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Abstract 
 

The steady-state, viscous flow of Nanofluid in the vicinity of an axisymmetric stagnation point of a stationary cylinder 

is investigated. The impinging free-stream is steady and with a constant strain rate . Exact solution of the Navier–

Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate 

transformations introduced in this research. The general self-similar solution is obtained when the wall temperature of 

the cylinder is constant. All the solutions above are presented for Reynolds numbers ranging from 0.1 to 1000 and 

selected values of particle. For all Reynolds numbers, as the particle fraction increases, the depth of diffusion of the 

fluid velocity field in radial direction, the depth of the diffusion of the fluid velocity field in -direction, shear-stresses 

and pressure function decreases. 

 

Nomenclature 
 

 Density of the nanofluid 

 Particle fraction 

 Density of the base fluid 

 Density of the particles 

 Equivalent diameter of a base fluid molecule 

 Equivalent diameter of a particle molecule 

 Dynamic viscosity of the nanofluid 

 Dynamic viscosity of the base fluid 

 Similarity variable 

 Reynolds number for nanofluid 

 

Reynolds number for base fluid 

 

free stream strain  rate  

 

 
Cylinder radius  
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 Kinematic viscosity of base fluid 

 Velocity component in radial direction 

k

z

n

v

f

p

fd

pd

n




nRe

Re

k
a

zr,

f

u

http://creativecommons.org/licenses/by/3.0/


International Journal of Scientific World 125 

 

 

 

 

 Velocity component in axial direction 

 

 
Shear stress 

fluid pressure 

 

nondimensional  pressure 

 Dimensionless function  

 Kinematic viscosity of nanofluid 
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1. Introduction 

Nanofluid, a name conceived by Choi [1] in Argonne National laboratory, are fluids consisting of solid nanoparticles 

with size smaller than 100 nm suspended with solid volume fraction typically less than 4%. Nanofluid could enhance 

heat transfer performance compared to pure liquids. Nanofluids could be used to improve thermal management system 

in many engineering applications such as transportation, micromechanics and instrument, HVAC system and cooling 

devices. Recently, many investigators have studied nanofluid convective heat transfer in different geometries both 

numerically and experimentally (Maiga et al.[2]; Heris et al.[3]; Duangthongsuk and Wongwises[4]; Santra et al.[5]; 

Nguyen et al.[6]). The natural convection boundary layer flow has been discussed analytically by Kuznetsov and 

Nield[7] .They showed that the model used for the nanofluid incorporates the effects of Brownian motion and 

thermophoresis. In another research Nield and Kuznetsov[8] have examined the thermal instability in a porous 

boundary layer saturated by a nanofluid. More recently, Khan and Pop[9] have examined the boundary layer flow of a 

nanofluid past a stretching surface. 

The task of finding exact solutions for Navier-Stokes equations is found to be difficult due to nonlinearity of these 

equations. However, exact solutions of Navier-Stokes equations are possible for special cases. Hiemenz[10] has 

obtained an exact solution of the Navier-Stokes equations governing the two-dimensional stagnation point flow on a flat 

plate. The analogous axisymmetric stagnation- point flow was investigated by Homann[11]. The results of the problem 

of stagnation flow against a flat plate for asymmetric cases were presented by Howarth[12] and Davey[13]. Wang[14] 

was first who found exact solution for the problem of axisymmetric stagnation flow on an infinite stationary circular 

cylinder. Gorla [15-18], in a series of papers, studied the steady and unsteady flows over a circular cylinder in the 

vicinity of the stagnation-point for the cases of constant axial movement, and the special case of axial harmonic motion 

of a non-rotating cylinder. This special case is only for small and high values of frequency parameter using perturbation 

techniques. Recently, Cunning et al. [19] have considered the stagnation flow problem on a rotating circular cylinder 

with constant angular velocity, including the effects of suction and blowing with constant rate. Takhar et al.[20] have 

also investigated the unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite circular 

cylinder when both the cylinder and the free stream velocities vary as a same function of time. Their self-similar 

solution is only for when both the cylinder and the free-stream velocities vary inversely as a linear function of time and 

by taking an average value for Reynolds number. Also their semi-similar solutions are for the accelerating and 

decelerating cases of the cylinder movement, but with the same type of time dependent function as the free-stream 

velocity and only for Reynolds numbers up to 10. The most recent works of the same types are the ones by Saleh and 

Rahimi[21] and Rahimi and Saleh[22, 23], which are exact solution studies of a stagnation-point flow and heat transfer 

on a circular cylinder with time-dependent axial and rotational movements, as well as studies by Abbasi and Rahimi 

[24–27], which are exact solutions of stagnation-point flow and heat transfer, but on a flat plate. Some existing 

compressible flow studies but in the stagnation region of bodies and by using boundary layer equations include the 

study by Subhashini and Nath[28] as well as Kumari and Nath[29, 30], which are in the stagnation region of a body, 

and work of Katz[31] as well as Afzal and Ahmad[32], Libby[33], and Gersten et al.[34], which are all general studies 

in the stagnation region of a body.  

In the present analysis, for the first time the steady viscous flow of nanofluid in the vicinity of an axisymmetric 

stagnation point of a stationary cylinder is considered. Flow is considered in cylindrical coordinates (r,z) with 

corresponding velocity components (u,w), as Fig. 1. The laminar steady incompressible flow of Nanofluid in the 

neighborhood of an axisymmetric stagnation-point of a stationary cylinder is considered. An exact solution of the 

Navier–Stokes equations is obtained. The self-similar solution is reached by introducing the similarity variables. 

Sample distributions of shear stress and pressure at Reynolds numbers ranging from 0.1 to 1000 are presented 

for different values of particle fractions. 
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Fig. 1:Schematic Diagram of a Stationary Cylinder 

 

The following picture may best describes how a radial flow can be arranged in order to coat the surface of a cylinder 

with any kind of protection material. This coating can be considered as protection against erosion or for insulation. The 

flow into the cylinder is coming from all directions. 

 

 
Fig. 2:A Schematic Mechanism of the Radially Impinging Flow Production 

 

Sometimes ceramics and metal powders are used as coating materials in the same manner. 

2. Properties of nanofluid 

The aluminum oxide nanoparticles which have been used in this research have the following 

characteristics: 

Density  3,880 kg/m
3

, mean particle diameter is 47 nm. 

 

2.1. Density 
 

We will assume that the density of the aluminum oxide nanoparticles is constant in the entire range of considered 

temperature. The following relation has been used to compute the nanofluid density: 

 

                                                                                                                                              (1) 

 

Where subscripts n, f and p denote the nanofluid, base fluid and the particles respectively, and is the particle 

fraction. 
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2.2. Dynamic viscosity 
 

The viscosity of the nanofluid can be estimated with the existing relations for the two phase mixture. Drew and 

Passman introduced Einstein’s formula to evaluate the effective viscosity. Fluid is containing a dilute suspension of 

small rigid spherical particles. 

 

                                                                                                                                                      (2) 

 

This formula is restricted for low volumetric concentration of particle, under 0.05%. Other relations of effective 

viscosity of the two-phase mixture exist in the literature. Each relation has its own limitation and application. 

Unfortunately, results reveal that Brinkman’s formula underestimates the few experimental data present in literature. 

The polynomial approximation based on experimental data Nguyen [35] or water– nanofluid: 
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Brinkman proposed the extension Einstein’s formula to. 

 

                                                                                                                                                         (6) 

 

Massimo Corcione proposed empirical correlation for predicting the relative viscosity, [36]. 

 

                                                                                                                                         (7) 

 

Where is the equivalent diameter of a base fluid molecule, given by 

 

 

 

In which M is the molecular weight of the base liquid, N is the Avogadro number, and  is the mass density of the 

base liquid calculated at temperature .  

Finally, the Corcione’s formula is used to extract the Navier-stocks equations.  

3. Problem formulation 

Flow is considered in cylindrical coordinates (r, z) with corresponding velocity components (u,w), as Fig. 1. 

We consider the laminar steady incompressible flow of nanofluid in the neighborhood of an axisymmetric stagnation-

point of a stationary cylinder. The steady Navier-Stokes equations in cylindrical coordinates governing the 

axisymmetric flow is given by [14-18]: 
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Mass Equation: 

                                                                                                                                                     (8) 

 

Momentum Equations: 

 

                                                                                 (9) 

 

                                                                                       (10) 

 

The boundary conditions for velocity field are: 

 

r = a :    u = 0      ,       w = 0                                                                                                                                          (11.a) 

 

                                                                                                       (11.b) 

 

In which, (11.a) are no-slip conditions on the cylinder wall and relations (11.b) show that the viscous flow solution 

approaches, in an analogous manner to the Hiemenz flow, the potential flow solution as . 

This can be confirmed by starting from continuity equation as the following: 
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A reduction of the Navier-Stokes equations is obtained by the following coordinate separation of the velocity field 

which is actually modeled by the form of their limits as represented by Equation (11.b):  

 

,  ,                                                                                     (13) 

Where  

 

                                                                                                                                                                 (14) 

 

Is dimensionless radial, variable and prime denotes differentiation with respect to . Note that, for the case of base fluid 

( ), this variable is similar to the one in Wang, Ref. [14], except that it changes from zero to infinity instead of 

one to infinity.  Transformations (13) satisfy (8) automatically and their insertion into (9) – (10) yields an ordinary 

differential equation in terms of , and an expression for the pressure: 
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And  is the Reynolds number for nanofluid and prime indicates differentiation with respect to .  From conditions 

(11. A) and (11.b), the boundary conditions for (15) are as follows: 

 

: ,                                                                                                                                                  (18) 

 

:  

 

Equations (10) and (16) along with boundary conditions (18) have been solved by using the fourth-order Runge-Kutta 

method of integration along with a shooting method, press et al. [37].  Using this method, the initial values were 

guessed, and the integration was repeated until the convergence was obtained.  In these computations, the grid size was 

chosen 0.001, and the truncation error was set at 1E-9. 

4. Shear-stress 

The shear-stress on the surface of the cylinder is obtained from: 

 

                                                                                                                                                       (19) 

 

Where  is viscosity of the nanofluid. Using definition (13), the shear-stress at the cylinder surface for self-similar 

solutions becomes. 

 

                                                                                                    (20) 

 

Results of the shear stress for different values of Reynolds numbers with particle volume fraction held constant, and for 

different values of particle volume fractions with Reynold's number held constant are presented in the later sections. 

5. Results and discussion 

In this section, the solution of the self-similar equation (15) along with surface shear-stresses for selected values of 

Reynolds numbers, and particle volume fraction are presented. 

Sample profiles of the  function against  at  and for selected values of Reynolds numbers are 

presented in Fig. 3. Since with the increase of Reynold's number of the dynamic inertia forces overcome the viscosities' 

forces, as expected like the behavior of the base fluid, the depth of diffusion of the momentum increases. So as the 

Reynolds number increases, the depth of diffusion of the fluid velocity field in radial direction increases, too. 
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Fig. 3:Variation of in Terms of  at 02.0v for Different Values of Reynolds Numbers 

 

Effect of variation of particle Volume fraction factor on function against  and selected value of Reynolds 

number  is shown in Fig. 4. Since any increase of  leads to an increase in dynamic viscosity, the resistance of 

the viscos forces against the dynamic inertia forces increases. It is interesting to note that as  increases the depth of 

diffusion of the fluid velocity field in radial direction decreases.  So, for all the Reynolds numbers, the base fluid case 

produces the highest value of radial velocity and as particle Volume fraction increases, this quantity decreases 

accordingly.  It can be shown that the trend of above variations are the same for =10,100 and 1000 as seen in Fig. 5, 

6 and 7. 

 

 
Fig. 4:Variation of in Terms of at for Different Values of Particle Volume Fraction 
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Fig. 5:Variation of in Terms of At  and for Different 

Values of Particle Volume Fraction 

Fig. 6:Variation of in Terms of  at  and for Different 

Values of Particle Volume Fraction 
  

 
Fig. 7: Variation of in Terms of at  and for Different Values of Particle Volume Fraction 

 

Sample profiles of the  function against  for , and for selected values of Reynolds numbers are 

shown in Fig. 8. Again as Reynold's number increases, the depth of diffusion of the fluid velocity field in - direction 

increases, too. 

 
Fig. 8:Variation of in Terms of at 02.0v and for Different Values of Reynolds Numbers 
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Effects of variations of particle Volume fraction factor on  function against  for selected value of Reynolds 

number Re=0.1 are shown in Fig.9. It is interesting to note that as  increases the depth of the diffusion of the fluid 

velocity field in -direction also decreases.  Again, the base fluid case (  produces the highest value of 

velocity in -direction and as particle Volume fraction factor increases, this quantity decreases accordingly.  It can be 

shown that the trend of above variations are the same for =1, 10,100 and 1000. 

 

 
Fig. 9:Variation of in Terms of at  and for Different Values of Particle Volume Fraction 

 

 

Fig. 10:Variation of in Terms of at  and for Different 

Values of Particle Volume Fraction 

Fig. 11:Variation of in Terms of at  and for Different 

Values of Particle Volume Fraction 
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Fig. 12:Variation of in Terms of at  and for Different 

Values of Particle Volume Fraction 

Fig. 13:Variation of in Terms of at  and for Different 

Values of Particle Volume Fraction 

 

Sample profiles of pressure function against  for the case of , z=0 and for selected values of Reynolds 

numbers are shown in Fig. 14. As expected, by an increase of Reynolds number the depth of diffusion of fluid pressure 

increases.  

 
Fig. 14:Variation of Pressure Function in Terms of at 02.0v  and for Different Values of Reynolds Number. 

 

Sample profiles of pressure function against  for particle Volume fraction factor for the case of Re=0.1, z=0 is 

presented in Fig.15. the largest amount of pressure is produced for the case of base fluid ( .  As increases, 

the pressure function decreases. 

 

 
Fig. 15:Variation of Pressure Function in Terms of at, and for Different Values of Particle Volume Fraction 
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It can be shown that the trend of above variations are the same for =1, 10,100 and 1000. 

  

Fig. 16:Variation of Pressure Function in Terms of  at and 

for Different Values of Particle Volume Fraction 

Fig. 17:Variation of Pressure Function in Terms of  at  and 

for Different Values of Particle Volume Fraction 

  

 

 

Fig.18:Variation of Pressure Function in Terms of at and for 

Different Values of Particle Volume Fraction 

Fig. 19:Variation of Pressure Function in Terms of at  and 

for Different Values of Particle Volume Fraction 

 

Sample profiles of surface shear-stress against Reynolds Number are shown in Fig. 20, for selected values of particle 

Volume fraction. As expected, as the particle Volume fraction increases the surface shear-stress decreases.  

 

 
Fig. 20:Variation of Shear-Stress in Terms of  and for Different Values of Particle Volume Fraction 
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Sample profiles of surface shear-stress against particle Volume fraction are shown in Fig. 21, for selected values of 

Reynolds numbers. As expected, the more the Reynolds number the more is surface shear-stress. 

 

 
Fig. 21:Variation of Shear-Stress in Terms of 

v and for Different Values of Reynolds Number 

6. Conclusion 

An exact solution for the Navier-Stokes equations has been obtained for the problem of axisymmetric stagnation-point 

flow of a nanofluid on a stationary cylinder. A reduction of these equations is obtained using appropriate 

transformations introduced for the first time.  The general self-similar solution is obtained when the wall temperature of 

the cylinder is constant.  All the solutions above have been presented for Reynolds numbers, ranging from 0.1 to 1000 

and different values of particle volume fraction . It can be said that for all Reynolds numbers, as increases the 

depth of diffusion of the fluid velocity field in radial direction, the depth of the diffusion of the fluid velocity field in 

direction, shear-stresses and pressure function decreases. 
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