10–27. https://doi.org/10.48161/qaj.v3n2a141.
- . Wang, G. G., Deb, S., & Coelho, L. D. S. (2015). Elephant herding optimization. In Proceedings of the 2015 International Symposium on Compu-tational Intelligence and Design (pp. 1–6). https://doi.org/10.1109/ISCID.2015.134.
- . Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Springer. https://doi.org/10.1007/978-3-642-12538-6_6.
- . Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Compu-ting (NaBIC) (pp. 210–214). IEEE. https://doi.org/10.1109/NABIC.2009.5393690.
- . Zebari, A. Y., Almufti, S. M., & Abdulrahman, C. M. (2020). Bat algorithm (BA): Review, applications and modifications. International Journal of Scientific World, 8(1), 1–7. Science Publishing Corporation. https://doi.org/10.14419/ijsw.v8i1.30120.
Downloads
How to Cite
Received date: June 17, 2025
Accepted date: July 25, 2025
Published date: July 30, 2025