Heart Attack Prediction in The United States: A Review

Authors

  • Botan Shivan Mustafa

    IT Department, College of Informatics, Akre University for Applied Sciences
  • Omar Sedqi Kareem

    Department of Public Health, College of Health and Medical Technology-Shekhan, Duhok Polytechnic University, Duhok, Kurdistan Region–Iraq

How to Cite

Mustafa , B. S. ., & Kareem , O. S. . (2025). Heart Attack Prediction in The United States: A Review. International Journal of Scientific World, 11(2), 8-14. https://doi.org/10.14419/m43wcb19

Received date: May 19, 2025

Accepted date: June 17, 2025

Published date: June 29, 2025

DOI:

https://doi.org/10.14419/m43wcb19

Keywords:

Heart Attack Prediction, Machine Learning, Cardiovascular Disease, Ensemble Learning, Feature Selection, AutoML, U.S. Healthcare Data

Abstract

Cardiovascular disease remains a predominant health concern in the United States, with over 600,000 annual fatalities, underscoring the necessity for advanced predictive methodologies. This review examines the integration of artificial intelligence (AI) and machine learning (ML) techniques in forecasting myocardial infarctions through the analysis of clinical, behavioral, and demographic data. Various supervised learning algorithms, including Support Vector Machines (SVM), Random Forests (RF), Gradient Boosting, Logistic Regression, and Deep Neural Networks (DNN), have demonstrated significant diagnostic accuracy. The application of optimization strategies such as Particle Swarm Optimization (PSO), dimensionality reduction methods like Principal Component Analysis (PCA), and automated machine learning (AutoML) frameworks has enhanced model efficiency and adaptability. Nonetheless, challenges persist, notably in real-time deployment, dataset representativeness of minority populations, interpretability of complex models, and cross-environment generalizability. This synthesis highlights current advancements, identifies key limitations, and suggests future research directions focused on developing scalable, interpretable, and equitable predictive systems to facilitate early detection and personalized cardiac care.

References

  1. K. E. Joynt Maddox et al., “Forecasting the Burden of Cardiovascular Disease and Stroke in the United States Through 2050-Prevalence of Risk Factors and Disease: A Presidential Advisory from the American Heart Association,” Jul. 23, 2024, Lippincott Williams and Wilkins. doi: 10.1161/CIR.0000000000001256.
  2. D. S. Matasic, R. Zeitoun, G. C. Fonarow, A. C. Razavi, R. S. Blumenthal, and M. Gulati, “Advancements in Incident Heart Failure Risk Predic-tion and Screening Tools,” American Journal of Cardiology, vol. 227, pp. 105–110, Sep. 2024, doi: 10.1016/j.amjcard.2024.07.014.
  3. Y. Baashar et al., “Effectiveness of Artificial Intelligence Models for Cardiovascular Disease Prediction: Network Meta-Analysis,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/5849995.
  4. C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Inform Med Unlocked, vol. 16, Jan. 2019, doi: 10.1016/j.imu.2019.100203.
  5. A. Newaz, N. Ahmed, and F. Shahriyar Haq, “Survival prediction of heart failure patients using machine learning techniques,” Inform Med Un-locked, vol. 26, Jan. 2021, doi: 10.1016/j.imu.2021.100772.
  6. M. S. Singh, K. Thongam, P. Choudhary, and P. K. Bhagat, “An Integrated Machine Learning Approach for Congestive Heart Failure Prediction,” Diagnostics, vol. 14, no. 7, Apr. 2024, doi: 10.3390/diagnostics14070736.
  7. E. Owusu, P. Boakye-Sekyerehene, J. K. Appati, and J. Y. Ludu, “Computer-Aided Diagnostics of Heart Disease Risk Prediction Using Boosting Support Vector Machine,” Comput Intell Neurosci, vol. 2021, 2021, doi: 10.1155/2021/3152618.
  8. M. C. Weinstein, P. G. Coxson, L. W. Williams, T. M. Pass, W. B. Stason, and L. Goldman, “Forecasting Coronary Heart Disease Incidence, Mor-tality, and Cost: The Coronary Heart Disease Policy Model.”
  9. Yadav, P., Jaiswal, K., Patel, S., & Shukla, D. (2013). Intelligent heart disease prediction model using classification algorithms. IJCSMC, 3(08), 102–107.
  10. Mullainathan, S., & Obermeyer, Z. (2019). Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care. https://doi.org/10.3386/w26168
  11. D. Appiah and B. D. Capistrant, “Cardiovascular Disease Risk Assessment in the United States and Low- and Middle-Income Countries Using Predicted Heart/Vascular Age,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-16901-5.
  12. H. K. Weir et al., “heart disease and Cancer Deaths — Trends and Projections in the United States, 1969–2020,” Prev Chronic Dis, vol. 13, Nov. 2016, doi: 10.5888/PCD13.160211.
  13. J. Soni Ujma Ansari Dipesh Sharma and S. Associate Professor, “Predictive Data Mining for Medical Diagnosis: An Overview of Heart Disease Prediction Sunita Soni,” 2011.
  14. Chaitanya. Baru, 2019 IEEE International Conference on Big Data: proceedings: Dec 9 - Dec 12, 2019, Los Angeles, CA, USA. IEEE, 2019.
  15. S. Nikhar and A. M. Karandikar, “Prediction of Heart Disease Using Machine Learning Algorithms,” International Journal of Advanced Engineer-ing, Management and Science (IJAEMS), vol. 2, no. 6, 2016, [Online]. Available: www.ijaems.com
  16. S. Krishnan, P. Magalingam, and R. Ibrahim, “Hybrid deep learning model using recurrent neural network and gated recurrent unit for heart disease prediction,” International Journal of Electrical and Computer Engineering, vol. 11, no. 6, pp. 5467–5476, Dec. 2021, doi: 10.11591/ijece. v11i6.pp5467-5476.
  17. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2019.
  18. L. M. Paladino, A. Hughes, A. Perera, O. Topsakal, and T. C. Akinci, “Evaluating the Performance of Automated Machine Learning (AutoML) Tools for Heart Disease Diagnosis and Prediction,” AI (Switzerland), vol. 4, no. 4, pp. 1036–1058, Dec. 2023, doi: 10.3390/ai4040053.
  19. A. Dinh, S. Miertschin, A. Young, and S. D. Mohanty, “A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.” [Online]. Available: http://creativecommons.org/publicdomain/zero/1.0/
  20. P. Motarwar, A. Duraphe, G. Suganya, and M. Premalatha, “Cognitive Approach for Heart Disease Prediction using Machine Learning,” in Interna-tional Conference on Emerging Trends in Information Technology and Engineering, ic-ETITE 2020, Institute of Electrical and Electronics Engi-neers Inc., Feb. 2020. doi: 10.1109/ic-ETITE47903.2020.242.
  21. 2020 International Conference on Intelligent Engineering and Management (ICIEM-2020). IEEE, 2020.
  22. J. Gamboa-Cruzado, R. Crisostomo-Castro, J. Vila-Buleje, J. López-Goycochea, and J. N. Valenzuela, “HEART ATTACK PREDICTION USING MACHINE LEARNING: A COMPREHENSIVE SYSTEMATIC REVIEW AND BIBLIOMETRIC ANALYSIS,” J Theor Appl Inf Technol, vol. 15, no. 5, 2024, [Online]. Available: www.jatit.org
  23. S. Lee et al., “Sleep health composites are associated with the risk of heart disease across sex and race,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-05203-0.
  24. S. K. Gupta, A. Shrivastava, S. P. Upadhyay, and P. K. Chaurasia*, “A Machine Learning Approach for Heart Attack Prediction,” Int J Eng Adv Technol, vol. 10, no. 6, pp. 124–134, Aug. 2021, doi: 10.35940/ijeat. F3043.0810621.
  25. R. B. Marqas, A. Mousa, F. Özyurt, and R. Salih, “A Machine Learning Model for the Prediction of Heart Attack Risk in High-Risk Patients Uti-lizing Real-World Data,” Academic Journal of Nawroz University, vol. 12, no. 4, pp. 286–301, Oct. 2023, doi: 10.25007/ajnu.v12n4a1974.
  26. L. Ali, A. Rahman, A. Khan, M. Zhou, A. Javeed, and J. A. Khan, “An Automated Diagnostic System for Heart Disease Prediction Based on χ2 Statistical Model and Optimally Configured Deep Neural Network,” IEEE Access, vol. 7, pp. 34938–34945, 2019, doi: 10.1109/ACCESS.2019.2904800.
  27. O. Y. Dweekat, N. Bazrafshan, and S. S. Lu, “Heart Disease Prediction and Factor Identification using Machine Learning Algorithms and Associa-tion Rule Mining,” 2022.
  28. M. Alshraideh, N. Alshraideh, A. Alshraideh, Y. Alkayed, Y. Al Trabsheh, and B. Alshraideh, “Enhancing Heart Attack Prediction with Machine Learning: A Study at Jordan University Hospital,” Applied Computational Intelligence and Soft Computing, vol. 2024, 2024, doi: 10.1155/2024/5080332.
  29. C. A. Alexander and L. Wang, “Big Data Analytics in Heart Attack Prediction,” Journal of Nursing & Care, vol. 06, no. 02, 2017, doi: 10.4172/2167-1168.1000393.
  30. S. Pillai, “Cardiac Disease Prediction with Tabular Neural Network; Cardiac Disease Prediction with Tabular Neural Network”, doi: 10.5281/zenodo.7750620.
  31. S. Amal, L. Safarnejad, J. A. Omiye, I. Ghanzouri, J. H. Cabot, and E. G. Ross, “Use of Multi-Modal Data and Machine Learning to Improve Car-diovascular Disease Care,” Apr. 27, 2022, Frontiers Media S.A. doi: 10.3389/fcvm.2022.840262.
  32. I. Rojek, P. Kotlarz, M. Kozielski, M. Jagodziński, and Z. Królikowski, “Development of AI-Based Prediction of Heart Attack Risk as an Element of Preventive Medicine,” Electronics (Switzerland), vol. 13, no. 2, Jan. 2024, doi: 10.3390/electronics13020272.
  33. A. M. Alaa, T. Bolton, E. Di Angelantonio, J. H. F. Rudd, and M. van der Schaar, “cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants,” PLoS One, vol. 14, no. 5, May 2019, doi: 10.1371/journal.pone.0213653.
  34. M. W. Nadeem, H. G. Goh, M. A. Khan, M. Hussain, M. F. Mushtaq, and V. A. P. Ponnusamy, “Fusion-Based Machine Learning Architecture for Heart Disease Prediction,” Computers, Materials and Continua, vol. 67, no. 2, pp. 2481–2496, 2021, doi: 10.32604/cmc.2021.014649.
  35. P. S. Kumari, P. Senthil Kumari, and S. Vinitha, “Heart Attack Prediction in Machine Learning Environment International Journal of Scientific Re-search in Engineering and Management (IJSREM) Heart Attack Prediction in Machine Learning Environment,” 2022, [Online]. Available: https://www.researchgate.net/publication/362630808
  36. Rahmanul Hoque, Masum Billah, Amit Debnath, S. M. Saokat Hossain, and Numair Bin Sharif, “Heart Disease Prediction using SVM,” Interna-tional Journal of Science and Research Archive, vol. 11, no. 2, pp. 412–420, Mar. 2024, doi: 10.30574/ijsra.2024.11.2.0435.

Downloads

How to Cite

Mustafa , B. S. ., & Kareem , O. S. . (2025). Heart Attack Prediction in The United States: A Review. International Journal of Scientific World, 11(2), 8-14. https://doi.org/10.14419/m43wcb19

Received date: May 19, 2025

Accepted date: June 17, 2025

Published date: June 29, 2025