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Abstract

The Gompertz distribution is assumed in the present article for drawing the inferences based on Bayesian methodology. Constant-Stress
Partially Accelerated Life Test (CS-PALT) have used for the underlying distribution on first-failure Progressive (FFP) censoring scheme. All
special cases of the FFP censoring scheme have used for the present comparative analysis. The comparison has been done between different
special cases of FFP based on Approximate Confidence Lengths (ACL) under Normal approximation, Bootstrap Confidence Length (BCL)
and One-Sample Bayes Prediction Bound Lengths (BPBL). A simulation study have been carried out for the present analysis.

Keywords: Approximate Confidence Lengths (ACL), Bayes Prediction Bound Lengths (BPBL), Bootstrap Confidence Length (BCL), Constant-Stress Partially
Accelerated Life Test (CS-PALT), First-Failure Progressive (FFP) Censoring Pattern.

1. Introduction

The Gompertz probability distribution now days get some more
attention among researchers in different areas of technology, biologi-
cal science, medical and natural sciences. The cumulative density
function with scale parameter θ of one-parameter Gompertz life
distribution is given as

F (x;θ) = 1− exp(−θ (ex −1)) ; x > 0,θ > 0. (1)

One of the main objectives of the life researchers is to reduce the cost
and time of the experiments. To fulfill the desired objective, there
are several types of censoring patterns available in the literature.
One of the most common censoring patterns is Progressive Type-II
censoring. On this criterion, a well-organized scheme has used for
the removal of a pre-specified number of surviving test units at each
failure time during the experiments. The elimination of test units
before the failure may be planned to save the time and experimental
cost. See [1] for more details regarding the Progressive censoring
scheme. Several literatures are available on Progressive censoring, a
little few of them are, [2], [3], [4], [5] and [6].

Johnson [7] design a life test in which the experimental units divided
into a number of groups and all these groups are considered as the
test units and run simultaneously. The life test will be terminated,
when the first failure is observed in each group. This process is
called the first failure censoring process. Wu & Kus [8] combined
the Progressive censoring scheme with first failure censoring, and
named as First-Failure Progressive (FFP) censoring scheme. In
this process, remove some test units from each group before first
failures occurred. The Progressive Type-II censoring, First-Failure

censoring, Type-II Censoring and complete sample case are the
special cases of the FFP censoring and obtained by some minor
modification. Based on all possible special cases of FFP censoring,
under the CS-PALT, a comparative analysis has been presented
in this study between different bound lengths with the help of
simulated data.

2. CS-PALT under FFP censoring

The partially accelerated life testing (PALT) is widely applicable
in such test situation in which, tough to collect lifetimes of highly
reliable products with a long lifetime under normal test conditions.
In PALT, some test units are kept under higher stress level and the
rest is in normal test condition. In the present study, the concern life
test criterion is CS-PALT, in which some of test units are kept in
normal stress condition and some of test units are at a constant level
of stress condition.

Suppose, from total of n test units, n1 test units selected ran-
domly, are run at the normal test condition and remaining
n2(= n−n1) (say) test units are tested in accelerated test condition.
The probability density function, distribution function and failure
rate of the Gompertz distribution are given under the normal test
condition as

f1 (x1;θ) = θ ex1 exp(−θ (ex1 −1)) , (2)

F1 (x1;θ) = 1− exp(−θ (ex1 −1)) (3)
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and

ρ1 (x1) = θ ex1 ; x1 > 0,θ > 0. (4)

Under accelerated test condition, if ρ2 (x2) is denoted by the failure
rate function for an item and if β (> 1) be the acceleration factor,
then the failure rate function under the stress condition is defined as

ρ2 (x2) = β ρ1 (x1) = β θ ex2 ; x2 > 0,θ > 0,β > 1. (5)

Using Eq. (5), the probability density function, and distribution
function under the accelerated test condition are obtained as

f2 (x2;θ ,β ) = θ β ex2 exp(−θβ (ex2 −1)) (6)

and

F2 (x2;θ ,β ) = 1− exp(−θβ (ex2 −1)) . (7)

Let us assume n be the total test units under study. Under CS-PALT,
total of n test units divided into two test groups, n1 test units are
at normal test condition and n2 test units at the accelerated test
condition. Applying the FFP censoring on this situation, now each
group further break into k groups with an equal number of test
units. Following, [9], the joint probability density function of order
statistics based on the FFP censoring scheme under CS-PALT is
defined as

L(θ ,β |x) ∝

{
m1

∏
i=1

f1 (x1i;θ)(1−F1 (x1i;θ))k(R1i+1)−1

}

×

{
m2

∏
i=1

f2 (x2i;θ ,β )(1−F2 (x2i;θ ,β ))k(R2i+1)−1

}
. (8)

Here, R1i and R2i are the progressive censoring scheme assumed for
normal and accelerated test group respectively. Simplifying Eq. (8)
as

L(θ ,β |x) ∝

{
m1

∏
i=1

θ ex1i exp(−θ (ex1i −1))

× (exp(−θ (ex1i −1)))k(R1i+1)−1
}

×

{
m2

∏
i=1

θ β ex2i exp(−θβ (ex2i −1))

× (exp(−θβ (ex2i −1)))k(R2i+1)−1
}

⇒ L(θ ,β |x) ∝ θ
m1+m2 β

m2 exp
{
−θ

(
T(x1)+β T(x2)

)}
(9)

where T(x1) = k ∑
m1
i=1 (1+R1i) (ex1i −1) and T(x2) =

k ∑
m2
i=1 (1+R2i) (ex2i −1) .

3. ML estimation & approximate confidence
lengths

Taking the logarithm of the joint distribution given in Eq. (9), as

Log L(θ ,β |x) = (m1 +m2) log θ +m2 log β −θ

(
T(x1)+βT(x2)

)
.

(10)

The first and second order derivative of the log likelihood function
given in Eq. (10), are obtained as

∂

∂θ
Log L(θ ,β |x) = m1 +m2

θ
−
(

T(x1)+βT(x2)

)

∂ 2

∂θ 2 Log L(θ ,β |x) =−m1 +m2

θ 2

∂

∂β
Log L(θ ,β |x) = m2

β
−θ T(x2)

∂ 2

∂β 2 Log L(θ ,β |x) =−m2

β 2

and

∂ 2

∂θ ∂β
Log L(θ ,β |x) = ∂ 2

∂β ∂θ
Log L(θ ,β |x) = T(x2)

The Maximum Likelihood (ML) estimator corresponding to the
parameter θ and β are given as

θ̂ML =
m1 +m2

T(x1)+ β̂ML T(x2)

(11)

and

β̂ML =
m2

θ̂ML T(x2)

. (12)

Both the expressions (Eq. 11-12) involved unknown parameter. A
numerical technique (Newton Raphson integral method) is applied
here for the numerical findings of these ML estimates.

The asymptotic variances and co-variances of the Maximum
Likelihood estimators θ̂ML and β̂ML of the parameters θ and β are
obtained by the elements of the inverse of the Fisher information
matrix. The observed asymptotic variance-covariance matrix for the
ML estimators is obtained as

 − ∂ 2

∂θ 2 logL(θ ,β |x) − ∂ 2

∂θ∂β
logL(θ ,β |x)

− ∂ 2

∂β∂θ
logL(θ ,β |x) − ∂ 2

∂β 2 logL(θ ,β |x)


−1

(
θ̂ML,β̂ML

)

=


Var

(
θ̂ML

)
Cov

(
θ̂ML, β̂ML

)
Cov

(
β̂ML, θ̂ML

)
Var

(
β̂ML

)
 (13)

The unknown parameters θ and β are involved in the expressions
of the second derivative. Hence, replacing the parameters by their
corresponding ML estimators for obtaining the Fisher information
matrix. Thus, (1−τ)100% Approximate Confidence Intervals (ACI)
for the parameters θ and β are obtained respectively as
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θ̂ML ∓Z τ

2

√
Var

(
θ̂ML

)
and

β̂ML ∓Z τ

2

√
Var

(
β̂ML

)
.

Here, Z τ

2
is the percentile of the standard normal distribution with

right-tail probability τ

2 . The applicability of the normal approxima-
tion in ML estimation is for small samples. Meeker [10], discussed
a log-transformation, for improvements in the performance of the
normal approximation. Hence, (1− τ)100% improved approximate
confidence intervals for the parameters under consideration are given
as θ̂ML exp

∓
Z τ

2

√
θ̂ML

θ̂ML

 (14)

and β̂ML exp

∓
Z τ

2

√
β̂ML

β̂ML


 . (15)

4. Bootstrap confidence limits

The bootstrap method is a re-sampling method for the confidence
intervals ([11]). In the present section the confidence limits based
on the parametric bootstrap method are obtained for the parameters
under study.

The numerical values of ML Estimate of ML estimator θ̂ML
and β̂ML for the parameters θ and β are obtained respectively from
the Eq. (11) and Eq. (12), based on FFP censored data by using
numerical techniques. Now, again generate two new independent
samples of sizes n1 and n2 from the underlying distribution based
on same censoring scheme.

Compute the bootstrap sample, by using ML estimators θ̂ML

and β̂ML and say ˆ̂
θML and ˆ̂

βML, respectively from second generated
samples by replacing ML estimates obtain from original progressive
data. Repeat above step up to N(= 1,000) times to obtain N

different bootstrap samples. Arrange all these samples
(

ˆ̂
θML and

ˆ̂
βML

)
in ascending order, for a final bootstrap sample of the form

ζ
1
θ ≤ ζ

2
θ ≤ ...≤ ζ

N
θ

f or ˆ̂
θML

and

ζ
1
β
≤ ζ

2
β
≤ ...≤ ζ

N
β

f or ˆ̂
βML.

Let us assume g(x) = P
(
ζ ∗

Θ
≤ x
)

be the cumulative density func-
tion of ζ ∗

Θ
(∀Θ = θ ,β be the final bootstrap samples). Then

(1− τ)100% approximate Percentile Bootstrap Confidence Limits
for the parameters θ and β are obtained respectively as

[
ζ
∗
θ(B)

(
τ

2

)
, ζ

∗
θ(B)

(
2− τ

2

)]
(16)

and [
ζ
∗
β (B)

(
τ

2

)
, ζ

∗
β (B)

(
2− τ

2

)]
. (17)

5. One-sample bayes prediction limits

The one-sample Bayes prediction bound lengths have been inves-
tigated in the present section for the parameters under study. The
one-parameter Gamma distribution is taken as the conjugate family
of prior, for the scale parameter θ of the Gompertz distribution, and
a vague prior is selected for the acceleration factor β , and are defined
here as

πθ =
θ α−1 e−θ

Γ(α)
; α > 0 (18)

and

πβ = β
−1 ;β > 0. (19)

Under the Bayes theorem, the joint and marginal posterior densities
corresponding to the parameters θ and β are obtained and given as

π
∗
(θ ,β ) = Ωθ

m1+m2+α−1
β

m2−1 exp
{
−θ

(
T(x1)+β T(x2)

)}
,

π
∗
(θ) = Ωθ θ

m1+α−1 exp
{
−θ

(
T(x1)+1

)}
(20)

and

π
∗
(β ) = Ωβ

β m2−1{
T(x1)+β T(x2)+1

}m1+m2+α
(21)

where Ωθ =

(
1+T(x1)

)m1+α

Γ(m1+α)
, Ωβ = ΩΓ(m1 +m2 +α) and Ω = 1

Γ(m2)(
T(x2)

)m2
(

1+T(x1)

)m1+α

Γ(m1+α)
.

If we assume that, x
(
= x(1),x(2), ...,x(r1)

)
be the first r1 ordered

observed items from total test units and y
(
= y(1),y(2), ...,y(r2)

)
be the second independent ordered random sample of the future
observations from the same model of size r2. Then the Bayes
predictive density function h(y|x) (say) corresponding to the future
random variable Y, is defined as

h(y|x) ∝

∫
Θ

f (y;Θ) π
∗ (Θ|x) dΘ. (22)

Solving Eq. (22) for the scale parameter θ and the acceleration
parameter β , the Bayes predictive density functions are given respec-
tively as

hθ (y|x) = Ωθ Γ(m1 +α +1)
ey(

T(x1)+ ey
)m1+α+1 (23)

and

hβ (y|x) = Ω
∗
β

θ ey e−θ ey
; (24)

where Ω∗
β
= Ωβ eθ

∫
β

β m2−1{
T(x1)+βT(x2)+1

}m1+m2+α dβ .

Following [12], the Bayes predictive one-sample bound length has
obtained by solving following equality with coverage (1− τ),

Pr (l1 ≤ Y ≤ l2) = 1− τ. (25)

Here, l1 and l2 be the lower and upper Bayes predictive bound limits
respectively. Using Eq. (23) & Eq. (25), the lower and upper Bayes
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predictive bound limits corresponding to the scale parameter θ are
obtained as

lθ1 = log

{{(
1+T(x1)

)−m1−α

− τ

2Ωθ Γ(m1 +α)

}− 1
m1+α

−T(x1)

}
and

lθ2 = log

{{(
1+T(x1)

)−m1−α

− 1− τ

2Ωθ Γ(m1 +α)

}− 1
m1+α

−T(x1)

}
.

Similarly, the lower and upper Bayes predictive one-sample bound
limits corresponding the parameter β are obtained by using Eq. (24)
& Eq. (25) and, are given as

lβ1 = log

{
− 1

θ
log

(
e−θ − τ

2Ω∗
β

)}
and

lβ2 = log

{
− 1

θ
log

(
e−θ − 1− τ

2Ω∗
β

)}
.

The one-sample Bayes prediction bound lengths corresponding to
the parameters θ and β are given as

Lθ = lθ2 − lθ1

and

Lβ = lβ2 − lβ1.

6. Numerical illustration

A complete analysis has presented in this section by using simulated
data. For simulation study, the value of the scale parameter θ has gen-
erated by using the prior distribution given in Eq. (18) with the help
of pre assumed values of hyper-parameter α(= 0.50,1.00,2.50).
Using generated values of the scale parameter θ , a set of 10,000 ran-
dom samples has generated, each of size n = 30 by using following
relation

x(i) = log
{

1− 1
θ

log
(

1−U(i)

)}
.

Here, the random variable U(i) is independently distributed uniform
distribution with the parameter (0,1). The Monte Carlo simulation
technique was applied here for generating FFP censored samples
for each simulation (See details for algorithms described in [13]).
The Table (1), presents the different values of k along with different
special cases of the FFP censoring scheme. The values of censored
sample sizes m1 and m2 are assumed equal, only for simplicity in
the calculation.

The estimated values of maximum likelihood estimates θ̂ML
and β̂ML corresponding to the parameters θ and β respectively, are
given in Table (2) for the FFP censoring and their special cases. It
observed from the table is that, as the hyper parameter α increases
the magnitude of the ML estimate first increase for small α and then
decreases for larger α. Increasing trend also seen when the sample
size getting larger. The maximum magnitude of the ML estimate
is noted for the FFP censoring whereas the minimum is noted for
the Type-II censoring for all the considered values. However, the
magnitudes of ML estimates are smaller.

Maximum Likelihood approximate confidence lengths based
on normal approximation have been obtained from the assumed
values as discussed earlier and presented in the Table (3). The normal
approximated ACL shows an increasing trend when confidence level

increases and shows the maximum ACL for highest confidence
value. Further, the sample size has increased the ACL increase. It is
remarkable that, the maximum ACL noted for the FFP censoring
scheme, whereas the complete sample case presents minimum
ACL. It is further noted that, the magnitude of ACL without normal
approximation is smaller when it compared ACL with normal ap-
proximation. However, the numerical findings are not presented here.

The Bootstrap confidence lengths and one-sample Bayes pre-
diction bound lengths under FFP Censoring and their special cases
are presented in the Table (4) - (5) respectively. All the properties
have seen similar as discussed above. However, the one-sample
Bayes prediction bound length shows a wider tendency as compared
to Bootstrap and ACL for all considered parametric values. However,
the bound lengths are robust.
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Table 1: Special Cases of FFP Censoring Scheme

Case k m1 m2 Ri;1,2, ..., Different Censoring Plans
1 5 05 05 1 2 0 2 1 First-Failure Progressive Type-II Censoring (FFP)
2 5 05 05 0 0 0 0 0 Progressive Type-II Censoring (PC)
3 1 05 05 1 2 0 2 1 First-Failure Censoring (FFC)
4 1 05 05 0 0 0 0 25 Type-II Censoring (T-II)
5 1 05 05 0 0 0 0 0 Complete Sample (CS)
1 5 10 10 1 0 0 5 0 0 1 4 2 1 First-Failure Progressive Type-II Censoring (FFP)
2 5 10 10 0 0 0 0 0 0 0 0 0 0 Progressive Type-II Censoring (PC)
3 1 10 10 1 0 0 5 0 0 1 4 2 1 First-Failure Censoring (FFC)
4 1 10 10 0 0 0 0 0 0 0 0 0 20 Type-II Censoring (T-II)
5 1 10 10 0 0 0 0 0 0 0 0 0 0 Complete Sample (CS)

Table 2: ML Estimate Under FFP Censoring Scheme

θ̂ML

m1 m2 α FFP PC FFC T-II CS
0.50 1.3444 1.3002 1.2380 1.0506 1.2467

05 05 1.00 1.3831 1.3375 1.2735 1.0908 1.2825
2.50 1.3719 1.3331 1.2494 1.0891 1.2786
0.50 1.3676 1.3068 1.2628 1.0824 1.2621

10 10 1.00 1.4069 1.3443 1.2990 1.1135 1.3083
2.50 1.3986 1.3398 1.2746 1.1022 1.2992

β̂ML

0.50 1.1667 1.1384 1.0844 0.9118 1.0920
05 05 1.00 1.2102 1.1708 1.1152 0.9667 1.1213

2.50 1.1906 1.1569 1.0843 0.9452 1.1196
0.50 1.1969 1.1441 1.0959 0.9394 1.1053

10 10 1.00 1.2401 1.1967 1.1373 0.9864 1.1454
2.50 1.2138 1.1728 1.1162 0.9665 1.1305
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Table 3: Normal Approximated ACL Under FFP Censoring

θ

τ m1 m2 α FFP PC FFC T-II CS
0.50 1.1416 1.1034 1.0618 1.0417 0.9099

90% 5 5 1.00 1.1591 1.1290 1.0862 1.0684 0.9482
2.50 1.1311 1.1120 1.0750 1.0576 0.9228
0.50 1.2062 1.1393 1.1073 1.0697 1.0103

95% 5 5 1.00 1.2256 1.1413 1.1216 1.1024 1.0125
2.50 1.2167 1.1404 1.1111 1.0925 1.0102
0.50 1.2956 1.2362 1.1840 1.1447 1.0979

99% 5 5 1.00 1.3155 1.2690 1.1993 1.1917 1.1012
2.50 1.3040 1.2406 1.1888 1.1682 1.0937
0.50 1.1463 1.1140 1.0735 1.0584 0.9479

90% 10 10 1.00 1.1677 1.1319 1.0912 1.0753 0.9647
2.50 1.1414 1.1238 1.0891 1.0685 0.9407
0.50 1.2315 1.1756 1.1416 1.1137 1.0176

95% 10 10 1.00 1.2502 1.2065 1.1489 1.1436 1.0363
2.50 1.2394 1.1798 1.1369 1.1362 1.0195
0.50 1.3983 1.3590 1.2902 1.2702 1.1056

99% 10 10 1.00 1.4190 1.3718 1.3120 1.3077 1.1156
2.50 1.4095 1.3635 1.2949 1.2745 1.1002

β

0.50 1.2443 1.2024 1.1567 1.1046 0.9898
90% 5 5 1.00 1.2636 1.2305 1.1735 1.1439 1.0318

2.50 1.2328 1.2118 1.1712 1.1062 1.0039
0.50 1.2530 1.2318 1.2167 1.1553 1.0901

95% 5 5 1.00 1.2666 1.2340 1.2324 1.1913 1.1025
2.50 1.2369 1.2230 1.2208 1.1804 1.1010
0.50 1.3936 1.3283 1.2709 1.2278 1.1763

99% 5 5 1.00 1.4154 1.3643 1.2877 1.2794 1.1800
2.50 1.4028 1.3331 1.2762 1.2536 1.1717
0.50 1.2495 1.2140 1.1695 1.1129 1.0315

90% 10 10 1.00 1.2730 1.2337 1.1890 1.1515 1.0540
2.50 1.2541 1.2248 1.1867 1.1240 1.0336
0.50 1.3531 1.2917 1.2543 1.2237 1.1181

95% 10 10 1.00 1.3737 1.3257 1.2624 1.2565 1.1386
2.50 1.3618 1.2963 1.2492 1.2484 1.1202
0.50 1.5064 1.4632 1.3876 1.3656 1.1848

99% 10 10 1.00 1.5291 1.4773 1.4116 1.4068 1.1958
2.50 1.5187 1.4682 1.3928 1.3704 1.1789
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Table 4: Bootstrap Confidence Lengths Under FFP Censoring

θ

τ m1 m2 α FFP PC FFC T-II CS
0.50 1.0645 1.0476 1.0073 0.9879 0.8604

90% 5 5 1.00 1.1015 1.0752 1.0358 1.0204 0.9074
2.50 1.0644 1.0459 1.0101 0.9933 0.8628
0.50 1.1471 1.0823 1.0514 1.0150 0.9575

95% 5 5 1.00 1.1758 1.0943 1.0752 1.0566 0.9696
2.50 1.1472 1.0734 1.0450 1.0270 0.9474
0.50 1.2335 1.1761 1.1256 1.0875 1.0423

99% 5 5 1.00 1.2628 1.2178 1.1504 1.1430 1.0555
2.50 1.2317 1.1703 1.1202 1.1003 1.0282
0.50 1.0791 1.0478 1.0087 0.9940 0.8871

90% 10 10 1.00 1.1098 1.0824 1.0409 1.0237 0.9134
2.50 1.0944 1.0773 1.0438 1.0238 0.9002
0.50 1.1615 1.1074 1.0745 1.0476 0.9546

95% 10 10 1.00 1.1896 1.1473 1.0916 1.0865 0.9827
2.50 1.1892 1.1315 1.0900 1.0864 0.9764
0.50 1.3229 1.2849 1.2183 1.1990 1.0397

99% 10 10 1.00 1.3529 1.3073 1.2494 1.2453 1.0594
2.50 1.3538 1.3002 1.2429 1.2231 1.0545

β

0.50 1.0436 1.0133 0.9744 0.9556 0.8322
90% 5 5 1.00 1.0736 1.0401 1.0020 0.9871 0.8780

2.50 1.0293 1.0114 0.9768 0.9605 0.8342
0.50 1.1097 1.0470 1.0170 0.9818 0.9262

95% 5 5 1.00 1.1378 1.0589 1.0404 1.0224 0.9382
2.50 1.1095 1.0380 1.0106 0.9932 0.9161
0.50 1.1934 1.1378 1.0889 1.0521 1.0082

99% 5 5 1.00 1.2220 1.1785 1.1132 1.1061 1.0213
2.50 1.1912 1.1319 1.0834 1.0641 0.9943
0.50 1.0492 1.0134 0.9754 0.9612 0.8577

90% 10 10 1.00 1.0755 1.0474 1.0073 0.9906 0.8835
2.50 1.0590 1.0425 1.0021 0.9907 0.8710
0.50 1.1233 1.0710 1.0392 1.0130 0.9230

95% 10 10 1.00 1.1509 1.1099 1.0560 1.0510 0.9505
2.50 1.1507 1.0949 1.0548 1.0541 0.9448
0.50 1.2796 1.2428 1.1783 1.1596 1.0054

99% 10 10 1.00 1.3090 1.2647 1.2087 1.2047 1.0248
2.50 1.2901 1.2567 1.2027 1.1836 1.0204
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Table 5: One-Sample Bayes Prediction Bound Lengths Under FFP Censoring

θ

τ m1 m2 α FFP PC FFC T-II CS
0.50 1.1706 1.1360 1.0924 1.0713 0.9333

90% 5 5 1.00 1.2033 1.1658 1.1232 1.1065 0.9834
2.50 1.1550 1.1350 1.0962 1.0780 0.9368
0.50 1.2437 1.1736 1.1401 1.1007 1.0384

95% 5 5 1.00 1.2740 1.1857 1.1650 1.1449 1.0507
2.50 1.2447 1.1647 1.1340 1.1146 1.0283
0.50 1.3373 1.2751 1.2204 1.1792 1.1302

99% 5 5 1.00 1.3682 1.3195 1.2465 1.2385 1.1437
2.50 1.3361 1.2697 1.2155 1.1939 1.1158
0.50 1.1709 1.1371 1.0947 1.0788 0.9631

90% 10 10 1.00 1.2043 1.1728 1.1280 1.1093 0.9907
2.50 1.1858 1.1674 1.1310 1.1094 0.9755
0.50 1.2602 1.2016 1.1660 1.1368 1.0361

95% 10 10 1.00 1.2898 1.2440 1.1836 1.1781 1.0657
2.50 1.2885 1.2260 1.1811 1.1803 1.0581
0.50 1.4349 1.3938 1.3217 1.3007 1.1283

99% 10 10 1.00 1.4666 1.4172 1.3545 1.3500 1.1488
2.50 1.4667 1.4185 1.3466 1.3252 1.1426

β

0.50 1.2636 1.2397 1.1918 1.1172 1.0170
90% 5 5 1.00 1.3038 1.2691 1.2094 1.1684 1.0710

2.50 1.2615 1.2395 1.1970 1.1289 1.0217
0.50 1.2927 1.2705 1.2547 1.1904 1.1220

95% 5 5 1.00 1.3170 1.2828 1.2811 1.2381 1.1450
2.50 1.2658 1.2513 1.2490 1.2067 1.1235
0.50 1.4400 1.3716 1.3115 1.2663 1.2124

99% 5 5 1.00 1.4728 1.4193 1.3391 1.3304 1.2262
2.50 1.4396 1.3666 1.3070 1.2833 1.1975
0.50 1.2790 1.2419 1.1952 1.1359 1.0507

90% 10 10 1.00 1.3137 1.2725 1.2257 1.1864 1.0842
2.50 1.3039 1.2732 1.2333 1.1676 1.0729
0.50 1.3876 1.3233 1.2841 1.2520 1.1414

95% 10 10 1.00 1.4192 1.3689 1.3026 1.2964 1.1729
2.50 1.4167 1.3481 1.2987 1.2979 1.1636
0.50 1.5482 1.5029 1.4237 1.4007 1.2113

99% 10 10 1.00 1.5820 1.5277 1.4589 1.4538 1.2328
2.50 1.5811 1.5282 1.4492 1.4257 1.2251
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