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Abstract

Concept of soft equivalence relations (classes, mappings) are in-
troduced using the notion of soft elements. Then we redefine the
notion of soft group and soft ring in a new way by using the idea
of soft elements and it is seen that our definitions of soft group and
soft ring are equivalent to the existing notions of soft group [2] and
soft ring [1]. The notion of soft coset is presented and validated by
suitable examples. We investigate some important properties like
soft divisor of zero, characteristic of a soft ring etc. by considering
examples. Moreover, some necessary and sufficient conditions are
established for a soft ring to be a soft integral domain and soft field.

Key Words : Soft sets, Soft elements, Soft groups, Soft cosets,
Soft rings, Soft integral domains, Soft fields.
2010 Mathematics Subject Classification: 06D72, 97E60, 97H40.

1. Introduction

In classical mathematics, we deal with precise or exact data. But almost all
real life situations are imprecise or inexact, i.e., there are some ambiguity.
As a result different mathematical tools such as probability theory, fuzzy
set theory[15], rough set theory[13], soft set theory[11] etc. are developed to
handle this imprecise situation. Soft set theory, introduced by D. Molodtsov
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in 1999, is more generalized tool than fuzzy set theory, rough set theory etc.
After introduction of soft set theory, many researchers have contributed
their works to extend this notion. In 2007, Aktas and Cagman[2] initiated
an algebraic structure in a soft set, known as soft group. Extending this
notion of soft group, many authors defined other algebraic structures like
soft (ring, field, ideal) and hybrid structures like fuzzy soft (ring, field,
ideal), intuitionistic fuzzy soft structures, rough soft structures (see [1], [4],
[6]-[9]) etc. In 2013, Wardowski[14] introduced the notion of soft elements
of a soft set. Also in the same year, Nazmul and Samanta[12] defined soft
elements in another way to study the neighbourhood properties in a soft
topological spaces.
In this paper, at first we establish the notion of soft elements of a soft set
in a new way and redefine the notion of soft relations, soft classes, soft
partition, soft mapping with the help of soft element. It is seen that soft
equivalence relation on a soft set yields a soft partition of that soft set and
vice-versa. In section 4, the notion soft group is proposed with the help of
binary composition of soft elements and study some of its properties. Then
we prove that this notion is equivalent to the notion of soft group initiated
by Aktas et al. In section 5, the notion of soft cosets are studied elaborately
and it is established that the analogous result of famous Lagrange’s Theorem
holds for a finite soft group. In section 6, we redefine the notion of soft ring
by considering the compositions of soft elements. Then we prove that this
new concept of soft ring is also equivalent to the notion of soft ring given
by Acar et al. [1]. Moreover, we study some properties like soft divisor of
zero and characteristic of a soft ring with examples. In the last Section,
some necessary and sufficient conditions are established for a soft ring to be
a soft integral domain (soft field).

2. Preliminaries

Throughout this paper unless otherwise stated, let U be the universal set,
E the set of all parameters with respect to U and P (U) the power set of
U. In this section, we recall some basic definitions in soft set theory which
will be needed in the sequel.

Definition 2.1. [11] Let A ⊆ E. A pair (F, A) is called a soft set over
U, where F is a mapping given by F : A→ P (U). Sometimes the soft set
(F, A) is simply denoted by F, when no confusion regarding the parameter
set arises. The collection of all soft sets with parameter set A over U will
be denoted by S(A, U).

Definition 2.2. [11] Let F, G ∈ S(A, U). Then F is called a soft subset
of G, denoted by F ⊆̃G, if F (t) ⊆ G(t) for all t ∈ A.
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Definition 2.3. [10] Let F, G ∈ S(A, U). Then F is soft equal to G,
denoted by F =̃G, if F ⊆̃G and G ⊆̃F.

Definition 2.4. [3][10] Let F and G ∈ S(A, U).
(1) F ∩̃G, the intersection of F and G, is defined by the soft set H ∈
S(A, U), where H(t) = F (t) ∩G(t) for all t ∈ A.
(2) F ∪̃G, the union of F and G, is defined by the soft set H ∈ S(A, U),
where H(t) = F (t) ∪G(t) for all t ∈ A.
(3) F c, the complement of F, is defined by F c : A→ P (U), where F c(t) =
U \ F (t) for all t ∈ A.
(4) F \ G, the difference of F and G, is defined by the soft set H ∈
S(A, U), where H(t) = F (t) \G(t) for all t ∈ A.

Definition 2.5. For F ∈ S(A, U),
(i) Supp(F ) = {t ∈ A : F (t) 6= φ} is called support of the soft set F ;
(ii) a soft set F is said to be null soft set, denoted by Φ, if F (t) = φ for
all t ∈ A, otherwise F is called non-null soft set;
(iii) a soft set F is said to be absolute soft set, denoted by Ã, if F (t) = U
for all t ∈ A;
(iv) a soft set F is said to be full soft set if Supp(F ) = A.
The collection of all full soft sets with parameter set A over U will be
denoted by Sf (A, U).

Definition 2.6. [5] The soft cartesian product of F and G, denoted
by F ×̃G, is defined as the soft set F ×̃G : A × A → P (U × U), where
(F ×̃G)(t1, t2) = F (t1)×G(t2) for all (t1, t2) ∈ A× A.

Definition 2.7. [5] A relation from F to G is a soft subset of F ×̃G.
In other words, a relation from F to G is of the form (H1, S) where
S ⊆ A× A and H1(t1, t2) = F (t1)×G(t2) for all (t1, t2) ∈ S.

3. Soft relations and soft functions

In this section, let A ⊆ E and F, G ∈ Sf (A, U). We initiate this section
by establishing the notion of soft elements of a soft set.

Definition 3.1. A pair (f, A) is called a soft element of F if f(t) ∈
F (t) for all t ∈ A, where f is a mapping given by f : A→ U. We simply
write f for the soft element (f, A). The fact that f is a soft element of
F will be denoted by f ∈̃F.

Note 3.2. For the existence of a soft element, we must have to take
F (t) 6= φ for all t ∈ A, i.e., F must be a full soft set.
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Definition 3.3. (1) A soft set F is said to be a singleton soft set if F (t)
is a singleton set for each t ∈ A. In this case, F is denoted simply by {f},
where f is the only soft element of F.
(2) Two soft elements f, g ∈̃F are said to be soft equal, denoted by f =̃ g,
if f(t) = g(t) for all t ∈ A.

Note 3.4. A soft set F ∈ Sf (A, U) may also be described by charac-
terizing property of its soft elements, which is given by

F = {f : f : A→ U, where f(t) ∈ F (t), ∀ t ∈ A}.

Some properties of soft elements are listed in the following proposition.

Proposition 3.5. Let F, G ∈ Sf (A, U). Then
(i) f ∈̃F ⇔ {f} ⊆̃F ;
(ii) F ⊆̃G⇔ f ∈̃F implies f ∈̃G;
(iii) If F ∩̃G ∈ Sf (A, U) then f ∈̃F ∩̃G⇔ f ∈̃F and f ∈̃G;
(iv) f ∈̃F or f ∈̃G⇒ f ∈̃F ∪̃G;

(v) f ∈̃F c ⇒ f ˜6∈F ;

(vi) f ∈̃F \G⇒ f ∈̃F and f ˜6∈G;

(vii) F =̃
∼⋃

f ∈̃F
{f}.

Example 3.6. Let U = {u1, u2, u3, u4}, E = {p1, p2, p3} and A =
{p1, p2}. Let F : A → P (U) is given by F (p1) = {u1, u2}, F (p2) =
{u2, u3}, and G : A → P (U) is given by G(p1) = {u1, u4}, G(p2) =
{u3, u4}. Hence we have (F ∩̃G)(p1) = {u1}, (F ∩̃G)(p2) = {u3} and
(F ∪̃G)(p1) = {u1, u2, u4}, (F ∪̃G)(p2) = {u2, u3, u4}).
Also F c(p1) = {u3, u4}, F c(p2) = {u1, u4} and (F \G)(p1) = {u2},
(F \G)(p2) = {u2}.
Then the soft elements of F are f1 =̃ {(p1, u1), (p2, u2)};
f2 =̃ {(p1, u1), (p2, u3)}; f3 =̃ {(p1, u2), (p2, u2)}; f4 =̃ {(p1, u2), (p2, u3)}.
Also the soft elements of G are g1 =̃ {(p1, u1), (p2, u3)};
g2 =̃ {(p1, u1), (p2, u4)}; g3 =̃ {(p1, u4), (p2, u3)}; g4 =̃ {(p1, u4), (p2, u4)}.
So, the soft elements of F ∪̃G are a1 =̃ {(p1, u1), (p2, u2)};
a2 =̃ {(p1, u1), (p2, u3)}; a3 =̃ {(p1, u1), (p2, u4)}; a4 =̃ {(p1, u2), (p2, u2)};
a5 =̃ {(p1, u2), (p2, u3)}; a6 =̃ {(p1, u2), (p2, u4)}; a7 =̃ {(p1, u4), (p2, u2)};
a8 =̃ {(p1, u4), (p2, u3)}; a9 =̃ {(p1, u4), (p2, u4)}.
Also the soft element of F \G is b1 =̃ {(p1, u2), (p2, u2)}.

Remark 3.7. Converse parts of (iv)-(vi) in the Proposition 3.5 are not
true in general. Continuing Example 3.6, it is seen that a6 =̃ {(p1, u2), (p2, u4)}
is a soft element of F ∪̃G but a6 ˜6∈F and a6 ˜6∈G.
Again a3 =̃ {(p1, u1), (p2, u4)} is not a soft element of F and F c. Also

f1 =̃ {(p1, u1), (p2, u2)} is a soft element of F but f1 ˜6∈G and f1 ˜6∈F \G.
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Note 3.8. Since F ×̃G ∈ Sf (A × A, U × U), any soft element a of
F ×̃G is a mapping a : A × A → U × U such that a(t1, t2) ∈ F (t1) ×
G(t2) for all (t1, t2) ∈ A × A. Let f ∈̃F, g ∈̃G. Now consider an ordered
pair (f, g), defined by (f, g) : A × A → U × U, where (f, g)(t1, t2) =
(f(t1), g(t2)) for all (t1, t2) ∈ A × A. Since f(t1) ∈ F (t1), g(t2) ∈ G(t2)
then (f, g)(t1, t2) ∈ F (t1) × G(t2) for all (t1, t2) ∈ A × A. Hence the
ordered pair (f, g) is a particular type of soft element of F ×̃G.

Remark 3.9. If a is a soft element of F ×̃G then a may not be of the
form (f, g) for some f ∈̃F, g ∈̃G. This fact is justified by the following
example.

Example 3.10. Let F, G be two soft sets as defined in the Example 3.6.
Then (F ×̃G)(p1, p1) = F (p1)×G(p1) = {u1, u2} × {u1, u4} = {(u1, u1),
(u1, u4), (u2, u1), (u2, u4)}. Similarly,
(F ×̃G)(p1, p2) = {u1, u2}×{u3, u4} = {(u1, u3), (u1, u4), (u2, u3), (u2, u4)};
(F ×̃G)(p2, p1) = {u2, u3}×{u1, u4} = {(u2, u1), (u2, u4), (u3, u1), (u3, u4)};
(F ×̃G)(p2, p2) = {u2, u3}×{u3, u4} = {(u2, u3), (u2, u4), (u3, u3), (u3, u4)}.
Now consider a soft element a : A× A→ U × U be defined as follows:
a(p1, p1) = (u1, u1); a(p1, p2) = (u1, u3);
a(p2, p1) = (u2, u1); a(p2, p2) = (u2, u4).
But there does not exist any f ∈̃F, g ∈̃G such that a =̃ (f, g). In fact, each
of the soft sets F, G contains 4 soft elements and therefore, the number
of soft elements of the form (f, g) in F ×̃G is 16 but the total number of
soft elements in F ×̃G is 44.

Notation 3.11. The set of all soft elements of F ×̃G of the form (f, g),
where f ∈̃F, g ∈̃G is denoted by (F, G).

Now, we redefine the notion of soft relation by modifying the definition
of soft relation given by Babitha et al.[5] in 2010.

Definition 3.12. A soft relation R̃ from F to G is a soft subset of
F ×̃G, i.e., R̃(t1, t2) ⊆ F (t1)×G(t2) for all (t1, t2) ∈ A×A. In particular,
a soft relation on F is a soft subset of F ×̃F.

Note 3.13. Let R̃ be a soft relation from F to G. A soft element
f ∈̃F is related to g ∈̃G by the soft relation R̃ if (f, g) ∈̃ R̃ and it is

expressed by f R̃ g. If (f, g) ˜6∈ R̃ then f ∈̃F is not related to g ∈̃G by

the soft relation R̃, which is denoted by f R̃
′
g.

Definition 3.14. Let R̃ be a soft relation from F to G. Then the
domain of R̃ is denoted by Dom(R̃) and defined by the soft set D : A→
P (U) such that for all t1 ∈ A,
D(t1) = {x ∈ F (t1) : (x, y) ∈ R̃(t1, t2) for some t2 ∈ A and y ∈ G(t2)}.
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The Image of R̃ is denoted by Im(R̃) and defined by the soft set I : A→
P (U) such that for all t1 ∈ A,
I(t1) = {y ∈ G(t1) : (x, y) ∈ R̃(t2, t1) for some t2 ∈ A and x ∈ F (t2)}.

Note 3.15. From the Definition 3.14, it is clear that Dom(R̃) ⊆̃F and

Im(R̃) ⊆̃G.

Example 3.16. Continuing Example 3.10, consider a soft relation R̃
from F to G as: R̃(p1, p1) = {(u2, u1)}; R̃(p1, p2) = {(u2, u4)}; R̃(p2, p1) =

{(u3, u1)}; R̃(p2, p2) = {(u3, u4)}. Then domR̃(p1) = {u2}, domR̃(p2) =

{u3} and ranR̃(p1) = {u1}, ranR̃(p2) = {u4}. From Example 3.6 and Note

3.13, it follows that f4 R̃ g2 and f4 R̃
′
g3.

Using the notion of soft elements the concepts of reflexive, symmetric,
transitive and equivalence relations on a soft set are presented below:

Definition 3.17. Let R̃ be a soft relation on F. Then
(1) R̃ is said to be soft reflexive if (f, f) ∈̃ R̃ for all f ∈̃F.
(2) R̃ is said to be soft symmetric if for any f, g ∈̃F,

(f, g) ∈̃ R̃⇒ (g, f) ∈̃ R̃.
(3) R̃ is said to be soft transitive if for any f, g, h ∈̃F,

(f, g) ∈̃ R̃ and (g, h) ∈̃ R̃⇒ (f, h) ∈̃ R̃.
(4) R̃ is said to be a soft equivalence relation if R̃ is soft reflexive, soft
symmetric and soft transitive.

Example 3.18. Consider the soft set F ∈ Sf (A, U) as in the Example

3.6 and a soft relation R̃ on F as follows:
R̃(p1, p1) = {(u1, u1), (u1, u2), (u2, u2)};
R̃(p1, p2) = {(u1, u2), (u1, u3), (u2, u2), (u2, u3)};
R̃(p2, p1) = {(u2, u1), (u2, u2), (u3, u1), (u3, u2)};
R̃(p2, p2) = {(u2, u2), (u2, u3), (u3, u3)}.
The soft elements of F are f1 =̃ {(p1, u1), (p2, u2)}; f2 =̃ {(p1, u1), (p2, u3)};
f3 =̃ {(p1, u2), (p2, u2)}; f4 =̃ {(p1, u2), (p2, u3)}. Now (f1, f1)(p1, p1) =

(u1, u1) ∈ R̃(p1, p1); (f1, f1)(p1, p2) = (u1, u2) ∈ R̃(p1, p2);

(f1, f1)(p2, p1) = (u2, u1) ∈ R̃(p2, p1); (f1, f1)(p2, p2) = (u2, u2) ∈ R̃(p2, p2).

Hence (f1, f1) ∈̃ R̃. Similarly, it follows that (f2, f2), (f3, f3), (f4, f4) ∈̃ R̃.
So, R̃ is a soft reflexive relation on F. Again, it also follows that (f1, f2),

(f1, f3), (f1, f4), (f2, f4), (f3, f4) ∈̃ R̃. It is seen that (f1, f2) ∈̃ R̃ but

(f2, f1) ˜6∈ R̃. So, R̃ is not a soft symmetric relation on F. Here R̃ is a soft
transitive relation on F.

Example 3.19. Consider the soft set F ∈ Sf (A, U) as in the Example

3.6 and a soft relation T̃ on F as follows:
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T̃ (p1, p1) = {(u1, u1), (u1, u2), (u2, u1) (u2, u2)};
T̃ (p1, p2) = {(u1, u2), (u1, u3), (u2, u2), (u2, u3)};
T̃ (p2, p1) = {(u2, u1), (u2, u2), (u3, u1), (u3, u2)};
T̃ (p2, p2) = {(u2, u2), (u2, u3), (u3, u2), (u3, u3)}.
Then it can be verified that T̃ is a soft reflexive, soft symmetric and soft
transitive relation on F. Therefore T̃ is a soft equivalence relation on F.

Definition 3.20. Let F ∈ Sf (A, U) and R̃ be a soft relation on F.

(1) If R̃ =̃F ×̃F then R̃ is called the universal soft relation on F. In this

case f R̃ g hold for all f, g ∈̃F.
(2) If R̃ =̃ Φ, where Φ : A × A → P (U × U) is a null soft set, then R̃ is

called the null soft relation on F. In this case f R̃
′
g for all f, g ∈̃F.

Note 3.21. The universal soft relation on a soft set F is a soft equiva-
lence relation. Since the null soft relation is not soft reflexive, it can not be
a soft equivalence relation.

Definition 3.22. Let R̃ be a soft relation on F. The soft inverse of the
soft relation R̃, denoted by R̃−1, is defined by R̃−1(t, s) = R̃(s, t) for all
t, s ∈ A.

Proposition 3.23. Let R̃ be a soft relation on F. Then
(1) R̃ is soft symmetric if and only if (a, b) ∈ R̃(t, s)⇒ (b, a) ∈ R̃(s, t) for
all t, s ∈ A.
(2) R̃ is soft symmetric if and only if R̃−1 is soft symmetric.

Proof. (1) Let R̃ be a soft symmetric relation on F and (a, b) ∈ R̃(t, s)

for some t, s ∈ A. Then there exists at least one ordered pair (f, g) ∈̃ R̃
such that (f, g)(t, s) = (a, b). This implies f(t) = a, g(s) = b. Since R̃

is soft symmetric, by Definition 3.17, we have (g, f) ∈̃ R̃. Hence (b, a) =

(g, f)(s, t) ∈ R̃(s, t).

Conversely, let (a, b) ∈ R̃(t, s)⇒ (b, a) ∈ R̃(s, t)∀ t, s ∈ A. Then (f, g) ∈̃ R̃
⇒ (f, g)(t, s) ∈ R̃(t, s), ∀ t, s ∈ A ⇒ (f(t), g(s)) ∈ R̃(t, s), ∀ t, s ∈ A ⇒
(g(s), f(t)) ∈ R̃(s, t), ∀ t, s ∈ A⇒ (g, f) ∈̃ R̃. So, R̃ is soft symmetric.

(2) Suppose R̃ is soft symmetric. Then (f, g) ∈̃ R̃−1 ⇒ (f, g)(t, s) ∈
R̃−1(t, s),∀ t, s ∈ A ⇒ (f(t), g(s)) ∈ R̃−1(t, s) = R̃(s, t), ∀ t, s ∈ A ⇒
(g(s), f(t)) ∈ R̃(t, s), ∀ t, s ∈ A,⇒ (g(s), f(t)) ∈ R̃−1(s, t), ∀ t, s ∈ A ⇒
(g, f) ∈̃ R̃−1. Hence R̃−1 is soft symmetric. Converse part is similar.

Theorem 3.24. Let S̃, T̃ be two soft equivalence relation on F. Then
S̃ ∩̃ T̃ is also a soft equivalence relation on F.

Proof. From Proposition 3.5(iii) and Definition 3.17, Theorem follows.
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Next we confined ourself for the development of the notion of soft equiv-
alence class relative to a soft equivalence relation on a soft set.

Definition 3.25. Let R̃ be a soft equivalence relation on F. For all
f ∈̃F, the soft equivalence class of f is defined to be the soft set L : A→
P (U), where L(t) =

∼⋃
(g, f) ∈̃ R̃

{g(t) : g ∈̃F} for all t ∈ A, and it can also be

written as L =̃
∼⋃

(g, f) ∈̃ R̃
{g : g ∈̃F}.

The soft equivalence class of f will be denoted by [f ]R̃ instead of L.

Note 3.26. Since R̃ is soft reflexive, (f, f) ∈̃ R̃. Therefore f ∈̃ [f ]R̃.

Note 3.27. Since g ∈̃F, {g} ⊆̃F. Therefore [f ]R̃ ⊆̃F.

In the following theorem, some basic properties of soft equivalence classes
are presented.

Theorem 3.28. Let R̃ be a soft equivalence relation on F. Then
(i) for all f ∈̃F, [f ]R̃ 6∼= Φ, where Φ is a null soft set,

(ii) for all f, g ∈̃F, [f ]R̃ =̃ [g]R̃ ⇔ f R̃ g,

(iii) for all f, g ∈̃F, if fR̃
′
g then [f ]R̃ ∩̃ [g]R̃ contains no soft element of F,

(iv) for all f, g ∈̃F, either [f ]R̃ =̃ [g]R̃ or [f ]R̃ ∩̃ [g]R̃ contains no soft ele-
ment of F.

(v) F =̃
∼⋃

f ∈̃F
[f ]R̃.

Note 3.29. (1) If f R̃
′
g then [f ]R̃ ∩̃ [g]R̃ may not be soft equal to Φ.

It is justified by the Example 3.37.
(2) If two or more soft equivalence classes have no common soft element,
then the soft equivalence classes are said to be distinct.

The definition of soft partition, given by Babitha and Sunil [5] is de-
scribed by:

Definition 3.30. [5] Let F ∈ Sf (A, U). A family {Fα : α ∈ I}, I being
the index set, of non-null soft subsets of F is said to form a soft partition
of F if
(i) Fα ∩̃Fβ =̃ Φ for all α, β ∈ I, α 6= β and

(ii) F =̃
∼⋃
α∈I

Fα.

Example 3.31. Consider the soft set F as in the Example 3.6, i.e.,
F (p1) = {u1, u2}, F (p2) = {u2, u3}. Take a family of soft subsets {F1, F2}
of F, where F1(p1) = {u1}, F1(p2) = {u2} and F2(p1) = {u2}, F2(p2) =
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{u3}. Then F =̃F1 ∪̃F2 and F1 ∩̃F2 =̃ Φ. Then by above Definition {F1, F2}
form a soft partition of F. It is to be noted that f2 =̃ {(p1, u1), (p2, u3)},
f3 =̃ {(p1, u2), (p2, u2)} are soft elements of F (as in the Example 3.6) but
neither f2, f3 are the soft elements of F1 nor the soft elements of F2.

Thus a soft partition over a soft set, in the sense of Babitha and Sunil
[5], is not being able to exhaust the collection of all soft elements of the soft
set. So, we are now in a position to modify the definition of soft partition
over a soft set, which is described in the following.

Definition 3.32. Let F ∈ Sf (A, U). A family {Fα : α ∈ I}, I being
the index set, of non-null soft subsets of F is said to form a soft partition
of F if
(i) f ∈̃F ⇒ ∃α ∈ I such that f ∈̃Fα, and
(ii) for all α 6= β ∈ I, Fα ∩̃Fβ contains no soft element of F.

Example 3.33. According to Definition 3.32, the family of soft subsets
{F1, F2} of F (as in the Example 3.31) is not a soft partition of F. Contin-
uing Example 3.31, consider a family of soft subsets {F3, F4} of F, where
F3(p1) = {u1}, F3(p2) = {u2, u3} and F4(p1) = {u2}, F4(p2) = {u2, u3}.
Among the soft elements f1 =̃ {(p1, u1), (p2, u2)},
f2 =̃ {(p1, u1), (p2, u3)}, f3 =̃ {(p1, u2), (p2, u2)}, f4 =̃ {(p1, u2), (p2, u3)} of
F, f1, f2 ∈̃F3 and f3, f4 ∈̃F4. Since (F3 ∩̃F4)(p1) = φ, (F3 ∩̃F4)(p2) =
{u2, u3}, then F3 ∩̃F4 contains no soft element of F. By Definition 3.32,
{F3, F4} form a soft partition of F.

Note 3.34. By condition (i) of Definition 3.32, it follows that F =̃
∼⋃
α∈I

Fα.

Note 3.35. For a soft equivalence relation R̃ on F, if we consider the
family P of all distinct soft equivalence classes, i.e.,
P = {[fi]R̃ : fi ∈̃F and for i 6= j, [fi]R̃ ∩̃ [fj]R̃ contains no soft element ofF}.
Then by Definition 3.32, the family P of distinct soft equivalence classes
constitutes a soft partition of the soft set F. Therefore each soft equivalence
relation on a soft set F yields a soft partition of F. In the next Theorem,
the converse of this fact is proved.

Theorem 3.36. Let P = {Fα : α ∈ I}, I being the index set, be a

soft partition of F. Then there exists a soft equivalence relation R̃ on
F corresponding to the soft partition P such that every members of P
become a soft equivalence class relative to the soft relation R̃.

Proof. For any f, g ∈̃F, define a soft relation R̃ on F by f R̃ g ⇔ f, g ∈̃Fα
for exactly one Fα ∈ P . Then it is similar task as crisp concept to prove
that R̃ is a soft equivalence relation on F.
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Now consider the soft equivalence class [f ]R̃ for f ∈̃F. Since f ∈̃F, by
definition of soft partition there exist α ∈ I such that f ∈̃Fα. We claim
that [f ]R̃ =̃Fα. Since g ∈̃ [f ]R̃ ⇔ g R̃ f ⇔ g ∈̃Fα, therefore [f ]R̃ =̃Fα.
Conversely, if Fα ∈ P , Fα =̃ [f ]R̃ for all f ∈̃Fα.

Example 3.37. Let U = {u1, u2, u3, u4} and A = {t1, t2}. Consider
a soft set F, defined by F (t1) = {u1, u2, u3} and F (t2) = {u3, u4}. Then
the soft elements of F are f1 =̃ {(t1, u1), (t2, u3)}, f2 =̃ {(t1, u1), (t2, u4)},
f3 =̃ {(t1, u2), (t2, u3)}, f4 =̃ {(t1, u2), (t2, u4)}, f5 =̃ {(t1, u3), (t2, u3)},
f6 =̃ {(t1, u3), (t2, u4)}. Now consider a soft relation R̃ on F as follows:

R̃(t1, t1) = {(u1, u1), (u2, u2), (u1, u2), (u2, u1), (u3, u3)};
R̃(t1, t2) = {(u1, u3), (u1, u4), (u2, u3), (u2, u4), (u3, u3), (u3, u4)};
R̃(t2, t1) = {(u3, u1), (u4, u1), (u3, u2), (u4, u2), (u3, u3), (u4, u3)};
R̃(t2, t2) = {(u3, u3), (u4, u4), (u3, u4), (u4, u3)}.
Then by Definition 3.17, R̃ is a soft equivalence relation on F. Hence the
distinct soft equivalence classes are [f1]R̃ =̃ {f1} ∪̃ {f2} ∪̃ {f3} ∪̃ {f4} and
[f5]R̃ =̃ {f5} ∪̃ {f6}. Therefore {[f1]R̃, [f5]R̃} forms a soft partition of F.
Again [f1]R̃(t1) = {u1, u2}; [f1]R̃(t2) = {u3, u4} and [f5]R̃(t1) = {u3};
[f5]R̃(t2) = {u3, u4}. Then ([f1]R̃ ∩̃ [f5]R̃)(t1) = φ and ([f1]R̃ ∩̃ [f5]R̃)(t2) =
{u3, u4}. So [f1]R̃ ∩̃ [f5]R̃ is not a null soft set. On the other hand, we
now consider a soft partition P = {F1, F2} of the above soft set F, where
F1(t1) = {u1, u2}, F1(t2) = {u3, u4} and F2(t1) = {u3}, F2(t2) = {u3, u4}.
For any f, g ∈̃F, define a soft relation R̃ on F by f R̃ g ⇔ f, g ∈̃Fi for
exactly one Fi ∈ P . Then R̃ is a soft equivalence relation on F and
F1 =̃ [f1]R̃ =̃ [f2]R̃ =̃ [f3]R̃ =̃ [f4]R̃, F2 =̃ [f5]R̃=̃ [f6]R̃.

In the conclusion of this section, we now define soft function which will
be needed in the subsequent section.

Definition 3.38. A soft relation R̃ from F to G is said to be a soft
function (or, soft mapping), denoted by R̃ : F → G, if the following condi-
tions are satisfied:
(1) domR̃ =̃F and
(2) for each soft element f ∈̃F there exist a unique soft element g ∈̃G

such that f R̃ g.

In this case f R̃ g will be written as R̃(f) =̃ g.

Note 3.39. The set R̃(F ) = {R̃(f) : f ∈̃F} is called the image set of

R̃ or the range set of R̃. The image set R̃(F ) is a soft subset of G.

Example 3.40. The soft relation R̃ from F to G, as defined in the
Example 3.16, is not a soft function because domR̃ =̃ {f4} 6∼= F.
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Example 3.41. Let F, G be two soft sets as described in the Example
3.6. Now define a soft relation T̃ from F to G as follows:
T̃ (p1, p1) = {(u1, u1), (u2, u1)}; T̃ (p1, p2) = {(u1, u4), (u2, u4)};
T̃ (p2, p1) = {(u2, u1), (u3, u1)}; T̃ (p2, p2) = {(u2, u4), (u3, u4)}.
Then domT̃ (p1) = {u1, u2}, domT̃ (p2) = {u2, u3}. Hence domT̃ =̃F. Now

it is easy to check that T̃ (f1) =̃ g2 =̃ T̃ (f2) =̃ T̃ (f3) =̃ T̃ (f4). Therefore T̃ is

a soft mapping from F to G and T̃ (F ) =̃ {g2} ⊆̃G.

Definition 3.42. (1) A soft mapping R̃ : F → G is said to be injective

(one-one) if for any f1, f2 ∈̃F, f1 ˜6= f2 ⇒ R̃(f1) ˜6= R̃(f2).

(2) A soft mapping R̃ : F → G is said to be surjective (onto) if

R̃(F ) =̃G.

(3) A soft mapping R̃ : F → G is said to be bijective if R̃ is both
injective and surjective.

Example 3.43. The soft mapping given in the Example 3.41 is neither
injective nor surjective. Now let F, G be two soft sets and f1, f2, f3, f4
are the soft elements of F and g1, g2, g3, g4 are the soft elements of G,
as defined in the Example 3.6. Define a soft relation Q̃ from F to G as
follows:
Q̃(p1, p1) = {(u1, u1), (u1, u4), (u2, u1), (u2, u4)};
Q̃(p1, p2) = {(u1, u4), (u2, u3)}, Q̃(p2, p1) = {(u2, u4), (u3, u1)},
Q̃(p2, p2) = {(u2, u3), (u2, u4), (u3, u3), (u3, u4)}.
Then by Definition 3.14, domQ̃(p1) = {u1, u2}, domQ̃(p2) = {u2, u3}.
Hence domQ̃ =̃F and Q̃(f1) =̃ g4, Q̃(f2) =̃ g2, Q̃(f3) =̃ g3, Q̃(f4) =̃ g1. There-

fore Q̃ is a soft mapping from F to G and also Q̃ is bijective.

4. Soft groups

Throughout this section, let (U, ◦) be a group and F, G ∈ Sf (A, U). At
first we confined ourself to introduce the notion of binary composition on
a soft set. In crisp concept, a binary composition on a set U is a mapping
f : U × U → U, i.e., f assigns to each ordered pair of elements of U to a
definite element of U. Since all soft elements of F ×̃F may not be of the
form (f, g) for some f, g ∈̃F, to define a binary composition on a soft set
F, we restrict the domain of binary composition F ×̃F to (F, F ), the set
of all soft elements of F ×̃F of the form (f, g) for some f, g ∈̃F.

Definition 4.1. A binary composition on F is a soft mapping R̃ :
(F, F ) → F. Then a binary composition on F assigns to each ordered
pair of soft elements of F to a definite soft element of F. The binary
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composition R̃ will be denoted by the symbols like ◦̃, ∗̃. The image of the
soft element (f, g) is denoted by the symbols like f ◦̃ g, f ∗̃ g.

Definition 4.2. Let F ∈ Sf (A, U). Consider a binary composition ∗̃
on F as (f ∗̃ g)(t) = f(t) ◦ g(t) for all t ∈ A and f, g ∈̃F. If f ∗̃ g ∈̃F for
all f, g ∈̃F then the algebraic system (F, ∗̃ ) is said to be a soft groupoid.

Note 4.3. If F (t) forms a groupoid with respect to ′◦′ for all t ∈ A,
then (f ∗̃ g)(t) = f(t) ◦ g(t) ∈ F (t) for all t ∈ A and for f, g ∈̃F. Hence
f ∗̃ g ∈̃F for all f, g ∈̃F. Then (F, ∗̃ ) forms a soft groupoid.

Definition 4.4. A soft groupoid (F, ∗̃ ) is said to be a commutative soft
groupoid (soft semigroup) if ∗̃ is commutative (associative) on F respec-
tively.

Definition 4.5. (1) A soft element e ∈̃F is said to be a soft identity
element in a soft groupoid (F, ∗̃ ) if e ∗̃ f =̃ f ∗̃ e =̃ f for all f ∈̃F.
(2) In a soft groupoid (F, ∗̃ ) with soft identity element e, a soft element
f ∈̃F is said to be invertible if there exist a soft element f

′ ∈̃F such that
f

′ ∗̃ f =̃ f ∗̃ f ′
=̃ e. Then f

′
is called a soft inverse of f.

In 2007, Aktas and Cagman [2] defined the notion of soft group as a pa-
rameterized family of subgroups of the universal group, which is as follows:

Definition 4.6. [2] F is said to be a soft group over U if F (t) is a
subgroup of U for all t ∈ A.

Definition 4.7. [2] Let F ⊆̃G and G be a soft group over U. Then F
is said to be a soft subgroup of G, written as F <̃G, if F (t) is a subgroup
of G(t) for all t ∈ A.

We now redefine the notion of soft group as a binary composition of soft
elements as follows:

Definition 4.8. A soft groupoid (F, ∗̃ ) is said to be a soft group, where
∗̃ is defined in the Definition 4.2, if
(i) ∗̃ is associative,
(ii) ∃ a soft element e ∈̃F such that e ∗̃ f =̃ f ∗̃ e =̃ f for all f ∈̃F,
(iii) for each soft element f ∈̃F, there exist a soft element f

′ ∈̃F such that
f

′ ∗̃ f =̃ f ∗̃ f ′
=̃ e.

Note 4.9. (1) The soft element e ∈̃F is said to be a soft identity ele-
ment in the soft group (F, ∗̃). By condition (iii) of Definition 4.8, it follows
that e(t) = eU (the identity element of U ) for all t ∈ A. Therefore the
soft identity element e in a soft group is unique.
(2) The soft element f

′ ∈̃F is said to be a soft inverse of f ∈̃F. By con-
dition (iv) of Definition 4.8, it follows that f

′
(t) = [f(t)]−1 for all t ∈ A.

Therefore each soft element f ∈̃F has unique soft inverse. The soft inverse
of a soft element f will be denoted by f−1.
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Definition 4.10. Let F ⊆̃G and (G, ∗̃) be a soft group. Then (F, ∗̃)
is said to be a soft subgroup of (G, ∗̃) if (F, ∗̃) forms a soft group.

Theorem 4.11. (F, ∗̃ ) is a soft group if and only if F (t) is a subgroup
of U for all t ∈ A.

Proof. Suppose (F, ∗̃ ) forms a soft group. Let t ∈ A be fixed but arbitrary.
Let a, b ∈ F (t). Then there exist f, g ∈̃F such that f(t) = a, g(t) = b.
Since (F, ∗̃ ) is a soft group, f ∗̃ g ∈̃F ⇒ a ◦ b = f(t) ◦ g(t) = (f ∗̃ g)(t) ∈
F (t). ◦ is associative on U, since ∗̃ is associative on F. By Note 4.9, e(t) is
the identity element of F (t), where e is the soft identity element of F. Now
f ∈̃F ⇒ f−1 ∈̃F. Hence a ◦ f−1(t) = f(t) ◦ f−1(t) = (f ∗̃ f−1)(t) = e(t),
the identity element of F (t). Similarly, f−1(t) ◦ a = e(t). Therefore each
a ∈ F (t) has an inverse in F (t). Since t ∈ A is arbitrary, F (t) is a
subgroup of U for all t ∈ A.
Conversely, let F (t) is a subgroup of U for all t ∈ A. Then by Note 4.3,
(F, ∗̃ ) forms a soft groupoid. Clearly, ∗̃ is associative on F. The soft
element e ∈̃F, where e(t) = eU (identity element of U ) for all t ∈ A, is
the soft identity element of F. Let f ∈̃F. Then f−1(t) = [f(t)]−1 ∈ F (t)
for all t ∈ A⇒ f−1 ∈̃F. Therefore (F, ∗̃ ) forms a soft group.

Remark 4.12. From the Theorem 4.11, it is seen that the notion of soft
group given by Aktas et al. is equivalent to that of the notion given in the
Definition 4.8. But this alternative definition of soft group gives us freedom
to think a soft group like an ordinary group. Hence all the elementary group
properties may hold for a soft group, which is a matter of investigation.

In the following theorems, some properties of a soft group (soft sub-
group) are stated and the proofs are being omitted as these are straightfor-
ward.

Theorem 4.13. Let F be a soft group over U . Then
(i) left and right cancellation law holds in F,
(ii) for all f, g ∈̃F, (f ∗̃ g)−1 =̃ g−1 ∗̃ f−1.

Theorem 4.14. Let F ⊆̃G and G be a soft group over U. Then F <̃G
if and only if for all f, g ∈̃F, f ∗̃ g−1 ∈̃F.

Example 4.15. Let U = S3 = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5}, where ρ0 =
the identity permutation, ρ1 = (1, 2, 3), ρ2 = (1, 3, 2), ρ3 = (2, 3),
ρ4 = (1, 3), ρ5 = (1, 2). Then (U, ◦) is a group, where ′◦ ′ is the usual com-
position of mappings. Consider the parameter set A = {t1, t2} and define a
soft set F : A→ P (U) as F (t1) = {ρ0, ρ1, ρ2} and F (t2) = {ρ0, ρ3}. Since
F (t1), F (t2) are subgroups of U, by Definition 4.6, F is a soft group over
U. Now the soft elements of F are f1 =̃ {(t1, ρ0), (t2, ρ0)}, f2 =̃ {(t1, ρ0), (t2, ρ3)},
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f3 =̃ {(t1, ρ1), (t2, ρ0)}, f4 =̃ {(t1, ρ1), (t2, ρ3)}, f5 =̃ {(t1, ρ2), (t2, ρ0)},
f6 =̃ {(t1, ρ2), (t2, ρ3)}. Define a binary composition ∗̃ on F as in the Def-
inition 4.2, i.e., (fi ∗̃ fj)(t) = fi(t) ◦ fj(t) for all fi, fj ∈̃F and t ∈ A.
Then the composition table of ∗̃ is given by:

∗̃ f1 f2 f3 f4 f5 f6
f1 f1 f2 f3 f4 f5 f6
f2 f2 f1 f4 f3 f6 f5
f3 f3 f4 f5 f6 f1 f2
f4 f4 f3 f6 f5 f2 f1
f5 f5 f6 f1 f2 f3 f4
f6 f6 f5 f2 f1 f4 f3

Hence (F, ∗̃ ) forms a soft commutative group. The soft identity element
is f1 and f−12 =̃ f2, f

−1
3 =̃ f5, f

−1
4 =̃ f6. Then the soft subgroups of F are

given by F0 =̃ {f1}; F1 =̃ {f1} ∪̃ {f2}; F2 =̃ {f1} ∪̃ {f3} ∪̃ {f5} and F.

Definition 4.16. A soft group F over U is said to be a finite soft group
if F contains a finite number of soft elements. The order of a finite soft
group F, denoted by |F |, is the number of soft elements of F.

Definition 4.17. Let (F, ∗̃ ) be a soft group. For all positive integer n,
define the integral power of a soft element f ∈̃F by
fn =̃ f ∗̃ f ∗̃ ... ∗̃ f (n times) i.e., fn(t) = f(t) ◦ f(t) ◦ ... ◦ f(t), ∀ t ∈ A.
Similarly, f−n =̃ f−1 ∗̃ f−1 ∗̃ ... ∗̃ f−1 (n times) and f 0 =̃ e, where e is the
soft identity element of F.

Definition 4.18. Let (F, ∗̃ ) be a soft group. The order of a soft element
f ∈̃F, denoted by ◦(f), is the least positive integer n such that fn =̃ e,
where e is the soft identity element of F. If such positive integer exist then
f is said to be of finite order otherwise f is said to be of infinite order.

Example 4.19. As a continuation of Example 4.15, we see that |F | = 6
and ◦(f1) = 1, ◦(f2) = 2, ◦(f3) = 3, ◦(f4) = 6, ◦(f5) = 3, ◦(f6) = 6.

5. Soft cosets

Throughout this section, (U, ◦) is a group and H, G ∈ Sf (A, U).

Definition 5.1. Let G be a soft group over U and H <̃G. For any
a ∈̃G, the soft set a ∗̃H : A→ P (U), defined by (a ∗̃H)(t) = a(t) ◦H(t)
for all t ∈ A, is called a soft left coset of H in G determined by a.
Similarly, the soft set H ∗̃ a : A→ P (U), defined by (H ∗̃ a)(t) = H(t)◦a(t)
for all t ∈ A, is called a soft right coset of H in G determined by a.
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Remark 5.2. Let a ∈̃G. Then f ∈̃ a ∗̃H ⇒ f(t) ∈ (a ∗̃H)(t) = a(t) ◦
H(t) for all t ∈ A. In particular, if A = {t1, t2}, f(t1) = a(t1) ◦ u, where
u ∈ H(t1) and f(t2) = a(t2)◦v, where v ∈ H(t2). From the Definition 3.1,
there must exist a soft element h ∈̃H such that h(t1) = u, h(t2) = v. Hence
f(t1) = a(t1) ◦ h(t1) = (a ∗̃h)(t1) and f(t2) = a(t2) ◦ h(t2) = (a ∗̃h)(t2).
Therefore f =̃ a ∗̃h for some h ∈̃H. So, the soft left coset a ∗̃H may also
be described as a ∗̃H =̃ {a ∗̃h : h ∈̃H}. Similarly, the soft right coset H ∗̃ a
may be described as H ∗̃ a =̃ {h ∗̃ a : h ∈̃H}.

Note 5.3. If G is a soft group and H <̃G, then G(t) is a subgroup of
U and also H(t) is a subgroup of G(t) for all t ∈ A. Again, a ∈̃G implies
a(t) ∈ G(t) for all t ∈ A. Therefore (a ∗̃H)(t) = a(t) ◦H(t) ⊆ G(t) for all
t ∈ A. So, a ∗̃H ⊆̃G for all a ∈̃G. Similarly, H ∗̃ a ⊆̃G for all a ∈̃G.

Note 5.4. If H <̃G, then the soft identity element e ∈̃H. For a ∈̃G,
a(t) = a(t)◦ e(t) ∈ a(t)◦H(t) for all t ∈ A. Therefore a ∈̃ a ∗̃H. Similarly,
a ∈̃H ∗̃ a.

Example 5.5. As a continuation of Example 4.15, consider the soft
group (F, ∗̃ ) and the soft subgroup (F1, ∗̃ ), where F1 =̃ {f1} ∪̃ {f2}.
Then soft left cosets of F1 in F are f1 ∗̃F1 =̃ {f1} ∪̃ {f2} =̃F1; f2 ∗̃F1 =̃F1;
f3 ∗̃F1 =̃ {f3} ∪̃ {f4} =̃ f4 ∗̃F1; f5 ∗̃F1 =̃ {f5} ∪̃ {f6} =̃ f6 ∗̃F1. Hence F1(t1) =
{ρ0}, F1(t2) = {ρ0, ρ3}; (f3 ∗̃F1)(t1) = {ρ1}, (f3 ∗̃F1)(t2) = {ρ0, ρ3} and
(f5 ∗̃F1)(t1) = {ρ2}, (f5 ∗̃F1)(t2) = {ρ0, ρ3}.

Theorem 5.6. Let G be a soft group over U and H <̃G. Then h ∈̃H
if and only if h ∗̃H =̃H.

Proof. To prove h ∗̃H =̃H, we have to prove (h ∗̃H)(t) = H(t) for all t ∈
A. Let t ∈ A be fixed. Since G be a soft group over U and H <̃G, then
(G(t), ◦) is a group and H(t) is a subgroup of G(t). Moreover, h ∈̃H ⇒
h(t) ∈ H(t). Since h(t)◦H(t) is a left coset of H(t) in G(t), h(t)◦H(t) =
H(t). This implies (h ∗̃H)(t) = H(t). Since t ∈ A is arbitrary, h ∗̃H =̃H.
Conversely, let h ∗̃H =̃H. By Note 5.4, h ∈̃h ∗̃H ⇒ h ∈̃H.

Theorem 5.7. Let G be a soft group over U and H <̃G. Then
a ∈̃G \H if and only if (a ∗̃H) ∩̃H =̃ Φ.

Proof. From the given condition, we have (G(t), ◦) is a group and H(t) is
a subgroup of G(t) for all t ∈ A. Now a ∈̃G\H ⇔ a(t) ∈ G(t)\H(t), ∀t ∈
A⇔ [a(t) ◦H(t)] ∩H(t) = φ, ∀t ∈ A⇔ (a ∗̃H) ∩̃H =̃ Φ.

Theorem 5.8. Let G be a soft group over U and H <̃G. Then
a ∈̃G, a ˜6∈H ⇔ (a ∗̃H) ∩̃H contains no soft element of G.
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Proof. At first let a ∈̃G, a ˜6∈H. Suppose (a ∗̃H) ∩̃H contains a soft ele-
ment f. Then f ∈̃ (a ∗̃H) ∩̃H ⇒ f ∈̃ a ∗̃H and f ∈̃H ⇒ ∃h ∈̃H such
that f =̃ a ∗̃h ⇒ a =̃ f ∗̃h−1 ∈̃H (since H <̃G ). This is a contradiction.
Therefore (a ∗̃H) ∩̃H contains no soft element of G.
Conversely, let (a ∗̃H) ∩̃H contains no soft element of G. By Note 5.4,
a ∈̃ a ∗̃H. If a ∈̃H, then a ∈̃ (a ∗̃H) ∩̃H. It contradicts our assumption.

Therefore a ˜6∈H.
Theorem 5.9. Let G be a soft group over U and H <̃G. For any

a, b ∈̃G, either a ∗̃H =̃ b ∗̃H or (a ∗̃H) ∩̃ (b ∗̃H) contains no soft element
of G.

Proof. Suppose (a ∗̃H) ∩̃ (b ∗̃H) contains a soft element, say f. Then
f ∈̃ (a ∗̃H) ∩̃ (b ∗̃H)⇒ f(t) ∈ [a(t) ◦H(t)] ∩ [b(t) ◦H(t)] 6= φ, ∀t ∈ A.
Since for all t ∈ A, a(t), b(t) ∈ G(t), H(t) < G(t) and a(t) ◦ H(t), b(t) ◦
H(t) are left cosets of H(t) in G(t), then by crisp concept for t ∈ A,
[a(t) ◦ H(t)] ∩ [b(t) ◦ H(t)] 6= φ ⇒ a(t) ◦ H(t) = b(t) ◦ H(t). This implies
a ∗̃H =̃ b ∗̃H.

Example 5.10. In this example, we will show that there exist a, b ∈̃G
such that a ∗̃H 6∼= b ∗̃H and (a ∗̃H) ∩̃ (b ∗̃H) 6∼= Φ. From Example 5.5, we
see that (f3 ∗̃F1) ∩̃ (f5 ∗̃F1) =̃ {(t1, φ), (t2, {ρ0, ρ3})} 6∼= Φ. Also f3 ∗̃F1 6∼=
f5 ∗̃F1.

Theorem 5.11. Let G be a soft group over U and H <̃G. The soft
relation R̃ on G defined by f R̃ g ⇔ f−1 ∗̃ g ∈̃H, ∀ f, g ∈̃G is a soft equiv-
alence relation on G and each equivalence class is a soft left coset of H in
G, i.e., for all f ∈̃G, [f ]R̃ =̃ f ∗̃H.

Note 5.12. Since each equivalence class is a soft left coset of H in G,
then by Note 3.35, G is partitioned into distinct soft left cosets.

Theorem 5.13. Let G be a soft group over U and H <̃G. Then the
soft elements of H are in one-one correspondence with the soft elements of
any soft left coset of H in G.

Proof. Let a ∈̃G and a ∗̃H be a soft left coset of H in G. Let us define
a soft mapping R̃ : H → a ∗̃H by R̃(h) =̃ a ∗̃h for all h ∈̃H. Suppose

h1, h2 ∈̃H. Then R̃ (h1) =̃ R̃ (h2)⇔ a ∗̃h1 =̃ a ∗̃h2 ⇔ h1 =̃h2 (by left can-

cellation law). Therefore R̃ is well defined and injective. To show R̃
is onto, let g ∈̃ a ∗̃H. Then by Remark 5.2, there exist h ∈̃H such that
g =̃ a ∗̃h. This implies g =̃ R̃ (h). Hence R̃ is surjective. Therefore R̃ is
bijective.

Corollary 5.14. Let G be a soft group over U and H <̃G. Then for
all a ∈̃G, |H| = |a ∗̃H|.



Soft structures of groups and rings 17

Definition 5.15. Let G be a soft group over U and H <̃G. Then the
number of distinct soft left (right) cosets of H in G is called the index of
H in G. The index of H in G is denoted by [G : H].

In group theory, Lagrange’s Theorem states that the order of every sub-
groups of a finite group divides the order of that finite group. The analogous
result for a soft group is given in the following theorem.

Theorem 5.16. Let G be a finite soft group over U and H <̃G. Then
order of H divides the order of G. Moreover, |G| = [G : H]|H|.

Proof. By the Note 5.12 and the Corollary 5.14, the proof follows.

Example 5.17. From Example 4.15, we have |F0| = 1, |F1| = 2, |F2| =
3 and |F | = 6.

6. Soft rings

Throughout this section, let (U,+, .) be a ring and F ∈ Sf (A,U). We
initiate this section by rewriting the notion of soft ring as a parameterized
family of subrings of the universal ring, which was introduced by Acar et
al.[1] in 2010.

Definition 6.1. [1] F is called a soft ring over U if F (t) is a subring
of U for all t ∈ A.

Definition 6.2. [1] Let F ⊆̃G and G be a soft ring over U. Then F
is called a soft subring of G if F (t) is a subring of G(t) for all t ∈ A.

Now we redefine the notion of a soft ring by using the binary composi-
tions of its soft elements as follows:

Definition 6.3. F is said to form a soft ring with respect to two binary
compositions +̃ and .̃ defined on F for all f, g ∈̃F as

(f +̃ g)(t) = f(t) + g(t) and (f .̃ g)(t) = f(t).g(t) for all t ∈ A (1)

if the following conditions are satisfied:
(i) (F, +̃ ) is a commutative soft group;
(ii) (F, .̃ ) is a soft semigroup and
(iii) for any three soft elements f, g, h ∈̃F,
the left distributive law f .̃ ( g +̃h ) =̃ f .̃ g +̃ f .̃ h and
the right distributive law ( g +̃h ) .̃ f =̃ g .̃ f +̃ h .̃ f both hold.
The soft ring is denoted by (F, +̃ , .̃ ) or simply by F when no confusion
regarding the underlying binary compositions arises.
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Theorem 6.4. (F, +̃ , .̃ ) is a soft ring if and only if F (t) is a subring
of (U,+, .) for all t ∈ A.
Proof. Suppose (F, +̃ , .̃ ) is a soft ring. Then (F, +̃ ) is a commutative
soft group, (F, .̃ ) is a soft semigroup and both distributive laws hold in
F. Then by Theorem 4.11, F (t) is a subgroup of (U,+) for all t ∈ A
and (F (t), .) is a semigroup for all t ∈ A. Let t ∈ A be fixed but arbi-
trary. Let a, b, c ∈ F (t). Then there exist f, g, h ∈̃F such that f(t) =
a, g(t) = b, h(t) = c. Hence a+ b = f(t) + g(t) = (f +̃ g)(t) = (g +̃ f)(t) =
g(t) + f(t) = b + a. So, F (t) is a commutative subgroup of (U,+).
Again, a.(b + c) = f(t).[g(t) + h(t)] = f(t).(g +̃h)(t) = [f .̃ (g +̃h)](t) =
[f .̃ g +̃ f .̃ h](t) = (f .̃ g)(t) + (f .̃ h)(t) = f(t).g(t) + f(t).h(t) = a.b+ a.c.
So, the left distribution law holds in F (t). Similarly, the right distribution
law holds in F (t). Since t ∈ A is arbitrary, F (t) is a subring of (U,+, .)
for all t ∈ A.
Conversely, suppose F (t) is a subring of (U,+, .) for all t ∈ A. Then by
Theorem 4.11, (F, +̃ ) is a soft group and (F, .̃ ) is a soft semigroup.
Again +̃ is commutative on F as + is commutative on U. Also both the
distribution laws hold in (F, +̃ , .̃ ) as the distributions of . over + hold
in F (t) for all t ∈ A. Therefore (F, +̃ , .̃ ) forms a soft ring.

Remark 6.5. In the Theorem 6.4, it is established that the two notions
of a soft ring given by Acar et al. and in the Definition 6.3 are equivalent.
But this alternative definition of a soft ring allow us to think a soft ring as an
ordinary ring. So, almost all the basic properties of an ordinary ring might
be true for a soft ring. Hence we shall concentrate our aim to investigate
such properties of a soft ring and note the differences from an ordinary ring.

Note 6.6. (1) The soft identity element in F with respect to +̃ is
called the zero soft element in F. The zero soft element is unique and it is
denoted by 0F . Here 0F (t) = 0 for all t ∈ A, where 0 is the zero element
of the ring (U,+, .). All other soft element in F except 0F are called non-
zero soft element in F.
(2) The soft inverse of a soft element f ∈̃F with respect to +̃ is called the
additive soft inverse of f and it is denoted by −f. Here (−f)(t) = −f(t)
for all t ∈ A, where −f(t) is the additive inverse of f(t) in the ground
ring (U,+, .).

Definition 6.7. (1) A soft element e ∈̃F is said to be a multiplicative
soft identity (or, soft unity) in F if e .̃ f =̃ f .̃ e =̃ f for all f ∈̃F.
(2) In a soft ring (F, +̃ , .̃ ) with soft unity e, a soft element f ∈̃F is said to
be a soft unit if there exists a soft element g ∈̃F such that f .̃ g =̃ g .̃ f =̃ e.
The soft element g ∈̃F is said to be a multiplicative soft inverse of f.
(3) A soft ring (F, +̃ , .̃ ) is said to be a commutative soft ring if f .̃ g =̃ g .̃ f
for all f, g ∈̃F.
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Note 6.8. (1) By the Definition 6.7, the soft unity element in F is unique
and is denoted by e. Then it follows that e(t).f(t) = f(t).e(t) = f(t) for
all t ∈ A, f ∈̃F. Hence for a fixed t ∈ A, e(t).f(t) = f(t).e(t) = f(t) for
all f ∈̃F. So, e(t) is the unity element of the subring F (t) for each t ∈ A.
Since the subring F (t) and the ground ring (U,+, .) may have different
unity elements, e(t) may not be 1, where 1 is the unity element of the
ring (U,+, .).
(2) By the definition of multiplicative soft inverse, it follows that if g ∈̃F
is a multiplicative soft inverse of f ∈̃F then g(t) = [f(t)]−1 for all t ∈ A,
where [f(t)]−1 is the multiplicative inverse of f(t) in the subring F (t)
for each t ∈ A. However, if a soft element f ∈̃F has a multiplicative soft
inverse in F then the multiplicative soft inverse is unique and it is denoted
by f−1.

Note 6.9. In soft set theory, by trivial soft ring F we mean F (t) =
{0} ∀ t ∈ A, i.e., F contains only zero soft element and it is denoted by
( {0F}, +̃ , .̃ ). A non-trivial soft ring F contains at least two soft elements.

Example 6.10. Let U = (Z6,+, .) and A = {t1, t2} be the parameter
set. Consider a soft set F : A → P (U), defined as F (t1) = {0, 3} and
F (t2) = {0, 2, 4}. Then by the Theorem 6.4, (F, +̃ , .̃ ) is a soft ring, where
+̃, .̃ are defined on F as in the Equation (1). Here 3, 4 are the unities
of the subrings F (t1), F (t2) respectively. Then the soft unity element e is
given by e =̃ {(t1, 3), (t2, 4)}. The soft elements f =̃ {(t1, 3), (t2, 2)}, g =̃
{(t1, 3), (t2, 4)} are the soft units in F and both are multiplicative soft
inverses of themselves. Here the soft ring F is commutative.

Theorem 6.11. In a non-trivial soft ring with unity e, 0F ˜6= e.

Definition 6.12. In a soft ring F, a non-zero soft element f is said to
be a soft divisor of zero if there exists a non-zero soft element g ∈̃F such
that either f .̃ g =̃ 0F or g .̃ f =̃ 0F .

Example 6.13. Let U = (Z,+, .) be the ring of all integers. Let
A = {t1, t2} be the parameter set. Consider a soft set F : A → P (U),
defined as F (t1) = (2Z,+, .) and F (t2) = (3Z,+, .). Then by the The-
orem 6.4, (F, +̃ , .̃ ) is a soft ring, where +̃, .̃ are defined on F as
in the Equation (1) in Definition 6.3. Now consider two non-zero soft el-
ements f =̃ {(t1, 0), (t2, 3)}, g =̃ {(t1, 2), (t2, 0)} ∈̃F. Then (f .̃ g)(t1) =
f(t1).g(t1) = 0 and (f .̃ g)(t2) = 0. Hence f .̃ g =̃ 0F . So, f, g are soft
divisors of zero in F.

Theorem 6.14. A soft ring (F, +̃ , .̃ ) contains soft divisors of zero if
and only if one of the following conditions hold:
(1) If A contains only one parameter, F (t) contains divisors of zero;
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(2) If A contains more than one parameter, at least one subring, say F (ti),
contains divisors of zero or, at least two subrings, say F (ti), F (tj), are non-
trivial, where ti, tj ∈ A.

Proof. Suppose the soft ring (F, +̃ , .̃ ) contains soft divisors of zero. Then
there exist non-zero soft elements f, g ∈̃F such that f .̃ g =̃ 0F . Now
f, g ˜6= 0F ⇒ ∃ ti, tj ∈ A such that f(ti) 6= 0 and g(tj) 6= 0. If ti = tj
then f .̃ g =̃ 0F ⇒ f(ti).g(ti) = 0 ⇒ F (ti) contains divisors of zero. If
ti 6= tj then the soft rings F (ti), F (tj) are non-trivial. Hence the required
conditions hold.
Conversely, since (F, +̃ , .̃ ) is a soft ring then F (t) is a subring of (U,+, .)
for all t ∈ A. Then 0 ∈ F (t) for all t ∈ A, where 0 is the zero element
of (U,+, .). Let the parameter set A contains only one element, say t.
Also suppose the subring F (t) contains a divisor of zero, say u(6= 0).
Then there exists another v(6= 0) ∈ F (t) such that either u.v = 0 or
v.u = 0. Now we can find f, g ∈̃F such that f(t) = u, g(t) = v. Therefore
(f .̃ g)(t) = f(t).g(t) = 0 or (g .̃ f)(t) = 0. So, either f .̃ g =̃ 0F or
g .̃ f =̃ 0F . Therefore f, g are soft divisors of zero in F.
Next, let the parameter set A contains more than one element. If at least
one subring, say F (ti) contains divisors of zero then there exist u( 6= 0), v( 6=
0) ∈ F (ti) such that u.v = 0 or v.u = 0. Consider two soft element
f, g ∈̃F such that f(ti) = u, f(t) = 0 for all t( 6= ti) ∈ A and g(ti) =
v, g(t) = 0 for all t(6= ti) ∈ A. Then either f .̃ g =̃ 0F or g .̃ f =̃ 0F , where

f, g ˜6= 0F . Therefore f, g are soft divisors of zero in F.
If at least two subrings, say F (ti), F (tj), are non-trivial, we can find two
soft elements f, g ∈̃F such that f(ti) = u 6= 0, f(t) = 0 for all t(6= ti) ∈ A
and g(tj) = v 6= 0, g(t) = 0 for all t(6= tj) ∈ A. Then f, g are non-zero soft
elements of F and (f .̃ g)(t) = 0 for all t ∈ A. This implies f .̃ g =̃ 0F ,
the zero soft element of F. Therefore f, g are soft divisors of zero in F.

Corollary 6.15. Let (U,+, .) be a ring contains no divisor of zero and
F ∈ Sf (A,U). A soft ring (F, +̃ , .̃ ) contains soft divisors of zero if and
only if A contains more than one parameter and at least two subrings, say
F (ti), F (tj), are non-trivial.

Theorem 6.16. A non-trivial soft ring (F, +̃ , .̃ ) contains no soft di-
visor of zero if and only if for exactly one parameter ti ∈ A, F (ti) is a
non-trivial subring containing no divisor of zero and all other subring F (t)
becomes trivial, where t(6= ti) ∈ A.

Proof. Proof follows from the Theorem 6.14.

Note 6.17. In the Example 6.13, we have seen that the ring (U,+, .)
contains no divisor of zero, whereas the soft ring (F, +̃ , .̃ ) contains soft
divisors of zero.



Soft structures of groups and rings 21

Theorem 6.18. If f be a soft unit in a soft ring (F, +̃ , .̃ ) with soft
unity, then f is not a soft divisor of zero.

Note 6.19. By Theorem 6.18, if f is a soft divisor of zero in a soft ring
F then f is not a soft unit in F. For a soft ring F, where at least two
subrings among the subrings F (t), t ∈ A, are non-trivial, all the non-zero
soft elements f ∈̃F, satisfying the condition f(ti) = 0 for at least one
parameter ti ∈ A corresponding to the non-trivial subrings F (t), are soft
divisors of zero. Hence this type of soft elements are not soft unit in the
above soft ring F. Suppose A contains more than one parameter, say n
and (F,A) is a non-trivial soft ring over U such that F (t1), F (t2) are
non-trivial subring, where t1, t2 ∈ A. Then the soft elements of the form
{(t1, 0), (t2, u), (t3, 0), ..., (tn, 0)} and {(t1, v), (t2, 0), (t3, 0), ..., (tn, 0)},
where u, v(6= 0) ∈ U, are not soft units in F.

Definition 6.20. The characteristic of a soft ring (F, +̃ , .̃ ), denoted by
charF, is the least positive integer n such that nf =̃ 0F , where nf =̃ f +̃ f
+̃ ... +̃ f (n times). If no such positive integer n exists, F is said to be of
characteristic zero.

Note 6.21. By a finite soft ring F, we mean F contains finite number
of soft elements. Hence for a finite soft ring F, the corresponding parameter
set A and all the subrings F (t), where t ∈ A, are finite.

Theorem 6.22. Characteristic of a finite soft ring (F, +̃ , .̃ ) is the l.c.m
of the characteristics of the subrings F (t) for all t ∈ A.

Proof. If the parameter set A contains only one parameter then the the-
orem follows. Next, let the parameter set A contains two elements, say
A = {t1, t2}. Since F is a finite soft ring then F (t1), F (t2) are finite
subrings and hence the characteristics of F (t1), F (t2) are finite, say m,n
respectively. Let lcm(m,n) = r. This implies rf =̃ 0F for all f ∈̃F. Sup-
pose s be the positive integer less than r such that sf =̃ 0F for all f ∈̃F.
Then sf(t) = 0 for all t ∈ A, f ∈̃F. Since m,n are the characteristics of
the subrings F (t1) and F (t2) respectively, then both m, n divides s. This
implies r divides s, which is a contradiction. So, r is the least positive in-
teger such that rf =̃ 0F for all f ∈̃F. Therefore charF = lcm(m,n). This
theorem can be proved by considering another parameter set with more
than two elements.

Note 6.23. Let (F, +̃ , .̃ ) be a soft ring. Then charF = 1 if and only
if F is the trivial soft ring.

Example 6.24. In the Example 6.10, the characteristics of the subrings
F (t1), F (t2) are 2, 3 respectively. It is easy to verify that the characteristic
of the soft ring F is 6.
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7. Soft integral domains and Soft fields

Throughout this section unless otherwise stated, let (U,+, .) be a ring and
F ∈ Sf (A,U).

Definition 7.1. A non-trivial soft ring (F, +̃ , .̃ ) with soft unity is
said to be a soft integral domain if F is commutative and contains no soft
divisor of zero.

Theorem 7.2. A non-trivial commutative soft ring (F, +̃ , .̃ ) with soft
unity is a soft integral domain if and only if for exactly one parameter
ti ∈ A, F (ti) becomes a non-trivial subring having no divisor of zero and
all other F (t) becomes a trivial subring, where t(6= ti) ∈ A.

Proof. The proof follows from the Theorem 6.16.

Note 7.3. (1) For a trivial ring, 0 is zero element as well as the unity el-
ement. Hence from the Note 6.8, it follows that if e is the soft unity element
of a soft integral domain F then e(ti) is the unity element of the non-trivial
subring F (ti) and e(t) = 0 for all t( 6= ti) ∈ A, where 0 is the zero element
of the ground ring U, i.e., soft unity element of a soft integral domain F is
of the form {(t1, 0), (t2, 0), ..., (ti−1, 0), (ti, u), (ti+1, 0)..., (tn, 0)}, where
i, n ∈ N and u is the unity element of the non-trivial subring F (ti).
(2) If f be a non-zero soft element of a soft integral domain F, then f(ti)
is a non-zero element of the non-trivial subring F (ti) and f(t) = 0 for all
t(6= ti) ∈ A, i.e., each non-zero soft element of a soft integral domain F is
of the form {(t1, 0), (t2, 0), ..., (ti−1, 0), (ti, a), (ti+1, 0)..., (tn, 0)}, where
i, n ∈ N and a( 6= 0) ∈ F (ti).
(3) In a soft integral domain F, if there exist a multiplicative soft inverse of a
non-zero soft element {(t1, 0), (t2, 0), ..., (ti−1, 0), (ti, a), (ti+1, 0)..., (tn, 0)},
where i, n ∈ N and a 6= 0, then multiplicative soft inverse is of the form
{(t1, 0), (t2, 0), ..., (ti−1, 0), (ti, a

−1), (ti+1, 0)..., (tn, 0)}, where i, n ∈ N
and a−1 is the multiplicative inverse of a in the non-trivial subring F (ti).

Example 7.4. 1. Let U = (Z6,+, .) and A = {t1, t2} be the parameter
set. Consider a soft set F : A → P (U), defined as F (t1) = {0, 2, 4} and
F (t2) = {0}. Then by the Theorem 6.4, (F, +̃ , .̃ ) is a soft ring. Here
F is commutative and it contains the soft unity {(t1, 4), (t2, 0)}. Also F
contains no soft divisor of zero. So, F is a soft integral domain.
2. The soft ring, as in the Example 6.10, is not a soft integral domain be-
cause it contains the soft divisors of zero a =̃ {(t1, 3), (t2, 0)}, b =̃ {(t1, 0),
(t2, 2)}, c =̃ {(t1, 0), (t2, 4)}.

Corollary 7.5. A soft ring (F, +̃ , .̃ ) is a soft integral domain if and
only if for exactly one parameter ti ∈ A, F (ti) is an integral domain and
all other F (t) is a trivial subring, where t( 6= ti) ∈ A.
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Corollary 7.6. Let (U, +, .) be an integral domain. Then a soft ring
(F, +̃ , .̃ ) over U is a soft integral domain if and only if for exactly one
parameter ti ∈ A, F (ti) is a nontrivial subring containing unity element
and all other F (t) is a trivial subring, where t(6= ti) ∈ A.

Theorem 7.7. The characteristic of a finite soft integral domain is a
prime number.

Proof. Suppose (F, +̃ , .̃ ) is a finite soft integral domain. If the parameter
set A contains only one parameter t, then by the Corollary 7.5, F (t) is
a finite integral domain, whose characteristic is a prime number. Then by
Definition 6.20, the characteristic of the soft integral domain F is a prime
number. If A contain more than one parameter then by Corollary 7.5,
there exists only one parameter ti ∈ A such that F (ti) is a finite integral
domain and all other F (t) is a trivial subring, where t( 6= ti) ∈ A. The
characteristic of F (ti) is a prime number and the characteristic of F (t) is
1 for all t(6= ti) ∈ A. Then by the Theorem 6.22, the characteristic of F is
a prime number.

Definition 7.8. A non-trivial soft ring (F, +̃ , .̃ ) with soft unity is said
to be a soft field if F is commutative and each non-zero soft element of F
is a soft unit.

Example 7.9. In the Example 7.4, F is a soft field, where the non-zero
soft elements {(t1, 2), (t2, 0)}, {(t1, 4), (t2, 0)} are soft units.

Theorem 7.10. A soft field is a soft integral domain.

Proof. Suppose (F, +̃ , .̃ ) be a soft field. Then each non-zero soft element
of F is a soft unit. By the Theorem 6.18, each non-zero soft element of F
is not a soft divisor of zero. Hence F contains no soft divisor of zero and
proving that (F, +̃ , .̃ ) is a soft integral domain.

Note 7.11. Converse of the Theorem 7.10 is not true, i.e., a soft integral
domain is not necessarily a soft field. It is justified by the following example.

Example 7.12. Let U = (Q,+, .) be the ring of all rational num-
bers. Let A = {t1, t2} be the parameter set. Consider a soft set F :
A → P (U), defined as F (t1) = (Z,+, .) and F (t2) = {0}. Then by the
Corollary 7.5, (F, +̃ , .̃ ) is a soft integral domain. Each non-zero soft
element {(t1, u), (t2, 0)} of F has no multiplicative soft inverse, because
u(6= 0) ∈ F (t1) having no multiplicative inverse in F (t1). Therefore F is
not a soft field.

Theorem 7.13. A non-trivial commutative soft ring (F, +̃ , .̃ ) with soft
unity is a soft field if and only if for exactly one parameter ti ∈ A, F (ti)
is a non-trivial subring such that each non-zero element of F (ti) is a unit
and all other F (t) is a trivial subring, where t(6= ti) ∈ A.
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Proof. Suppose (F, +̃ , .̃ ) be a soft field. Then F is a soft integral do-
main. So, by the Theorem 7.2, there is exactly one parameter ti ∈ A such
that F (ti) is a non-trivial subring having no divisor of zero and all other
F (t) is a trivial subring, where t(6= ti) ∈ A. Suppose a(6= 0) ∈ F (ti).
Then by Note 7.3, we can find a non-zero soft element in F of the form
{(t1, 0), (t2, 0), ..., (ti−1, 0), (ti, a), (ti+1, 0)..., (tn, 0)}, where i, n ∈ N and
a( 6= 0) ∈ F (ti) and the corresponding multiplicative soft inverse is of
the form {(t1, 0), (t2, 0), ..., (ti−1, 0), (ti, a

−1), (ti+1, 0)..., (tn, 0)}, where
i, n ∈ N and a−1 is the multiplicative inverse of a in the non-trivial sub-
ring F (ti). Therefore each non-zero element of F (ti) is a unit.
Conversely, let F (ti) is a non-trivial subring such that each non-zero el-
ement of F (ti) is a unit and all other F (t) is a trivial subring. Since a
non-zero soft element f ∈̃F is of the form f(ti) = a 6= 0 and f(t) = 0
for all t(6= ti) ∈ A. Then by Note 7.3, the non-zero soft element g of the
form g(ti) = a−1 and g(t) = 0 for all t(6= ti) ∈ A is the multiplicative soft
inverse of f. Therefore F is a soft field.

Corollary 7.14. A soft ring (F, +̃ , .̃ ) is a soft field if and only if for
exactly one parameter ti ∈ A, F (ti) is a field and all other F (t) is a trivial
subring, where t( 6= ti) ∈ A.

Theorem 7.15. A finite soft integral domain is a soft field.

Proof. Suppose (F, +̃ , .̃ ) be a finite soft integral domain. By the Corollary
7.5, for exactly one parameter ti ∈ A, F (ti) is a finite integral domain and
all other F (t) is a trivial subring, where t(6= ti) ∈ A. So, F (ti) is a field.
Hence by the Corollary 7.14, F is a soft field.
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