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Abstract 
 

A class of fractional-order differential models of RNA silencing with memory is presented in this paper. We also carry out a detailed 

analysis on the stability of equilibrium and we show that the model established in this paper possesses non-negative solutions. Numerical 

solutions are obtained using a predictor-corrector method to handle the fractional derivatives. The fractional derivatives are described in 

the Caputo sense. Numerical simulations are presented to illustrate the results. Also, the numerical simulations show that, modeling the 

phenomena of RNA silencing by fractional ordinary differential equations (FODE) has more advantages than classical integer-order 

modeling. 
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1. Introduction 

DNA and RNA perform various functions in humans. RNA is 

vital to cells because it broadcast information encoded in DNA to 

tiny organs within the cell [34]. There are different kinds of RNAs 

like microRNAs (miRNAs), the so called messenger RNAs 

(mRNAs), the double-stranded RNA (dsRNA) which is RNA with 

two complementary strands, and small interfering RNA (siRNA) 

which is a class of double-stranded RNA [8]. Cells use miRNAs 

to control the number of protein molecules made from mRNAs 

[33]. In the last few decades, RNA silencing has become a major 

focus of genome sciences around the world [14]. RNA silencing 

(also known as RNA interference) is a sequence-specific RNA 

degradation mechanism that occurs in a broad range of eukaryotic 

organisms [25]. It is based on an immune system that protects 

eukaryotes against viruses [7]. RNA silencing also plays a primary 

antiviral role in plants and in insects [30]. So, RNA silencing-

based resistance has been an impressive tool that has been used to 

engineer resistant crops [25]. Mathematical modeling has become 

an essential tool to understand the dynamics of RNA silencing 

[14], [30]. Different models have been presented to describe the 

dynamics of RNA silencing, but these models have been restricted 

to integer order (delay) differential equations [22], [26]. Hence, 

we propose in this paper a system of FODE for modeling RNA 

silencing based on the integer order model in [8]. The major rea-

son of using is that FODE are naturally related to systems with 

memory which exists in most biological systems [3], [4], [9], [15], 

[17]. Also, they are closely related to fractals, which are abundant 

in biological systems [13], [16], [19], [20], [21]. FODE are, at 

least, as stable as their integer order counterpart [1], [2], [10], [11], 

[23], [24]. The rest of the paper is organized as follows. A brief 

review of the fractional calculus theory is given in Section 2. A 

discussion about the equilibrium points and stability is presented 

in section 3 while in section 4, we discuss the existence and 

uniqueness of the presented fractional order model. Section 5 is 

devoted for the numerical solution of the presented model. 

2. Model derivation 

First of all, some definitions of fractional order integrals and de-

rivatives [5], [6] are presented here. For the concept of fractional 

derivative, we will adopt Caputo's definition, which is a modifica-

tion of the Riemann–Liouville definition and has the advantage of 

dealing properly with initial value problems. 

 

Definition 2.1: The fractional integral of order 0  of a func-

tion :f  is given by 
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Definition 2.2: Riemann–Liouville and Caputo fractional order 

derivatives of a continuous function :f is given respec-

tively by  
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The definition of fractional derivative involves an integration 

which is non-local operator (as it is defined on an interval) so 

fractional derivative is a non-local operator [27], [29], [31], [32]. 

In other words, calculating time-fractional derivative of a function 

)t(f  at some time 
1tt   requires all the previous history, i.e. all 

)t(f from 0t   to
1tt  . 

 Now we introduce fractional-order into the model of RNA silenc-

ing [8]. The new system is described by the following set of 

FODE: 
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Where 10  , )t(C),t(R),t(S and )t(M present the concen-

trations of the dsRNA, RISC, RISC–mRNA complex, and mRNA 

at time t , respectively. The parameters can be defined as follows: 

a  is the rate of dsRNA degradation by Dicer. 

b  is mass action rate constant for RISC-mRNA formation. 

h  is the rate of target mRNA synthesis. 

g is the rate of dsRNA synthesis from RISC–mRNA complex. 

Md is the rate of nonspecific mRNA degradation. 

Rd is the rate of RISC dissociation. 

Cd is the Rate at which complex is destroyed. 

n is the Number of siRNAs produced from one secondary dsR-

NA. 

The initial conditions are
000 C)0(C,R)0(R,S)0(S  , and 

0M)0(M  the basic reproductive number 
0R  for dsRNA is pre-

sented in [8] as 
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If 1R0  , then the silencing reaction will take off. 

3. Equilibrium points and stability 

The authors in [8] deduced the equilibrium Points of the integer 

order system of the given model (3), i.e. when 1  in (3). To 

evaluate the equilibrium points of the fractional-order system (3), 

let 
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Where .d)1n(g C  

The biological meaning of steady state 
0E  is that, the silencing 

does not occur. The second steady state
1E  is biologically mean-

ingful only if ,C,R,S *** and *M only are nonnegative [8], for 

which the condition )gd)(b/dd(h CMR   is both necessary 

and sufficient. 

Also, a sufficient condition for the local asymptotic stability of the 

equilibrium points is that the eigenvalues 
i  of the Jacobian ma-

trix of 
1E  satisfy the condition

2
)arg( i


   [2], [11], [23]. 

This confirms that fractional-order differential equations are, at 

least, as stable as their integer order counterpart. 

4. Existence of uniformly stable solution 

To prove the existence and uniqueness of solution for the system 

(3). Firstly we will recall the following lemma: 

 

Lemma 4.1: (Theorem 8.11, [12]) Let ,10 j   for 

q,...,2,1j  and consider the initial value problem given by the 

multi-order fractional differential system (in Caputo sense) 
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With initial condition 
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Assume that the functions q,...,2,1j,RR]x,0[f q

j   are 

continuous and satisfy Lipschitz conditions with respect to all 

their arguments except for the first. Then the initial value problem 

(4) has a uniquely determined continuous solution. Since 

each 4,3,2,1i;RR]T,0[f 4

1i  
 is continuous. 

To prove that the system (3) has a unique continuous solution, we 

want to show that each if satisfies the Lipschitz condition with 

respect to each of its argument except for the first. 

Let  
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Where   is the Lipschitz constant. Then on D we have  
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This implies that each of the four functions 

4321 f,f,f,f satisfies 

the Lipschitz condition with respect to the four arguments 

4321 x,x,x,x and then each of the four functions 
4321 f,f,f,f is 

absolutely continuous with respect to the four argu-

ments
4321 x,x,x,x . 

Consider the following initial value problem which represents the 

fractional-order RNA silencing (3) 

 

Definition 4.1: By a solution of the fractional –order RNA silenc-

ing (5), (6), (7), and (8) which is a column vector 

 

43214321 x,x,x,x,))t(x),t(x),t(x),t(x()T(X   

 

And  T],T,0[Cx4
where ]T,0[C the class of continuous 

functions defined on the interval ]T,0[  and  denotes the trans-

pose of the matrix [18].  

 

Theorem 4.1: The fractional order model which describes a vec-

tor-borne plant disease model (5), (6), (7), and (8) has a unique 

uniformly Lyapunov stable solution [18].  

 

Proof: Write the model 5, 6, 7 and 8 in the matrix form 

 

0t)),t(X(F)t(XD  and 
0x)0(X  where  

 
 )f,f,f,f())t(X(F,))t(x),t(x),t(x),t(x()t(X 43214321   

 

By applying Theorem 2.1 [18], we deduce that the fractional order 

RNA silencing system (5), (6), (7), and (8) has a unique solution. 

Also by Theorem 3.2 [18] this solution is uniformly Lyapunov 

stable.  

5. Numerical simulation and discussion 

In this section, predictor-corrector method is applied to get numer-

ical solutions of the system (1). The values of the parameters are 

considered as in [8] as follows: 

 

5n,1d,1.0d,1d,1g,1000h,001.0b,10a CRM  .  

 

The initial conditions are: 

 

10)0(S,0)0(C,0)0(R,1000)0(M   (Fig. 1 and Fig. 2) 

or S(0) 1000  (Fig. 3). 

 

By using these values of parameters, it is clear that 1R0  . It 

means that a small amount of dsRNA will be sufficient to trigger a 

silencing reaction in this case. 
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Fig. 1: A) the Concentration of the )t(S , B) the Concentration of 

the )t(R  for 1  (the Solid Line) 9.0  (the Dotted Line), 

75.0  (The Dashed Line) in the 1st Case: t=Time, S=Concentration of 

dsRNA, R=Concentration of RISC. 
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Fig. 2: A) the Concentration of the )t(C , B) the Concentration of )t(M  

for 1  (the Solid Line) 9.0  (the Dotted Line), 75.0  (the 

Dashed Line) in the 1st Case, t=Time, C=Concentration of RISC-mRNA, 

M=Concentration of mRNA. 
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Fig. 3: (A) the Concentrations of the )t(S , (B) the Concentrations of 

the )t(R , (C) the Concentrations of the )t(C , (D) the Concentrations Of 

the )t(M  for 1  (the Solid Line) 9.0  (the Dotted Line), 

75.0  (The Dashed Line) in the 2nd Case, t=Time, S=Concentration of 

dsRNA, R=Concentration of RISC, C=Concentration of RISC-mRNA, 

M=Concentration Of  mRNA. 

6. Conclusion 

In this paper, the numerical solution of fractional order model of 

RNA silencing is discussed. We show that, fractional-order differ-

ential equations are generalizations of integer-order differential 

equations. In Fig. 1, Fig. 2 and Fig.3, the same degree of silencing 

is obtained for both low and high initial dsRNA concentrations. 

When 1  the solution of the fractional model (3) 

)t(M),t(C),t(R),t(S 
 reduce to the standard solu-

tion )t(M),t(C),t(R),t(S , (see Fig.1, Fig.2 and Fig.3). In addi-

tion of proving the existence and uniqueness of a stable solution. 

Also the results show that the numerical simulations confirm the 

advantages of the numerical technique and using fractional-order 

differential models in biological systems over the differential 

equations with integer order.  
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