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Abstract

In this study, Frechet distribution has been studied by using Bayesian analysis. Posterior distribution has been derived by using gamma and
exponential. Bayes estimators and their posterior risks has been derived using five different loss functions. Elicitation of hyperparameters
has been done by using prior predictive distributions. Simulation study is carried out to study the behavior of posterior distribution. Quasi
quadratic loss function and exponential prior are found better among all.
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1. Introduction

Frechet distribution is from of the well-known family of distribution
known as extreme value distribution. It is recognized as extreme
value type-II distribution and also extreme value distribution of
maxima. The three parameters Frechet distribution has been esti-
mated by Gumbel (1965). Asymptomatic distribution of extreme
stock market return follows Frechet distribution showed by Longin
(1996). The parameters of Frechet distribution has been estimated
by Mubarak (2012). Frechet distribution has been used to measure
ultrasonic pulse velocity in concrete by Chatterjee and Chatterjee
(2012). Frechet distribution has been used to study analysis of ac-
celerated life testing by using geometric process by Shahab and
Islam (2013).The parameters of Frechet distribution has been esti-
mated by using maximum likelihood estimation and least squares
under Type-II censored samples by Abbas and Tang (2013).Frechet
distribution with known shape under different sampling techniques
has been studied by Sindhu et al. (2014). Nasir and Aslam (2015)
has studied the estimation of shape parameter with known scale via
Bayesian analysis under informative priors. Nasir et al. (2015) have
studied the estimation of shape parameter with known scale using
Bayesian analysis by informative priors. The scale parameter of
Frechet distribution has been estimated by Best Linear Unbiased
Estimate (BLUE) and Nearly Best Linear Unbiased Estimate using
lower record values by Tayyab et al. (2015). The parameters of
Frechet distribution has been estimated by using maximum likeli-
hood method and asymptotic confidence interval estimates by using
progressive type-II censored data by Shahab et al. (2015).
A random variable X is said to have a Frechet distribution if its p.d.f.
has following form

f (x;φ ,γ) = ϕγ
ϕ

(
1
x

)ϕ

e−(
γ

x )
ϕ

,0 <x<∞,

0 <ϕ<∞,0 <γ<∞ (1)

Where where ϕ is shape parameter and γ is scale parameter.
In this paper we see the behavior of scale parameter under Bayesian
analysis by assuming ϕ = 1. By considering ϕ = 1 the p.d.f. for
Frechet distribution reduces to following form

f (x;1,γ) = γ

(
1
x

)
e−(

γ

x ), 0 <x<∞,0 <γ<∞ (2)

2. Bayesian Analysis Using complete samples

In this section, Bayesian analysis under complete samples tech-
nique has been utilized. Posterior distribution has been derived
under informative prior (Gamma, inverse levy and exponential).
The Bayes estimators and their corresponding risks are derived us-
ingSquare error loss function (SELF), Precautionary Loss Function
(PLF), Simple Precautionary Loss Function (SPLF), Weighted Loss
Function (WLF), LINEX Loss function and trigonometric loss func-
tion (TTLF) different loss functions.
Let the random sample x1,x2, ...xn is assumed to be taken from
Frechet distribution with known shape parameter ϕ and assuming
ϕ = 1 and with unknown parameter . Then likelihood function is

L(x,γ) = γ
n

n

∏
i=1

(
1
xi

)
e
−γ

n
∑

i=1

[
1
xi

]
. (3)

The Gamma distribution is used as informative prior with hyper-
parameters a and b is

p(γ) =
ba

Γ(a)
γ

a−1e−bγ , 0 <γ < ∞,a,b > 0. (4)

Now, the posterior distribution of γ using 3 and 4 is

p(γ |x ) ∝ γ
(a+n)−1e

−γ

(
b+

n
∑

i=1

[
1
xi

])
, (5)
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So, γ|x∼ Gamma(α1,β1), where α1 = a+n and β1 = b+
n
∑

i=1

1
xi

.

The Bayes estimator and posterior risks under SELF, PLF, WLF,
LLF, QQLF and TTLF using gamma prior are
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. The inverse levy prior is assumed as informative prior with hyper-
parameter k is

p(γ) =

√
k

2π
γ
− 1

2 e
l
2 γ 0 < γ < ∞,k > 0 (6)

The posterior distribution using 3 and 6 is

p(γ | ) ∝ γ(n+ 1
2 )−1e
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So, γ|x∼ Gamma(α2,β2), where α1 = n+ 1
2 andβ1 =

k
2 +

n
∑

i=1

1
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.

The Bayes estimator and posterior risks under SELF, PLF, WLF,
LLF, QQLF and TTLF using 7 are
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The exponential prior is assumed as informative prior with hyper-
parameter f is

p(γ) = f e− f γ , 0 < γ < ∞, f > 0. (8)

The posterior distribution using 3 and 8 is

p(γ |x ) ∝ γ
(n+1)−1e

−γ

(
f+

n
∑

i=1

[
1
xi

])
, (9)
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So, γ|x∼ Gamma(α3,β3), where α1 = n+1andβ3 = f +
n
∑

i=1

1
xi

.

The Bayes estimator and posterior risks under SELF, PLF, WLF,
LLF, QQLF and TTLF using 9 are

γ̂SELF =
n+1

f +
n
∑

i=1

1
xi

, ρ (γ̂SELF ) =
n+1(

f +
n
∑

i=1

1
xi

)2 ,

γ̂PLF =

√
(n+2)(n+3)(

f +
n
∑

i=1

1
xi

) ,

ρ (γ̂PLF ) = 2


√

(n+2)(n+3)− (n+1)

f +
n
∑

i=1

1
xi

 ,

γ̂WLF =
n

f +
n
∑

i=1

1
xi

, ρ (γ̂WLF ) =
1

f +
n
∑

i=1

1
xi

,

γ̂LLF =−1
t

log

1+
t

f +
n
∑

i=1

(
1
xi

)

−(n+1)

,

ρ (γ̂LLF ) =−
1
t

log

1+
t

f +
n
∑

i=1

(
1
xi

)

−(n+1)

+ t

 n+1

f +
n
∑

i=1

(
1
xi

)
 ,

γ̂T T LF =−1
2

log



1− t

f+
n
∑

i=1

(
1
xi

)
−(1+n)

1+ t

f+
n
∑

i=1

(
1
xi

)
−(1+n)


,

ρ (γ̂T T LF ) =

√√√√√√√
1− t

f +
n
∑

i=1

(
1
xi

)

−(1+n)

×

√√√√√√√
1+

t

f +
n
∑

i=1

(
1
xi

)

−(1+n)

−1,

3. Elicitation of hyper-parameters

In this section, elicitation of hyper-parameters has been carried out.
Elicitation of hyper-parameters is a pivotal stride. It makes it simple
for us to understand what the specialists have faith in and what their
assessments are. We have used method proposed by Aslam (2002).

Table 1: BEs and PRs for γ = 2 using Gamma prior

n
Gamma prior

100 300 500 1000

SELF
2.1255
(0.0408)

2.0821
(0.0134)

2.0584
(0.0080)

2.0355
(0.0040)

PLF
2.1594
(0.0198)

2.1016
(0.0066)

2.0563
(0.0039)

2.0494
(0.0019)

TTLF
1.9902
(0.0205)

1.9986
(0.0067)

1.9993
(0.0040)

2.0002
(0.0020)

WLF
2.0626
(0.0198)

2.0381
(0.0067)

2.0279
(0.0040)

2.0197
(0.0020)

LLF
2.1229
(0.0201)

2.0752
(0.0066)

2.0563
(0.0040)

2.0436
(0.0031)

For this method, prior predictive distribution has been derived by
using following expression

p(y |x ) =
∞∫
−∞

p(γ |x ) f (y;γ)dγ (10)

The prior predictive under gamma, Inverse levy and exponential
prior is

pg (y |x ) =
aba

y
(

b+ 1
y

)a+1 , (11)

The value for a = 2.735684 and b = 0.864107 using 11 by the
method of elicitation.

pIL (y |x ) =
√

k
2π

1

2
(

k
2 +

1
y

) 3
2
, (12)

The value for k = 4.987213 using 12 by the method of elicitation.

pe (y |x ) =
f(

f + 1
y

)2 , (13)

The value for f = 2.02528 using 13 by the method of elicitation.

4. Simulation Study

A simulation study has been led to assess the conduct and execution
of various estimators. The estimators are compared by their posterior
risks, the estimator with minimum posterior risks is considered better
among all. The simulation studied has been done for variant values
of parameters and sample sizes. The shape parameter γ ∈ {2,5,8}
and the sample size n ∈ {100,300,500,1000} are assumed . The
simulation study is done by Mathematica.
The simulation study was directed by three different priors and under
six loss functions. The following tables shows the results for Bayes
estimates and posterior risks. The risks are listed in parentheses.
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Table 2: BEs and PRs for γ = 5 using Gamma prior

n
Gamma prior

100 300 500 1000

SELF
4.8967
(0.2424)

4.9378
(0.0824)

4.9575
(0.0497)

4.9746
(0.0040)

PLF
2.1594
(0.0198)

2.1016
(0.0066)

2.0563
(0.0039)

2.0494
(0.0249)

TTLF
4.5826
(0.1295)

4.7530
(0.0422)

4.8285
(0.0315)

4.8694
(0.0125)

WLF
4.7275
(0.0483)

4.8316
(0.0164)

4.8844
(0.0099)

4.9228
(0.0050)

LLF
4.8984
(0.1173)

4.9352
(0.0408)

4.9620
(0.0308)

4.9749
(0.0124)

Table 3: BEs and PRs for γ = 2 using Inverse levy prior

n
Inverse levy prior
100 300 500 1000

SELF
1.9728
(0.0391)

1.9924
(0.0133)

1.9931
(0.0080)

1.9978
(0.0040)

PLF
1.9857
(0.0196)

1.9957
(0.0066)

1.9967
(0.0040)

2.9998
(0.0021)

TTLF
1.938

(0.0198)
1.9771
(0.0067)

1.9872
(0.0040)

1.9932
(0.0020)

WLF
1.9564
(0.0197)

1.9857
(0.0066)

1.9915
(0.0040)

1.9954
(0.0020)

LLF
1.9936
(0.0193)

1.9778
(0.0066)

1.9992
(0.0040)

1.9998
(0.0021)

Table 4: BEs and PRs for γ = 5 using Inverse levy prior

n
Inverse levy prior
100 300 500 1000

SELF
4.8967
(0.2424)

4.9378
(0.0824)

4.9575
(0.0497)

4.9746
(0.0040)

PLF
4.7657
(0.0471)

4.9151
(0.0163)

4.9501
(0.0099)

4.9761
(0.0050)

TTLF
4.5826
(0.1295)

4.7530
(0.0422)

4.8285
(0.0315)

4.8694
(0.0125)

WLF
4.7275
(0.0483)

4.8316
(0.0164)

4.8844
(0.0099)

4.9228
(0.0050)

LLF
4.8984
(0.1173)

4.9352
(0.0408)

4.9620
(0.0308)

4.9749
(0.0124)

Table 5: BEs and PRs for γ = 5 using Exponential prior

n
Exponential prior
100 300 500 1000

SELF
4.8133
(0.2000)

4.8133
(0.0772)

4.8875
(0.0478)

4.9423
(0.0244)

PLF
4.4982
(0.0442)

4.8201
(0.0160)

4.8924
(0.0097)

4.9464
(0.0049)

TTLF
4.3921
(0.1124)

4.7808
(0.0403)

4.8686
(0.0244)

4.9345
(0.0124)

WLF
4.4355
(0.0444)

4.4987
(0.0160)

4.7987
(0.0098)

4.9408
(0.0049)

LLF
4.8308
(0.1031)

4.8375
(0.0390)

4.8975
(0.0240)

4.9476
(0.0123)

Table 6: BEs and PRs for γ = 2 using Exponential prior

n
Exponential prior
100 300 500 1000

SELF
1.9325
(0.0373)

1.9753
(0.0130)

1.9881
(0.0079)

1.9930
(0.0040)

PLF
1.9414
(0.0191)

1.9802
(0.0065)

1.9882
(0.0040)

1.9941
(0.0020)

TTLF
1.8965
(0.0193)

1.9712
(0.0066)

1.9896
(0.0040)

1.9958
(0.0020)

WLF
1.9146
(0.0191)

1.9712
(0.0066)

1.9823
(0.0040)

1.9904
(0.0020)

LLF
1.9511
(0.0189)

1.9855
(0.0065)

1.9896
(0.0039)

1.9904
(0.0020)

5. Conclusion

Table 1-4 summarized the simulation studies. The result, we
concluded from this study, by increasing sample size Bayes posterior
risk decreases and Bayes estimator approaches to its true value
of the parameter. By increasing the value of parameter Bayes
posterior risk also increases. PLF performs best among all loss
functions as its posterior risk is minimum as compared to all
studied loss functions. Exponential performs better among all
as its posterior risk is minimum as compare to all other loss functions.
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