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Abstract

This paper aims to estimate the stress-strength reliability parameterR = P (Y < X), whenX and Y are independent
inverted exponential random variable. We have also disscused some fundamental properties of the considered
distribution. The maximum likelihood estimator (MLE) of R and its asymptotic distribution are obtained. The
Bayesian estimation of the reliability parameter has been also discussed under the assumption of independent
gamma prior. Numerical integration technique is used for Bayesian computation. The proposed estimators are
compared in terms of their mean squared errors through the simulation study. Two real data sets representing
survival of head and neck cancer patients are fitted using the inverted exponential distribution and used to estimate
the stress-strength parameters and reliability.

Keywords: Inverted exponential distribution, Inverse Moment estimate and generating function, Stochastic Ordering, Renyi entropy

and Bayesian inferences.

1. Introduction

The exponential distribution is the most exploited distribution in survival analysis, due to its simplicity and math-
ematical feasibility. The applicability of this distribution is restricted due to its constant failure rate pattern and
seems to be less advantageous when failure rate is non-constant. Therefore, a number of lifetime models such as
Weibull, gamma, generalized exponential etc. have been introduced in literature, which passes the properties of
monotonicity of failure rate function. In many real life situation the pattern of non-monotonicity of the hazard rate
has been observed. For example, in the course of the study of mortality associated with some of the diseases, the
failure rate initially increases with time and reaches a peak after some finite period of times and then decline slowly
see [9]. Thus, for analyse such type of data Inverted exponential distribution (IED) has been proposed as a lifetime
model by [7]. [7], [8], [9] have advocated the use of IED as an appropriate model for non-monotonic satiation and
also discussed the estimation procedure. [8] has discussed the properties of the various estimators for the IED and
also presented the estimation of the parameter, based on lower record values. [9] proposed Bayes estimators of
the parameter and reliability function for the same under general entropy loss function for complete, Type-I and
Type-II censored samples. The applicability of inverted exponential distribution has been also seen in presence
of hybrid censored data, see [16]. Recently, [17] used this model for estimation of the parameter and reliability
characteristics under progressive type-II censoring scheme. The probability density function (pdf) and cumulative
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distribution function (cdf) of inverted exponential distribution (IED) are given as;

f(x, α) =
α

x2
e−α/x ;x ≥ 0, α > 0 (1)

and

F (x, α) = e−α/x ;x ≥ 0, α > 0 (2)

respectively.

The main aim of this paper is two fold. Firstly, we have discussed some fundamental properties of the consid-
ered distribution. Secondly, we develop the estimation procedure for the stress-strength parameter R = P (Y < X),
when, X and Y are independent IED(α1) and IED(α2) r. v. respectively.

The estimation of stress-strength parameter plays an important role in the reliability analysis. For example if X
is the strength of a system which is subjected to stress Y , then the parameter R measures the system performance
which is frequently used in the context of mechanical reliability of a system. Moreover, R provides the probability
of a system failure, if the system fails whenever the applied stress is greater than its strength. This problem has
a long history starting with the pioneering work of [23] and [24]. The term stress-strength was first introduced
by [22]. Since then significant amount of work have been done both from parametric and non-parametric point of
view. This particular problem was also considered by [18] and later by [15]. In both cases it is assumed that the
common location parameter is known. In the literature the estimation of R in the case of Weibull or exponential
distributions has been obtained under the assumption of known location parameters, see, [19]. Some of the recent
work on the stress-strength model can be seen in [12], [13], [14] and [20] etc.

The paper has been organized in the following sections. Section 2 provides some mathematical properties of the
IED model. Maximum likelihood estimate of the stress-strength reliability along with their asymptotic distributions
are presented in Sections 3, 4 & 5 respectively. Bayes estimators under independent informative and non-informative
gamma prior are discussed in section 6. Section 7, illustrate an application of the above study in real life application.
Section 8, presents the simulation result to study the behaviour of the proposed estimators. Section 9, provides
final concluding remarks of the considered study.

2. Basic properties of IED

2.1. Moment

The r − th moment about origin is defined as

µ
′

r = E(xr) =

∞∫
x=0

xrf(x, α) = αrΓ(1− r). (3)

This integral exist only for r < 1.

2.2. Inverse Moments

The problem of inverse moments are arises naturally, when we are not in position to obtain the explicit expression
for the descriptive statistics such as mean, variance etc. in inverted family of distributions, then in that situation the
method of inverse moments can be thoughtof. For more details about inverse moment see [26]. In above subsection,
we see that the moment for IED does not exist for r > 1, therefore, if we evaluate inverse moment i.e.

E

(
1

xr

)
=

∞∫
x=0

1

xr
f(x, α)dx

=
Γ(1 + r)

αr

(4)

Thus, from the above expression, one can obtain the first four inverse moments about origin by considering r =
1, 2, · · · , 4.



100 International Journal of Scientific World

2.3. Inverse Moment Generating Function (IMGF)

In statistical literature, several indirect methods are available to generate moments. Method of moment generating
function (m.g.f.) is one of them. It is very useful method to obtain the moments by generating method. Generally,
in inverse family of distribution the method of IMGF can be more appropriate and useful. IMGF in the case of
considered model is obtained as;

IMX−1(t) = E
(
et/x

)
=

∞∫
x=0

et/xf(x|α)dx

=
α

α− t
;α > t

(5)

From the above expression of IMGF the first four moments are obtained by differentiating IMX−1(t) with respect
to t and putting t = 0 for respective choice of moment.

2.4. Inverse Characteristics Function

Let X is a random variable (r.v.) with probability density function (1) and cumulative distribution function (2).
Govindarajulu derived the mathematical properties related to the basic distribution such as binomial, Poisons,
negative binomial e.t.c. see [27, 28] . Then, the inverse characteristic function ΦX−1(t) of r.v X is defined as;

ΦX−1(t) = E
(
eit/x

)
=

∞∫
x=0

eit/xf(x|α)dx

=
α

α− it

(6)

2.5. Quantile Function

Let X be a random variable with probability density function (1), then the quantile function Qϕ is defined by

F (Qϕ) =
ϕ
4 is the root of the equation i.e.

e−α/Qϕ =
ϕ

4

⇒ Qϕ =

(
α

ln 4− lnϕ

)
;ϕ = 1, 2 & 3

(7)

The quartiles of IED model are computed for respective values of ϕ and are given as follows;

First Quartile: Q1 =
( α

2 ln 2

)
Second Quartile: Q2 =

( α

ln 2

)
Third Quartile: Q3 =

(
α

ln 4− ln 3

)

2.6. Mode

If X be a random variable observed from density function (1). Then, mode of the above considered model can
be obtained by differentiating the pdf (1) w.r.t. X and equating to zero, i.e. the mode is solution of the equation
f

′
(x) = 0. Thus we have,

f
′
(x) = e−α/x

{
α

x4
− 1

x

}
= 0 (8)

Therefore, the mode M of the inverted exponential density function f(x) is given by M = α1/3
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2.7. Harmonic Mean

Let X be a random variable observed from inverted exponential distribution having pdf (1). Then, the harmonic
mean of a r.v. X is defined as;

1

H
=

∫
x

(
1

x

)
f(x, α)dx (9)

After simplifying the above integral, the harmonic mean of the considered distribution is obtained as H = α

2.8. Order Statistics

In this subsection, we derived the mathematical expression for rth order statistics. Let us consider x(1), x(2), · · · , x(n)
are the n ordered random sample observed from (1). Then the p.d.f. of rth order statistics is given by

fr(x(r), α) =
n!

(r)!(n− r)!

[
F (x(r))

]r−1 [
1− F (x(r))

]n−r
f(x(r), α) (10)

After using the expression (1) and (2) for x(r) in above equation we get the expression for rth order statistics. i.e.

fr(x(r), α) =
1

B(r, n− r + 1)

[
α

x2(r)
e−rα/x(r)

] [
1− e−rα/x(r)

]n−r

(11)

This is the required expression for r − th order statistics. If we put r = 1, n, then, we get the distribution of
x(1) = min(x(1), x(2), · · · , x(n)) and x(n) = max(x(1), x(2), · · · , x(n)) respectively, are given by;

f1(x(1), α) =
nα

x2(1)
e−α/x(1)

[
1− e−α/x(1)

]n−1

(12)

fn(x(n), α) =
nα

x2(n)
e−nα/x(n) (13)

2.9. Stochastic Ordering

The concept of stochastic ordering are frequently used to show the ordering mechanism in life time distributions. For
more detail about stochastic ordering, see [4]. A random variable X is said to be stochastically greater (Y ≤st X)
than Y if FX(x) ≤ FY (x) for all x. In the similar way, X is said to be stochastically greater (X ≤st Y ) than Y in
the

• stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x.

• hazard rate order (X ≤hr Y ) if hX(x) ≥ hY (x) for all x.

• mean residual life order (X ≤mrl Y ) if mX(x) ≥ mY (x) for all x.

• likelihood ratio order (X ≤lr Y ) if

(
fX(x)

fY (x)

)
decreases in x.

From the above relations, we analysed that;

(X ≤lr Y ) ⇒ (X ≤hr Y )⇓ (X ≤st Y ) ⇒ (X ≤mrl Y )

The inverted exponential distributions are ordered with respect to the strongest likelihood ratio ordering as shown
in the following lemma.

Lemma: Let X ∼ IED(α1) and Y ∼ IED(α2). If α1 > α2, then (X ≤lr Y ) and hence (X ≤hr Y ), (X ≤mrl Y )
and (X ≤st Y ).
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Proof: According to the definition of likelihood ratio order first we obtain the ratio

[
fX(x)

fY (x)

]
i.e.

ψ =
fX(x)

fY (x)
=

α1

x2
e−α1/x

α2

x2
e−α2/x

=
α1

α2
e−(α1−α2)/x

Therefore,

ψ
′
=
α1

α2

(α1 − α2)

x2
e−(α1−α2)/x

from above equation, we observed that, if α1 > α2 ⇒ ψ
′
> 0, hence (X ≤lr Y ). The remaining statements follow

from the above relationship.

2.10. Entropy Measurement

Entropy measures provide important tools to indicate variety in distributions at particular moments in time and
to analysis evolutionary processes over time. This measures the variation of the uncertainty in the distribution of
a random variable X. For a probability distribution, [3] gave an expression of the entropy function, so called Renyi
entropy and is defined by

ζ(µ) =
1

1− µ
ln


∫
x

fµ(x, α)dx

 (14)

where, µ > 0 and µ ̸= 1. For the inverted exponential distribution we obtained that

ζ(µ) =
1

1− µ
ln


∫
x

αµ

x2µ
e−αµ/xdx

 . (15)

After simplification we get;

ζ(µ) = lnα+

(
1− 2µ

1− µ

)
lnµ+

lnΓ(2µ− 1)

1− µ
(16)

3. Stress-Strength reliability

Let X and Y are the independent stress and strength random variables observed from inverted exponential distri-
bution with parameters α1 and α2 respectively. Then, the stress-strength reliability R is calculated as;

R = P (X > Y ) =

∞∫
x=0


x∫

y=0

f(y, α2)dy

 f(x, α1)dx

=

∞∫
x=0

f(x, α1)F (x, α2)dx

=

∞∫
0

α1

x2
e−α1/xe−α2/xdx

=
α1

α1 + α2

(17)

From the above, we observed that the stress-strength reliability R is the function of stress-strength parameter α1

and α2 respectively. Therefore, for maximum likelihood estimate (MLE) of R, we need to obtain the MLEs of α1

and α2.
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4. Maximum likelihood estimation

Let us consider x1, x2, · · · , xn and y1, y2, · · · , ym are independent random samples from IED(α1) and IED(α2),
respectively. Then, the likelihood function of α1 and α2 are written as

L(α1, α2|x, y) =
αn
1 e

−α1s1αm
2 e

−α2s2

n∏
i=1

x2i
m∏
j=1

y2j

(18)

where, s1 =
n∑

i=1

1

xi
and s2 =

m∑
j=1

1

yj
, then, the log-likelihood equation is written as:

lnL(α1, α2) = n lnα1 +m lnα2 − α1s1 − α2s2 − 2
n∑

i=1

lnxi − 2
m∑
j=1

ln yj (19)

The MLE of α1 and α2, say α̂1 and α̂2 respectively can be obtained by solving the equations;

∂ lnL

∂α1
= 0,

∂ lnL

∂α2
= 0, which gives, α̂1 =

n

s1
and α̂2 =

m

s2

Hence, using the invariance properties of MLEs, the MLE of the parameter R is given by;

R̂ML =
α̂1

α̂1 + α̂2
(20)

5. Asymptotic distribution for R

In this section, we derived the asymptotic distribution of R̂. Further, we have also constructed 95% asymptotic
confidence interval based on its asymptotic distribution. Using large theory concept as we know that,

√
n(α̂k − αk) → N

(
0,

1

σ̂2
k

)
(21)

where, σ̂2
k = α2

k and k = 1, 2. Therefore, the asymptotic 100(1 − θ)% confidence intervals for α1 and α2 are
constructed as;

α̂k ∓ Zθ/2α̂k (22)

where, zθ/2 is the upper (θ/2)th percentile of a standard normal variable. Similarly, the asymptotic distribution of
stress-strength reliability as n→ ∞ and m→ ∞ is given by

R̂ML −R√
R

′
(α1)

nσ2
1

+
R

′
(α2)

nσ2
2

→ N(0, 1) (23)

where,

R
′
(α1) =

α2

(α1 + α2)2
and R

′
(α2) = − α1

(α1 + α2)2
.

Although, R̂ML can be obtained in explicit form, the exact distribution of R̂ML is difficult to obtain. Due to this
reason, to construct the confidence interval of R we mainly consider the confidence interval based on the asymptotic
distribution of R̂ML. Thus, the 100(1− θ)% asymptotic confidence interval for the parameter R is calculated as;R̂ML ∓ Zθ/2

√
R

′
(α1)

nσ2
1

+
R

′
(α2)

nσ2
2

 . (24)
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6. Bayes estimation

In this section, we have developed the Bayesian estimation procedure for the estimation of stress-strength reliability
R from inverted exponential distribution assuming independent gamma priors for the unknown model parameters.
Thus, the priors of α1 and α2 are given as:

π(α1) =
ba

Γ(a)
αa−1
1 e−bα1

and

π(α2) =
dc

Γ(c)
αc−1
2 e−dα2

Therefore, using (15) and mentioned prior distribution, the joint posterior distribution of α1 and α2 given data is

π(α1, α2|x, y) =
αn+a−1
1 αm+c−1

2 exp[−α1(b+ s1)− α2(d+ s2)]∫
α1,α2

αn+a−1
1 αm+c−1

2 exp[−α1(b+ s1)− α2(d+ s2)]dα1dα2

=
(b+ s1)

n+a(d+ s2)
m+c

Γ(n+ a)Γ(m+ c)
αn+a−1
1 αm+c−1

2 exp[−α1(b+ s1)− α2(d+ s2)]

= Gamma(n+ a, b+ s1) ∗Gamma(m+ c, d+ s2)

(25)

Since α1 and α2 are independent. Therefore, the equation (25) implies that, the posterior distribution of α1 and
α2 are

π(α1|x) ∼ Gamma(n+ a, b+ s1) (26)

and

π(α2|y) ∼ Gamma(m+ c, d+ s2) (27)

Now, for obtaining the Bayes estimate of the stress-strength parameter R, we derived the posterior distribution of
R. Since α1 and α2 are independent and using (26) and (27), the posterior distribution of R becomes:

π(r|x, y) =
{
(b+ s1)

n+a(d+ s2)
m+c

Beta(n+ a,m+ c)

}[
rn+a(1− r)m+c−1

[r(b+ s1) + (1− r)(d+ s2)]n+m+a+c

]
; 0 ≤ r ≤ 1 (28)

To obtain the estimates of R under Bayesian paradigm, we must associate any loss function. Here, we used two
loss functions namely squared error loss function (SELF) and linex loss function (LLF). Thus, the mathematical
formulation of the SELF is given as;

L(θ, θ̂) = (θ − θ̂)2 (29)

where, θ̂ is the estimated values of θ. The beauty of SELF is that it equally associates the over as well as under
estimation. Under this loss function, the Bayes estimate of R is nothing but mean of the posterior distribution of
R, which is given in following equation.

R̂BS =

1∫
r=0

rπ(r|x, y)dr

=

1∫
r=0

{
(b+ s1)

n+a(d+ s2)
m+c

Beta(n+ a,m+ c)

rn+a(1− r)m+c−1

[r(b+ s1) + (1− r)(d+ s2)]n+m+a+c

}
dr

(30)

and the LLF is defined as;

L(θ, θ̂) = e−δ∆ − δ∆− 1 (31)

where, δ is loss parameter, which reflects the departure from symmetry and ∆ = (θ− θ̂). For more detail about this
loss function you may see [25]. Using LLF the Bayes estimates of the parameter R is evaluated by the following
equation

R̂BL = −1

δ
lnE(exp(−δr)) (32)
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The positive (negative) values of δ reflected that over (under) estimation is more serious than under estimation and
vice versa. Here, we took δ = 0.5 (over estimation) and δ = −0.5 (under estimation). Therefore, the corresponding
expressions R̂BL (for δ = 0.5), R̂BL1 (for δ = −0.5) are;

R̂BL =

1∫
r=0

{
(b+ s1)

n+a−1(d+ s2)
m+c

Beta(n+ a,m+ c)

e−0.5rrn+a(1− r)m+c−1

[r(b+ s1) + (1− r)(d+ s2)]n+m+a+c

}
dr (33)

R̂BL1 =

1∫
r=0

{
(b+ s1)

n+a−1(d+ s2)
m+c

Beta(n+ a,m+ c)

e0.5rrn+a(1− r)m+c−1

[r(b+ s1) + (1− r)(d+ s2)]n+m+a+c

}
dr. (34)

The analytical solution of the above equations (30), (33) and (34) are not possible due to its mathematical mess.
Therefore, we may propose the use of any approximation technique to solve such integrals. Here, we suggest the
use of Gauss quadrature method of approximation.

7. Real data application

In this section, we proposed the real life applicability of the proposed methodology in previous sections. For this
purpose, we have considered two data sets, which are initially proposed by [21]. The data represents the patients
of two groups suffering from head and neck cancer disease. Recently [2] is also modelled this data using log-normal
model and discussed its posterior based inferences. The data set of first group represents the survival times of 51
head and neck cancer patients treated with radiotherapy whereas the other group of data set represents the survival
times of 45 head and neck cancer patients treated with combined radiotherapy and chemotherapy. The data sets
are as follows:

Data (X): 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 64, 83, 84, 91, 108, 112, 129, 133,
133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218, 225, 241, 248, 273,
277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417

Data (Y): 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81, 43, 84, 92,
94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725,
817, 1776

To check the validity of the considered model for the above data sets X and Y , we discussed about the various
statistical tools such as Kolmogrov-Smirnov (K-S) test, log-likelihood criterion, Aikaiki information criterion (AIC)
and Bayesian information criterion (BIC). The applicability of this model for the above data sets over inverse
Rayleigh distribution (IRD), generalized inverted exponential distribution (GIED) have discussed and it is found
that the considered model is quite flexible than the other two, see Table (4). Further, we also plotted the empirical
cumulative distribution plot and Q-Q plot for both data set, see Figures 1,2 & 3. The maximum likelihood estimate
and Bayes estimates of the parameters (α1, α2) and stress strength parameter R are obtained as (59.12593, 75.37942)
and (RML = 0.4395805, RBS = 0.5141707) respectively. On the consideration of the above data set, the usefulness
of the considered model over other distribution under the above criterion following ordering have been observed.
For data set-I:

• On the basis of AIC, Log-likelihood and K-S distance;

Best GIED → IED → IRD(Worst)

• On the basis of Bayesian information criterion;

Best IED → GIED → IRD(Worst)

For data set-II:

• On the basis of AIC, BIC and K-S distance;

Best IED → GIED → IRD(Worst)
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Figure 1: ECDF plot for data set-I
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Figure 2: ECDF plot for data set-II
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Figure 3: QQ-plots regarding fitting of the model based on data set-I and II
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• On the basis of log-likelihood criterion;

Best GIED → IED → IRD(Worst)

Thus, after observing the above pattern, we can recommend that one can also use inverted exponential distribution
for modelling of the considered data sets. The plots of estimated probability density function, survival function and
hazard function are also given, see Figure 4 and 5 respectively.

8. Numerical study

In this section, we investigate the performances of the estimators through Monte Carlo Simulation. The simulation
study is carried out for different variation of n,m and model parameters α1, α2 respectively. The performances of
the MLEs and the Bayes estimates are compared in terms of mean squares errors (MSEs). The Bayes estimates are
computed under both informative and non-informative priors. For non-informative prior, we took a = b = c = d = 0
and call it Bayes 0. For informative priors, the values of hyper parameters are chosen in such a way that the prior
variance is very small (0.5) and large (10) i.e. our prior belief is much closer to the true or apart from true belief.
Prior with small variance is called as Bayes 1 and prior with large variance is called as Bayes 2. All the simulation
results are based on 10000 replications and presented in Tables 1, 2 and 3. From this extensive study we observed
that,

• From the Tables of simulation, we noticed that the performances of the Bayes estimators are better than the
corresponding maximum likelihood estimators in all considered cases.

• The MSE’s of the Bayes as well as maximum likelihood estimates of stress-strength parameter R are decreases
as sample sizes (n,m) increases and similar trends have been observed when we fixed n with varying m and
vice versa.

• Under informative prior (Bayes 1) the MSE’s of the Bayes estimates of stress-strength parameter R are smaller
than the MSE’s of the MLE’s and the performances of the Bayes estimates and ML estimates are quite similar
under Bayes 2 and Bayes 0, see Tables 1,2, and 3.

• From the Table 1, 2 and 3 we observed that as true values of R is increases then the MSE’s of the estimators
are decreases. It means that the efficiency of the estimator R will be maximum for higher value of the actual
reliability.

• MSE’s of the Bayes estimators under squared error loss function and linex loss function are quite similar.
Therefore, both the losses can be used for the estimation of the parameter R.



108 International Journal of Scientific World

Figure 4: Estimated daensity, survival function and hazard function plots based on data set-I
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Figure 5: Estimated daensity, survival function and hazard function plots based on data set-II
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9. Concluding remarks

In this paper, we consider the estimation of the stress-strength parameter R from inverted exponential distribution
and derived its mathematical and statistical properties such as moments, inverse moment, inverse moment generating
function, quantile, mode, stochastic ordering, entropy measurements and order statistics. The problem of estimating
the stress-strength reliability R = P [Y < X], where X and Y follow the inverted exponential distributions have
been discussed by both classical and Bayesian methods of estimation. The asymptotic distribution of the parameter
R is also derived. The Bayes estimates of R is carried out under both informative and non-informative priors using
squared error and linex loss functions. From the simulation result, we concluded that Bayes estimators obtained
under informative prior perform well and have smaller mean squared error as compared to that of obtained under
the non-informative prior and maximum likelihood estimators. The performances of the estimators under linex loss
function can also be appreciated under informative prior. Further, we have also considered two real data set to
illustrate the applicability of the considered model in real life scenario and it is found that the considered model
provides better fit to the given data set.
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Table 1: Average estimates (first row) and MSE’s (second row) of the stress-strength reliability (R = 0.4) for different
variation of n,m when α1 = 2 and α2 = 3

n,m
MLE Bayes1 Bayes2 Bayes0

R̂ML R̂BS R̂BL R̂BL1 R̂BS R̂BL R̂BL1 R̂BS R̂BL R̂BL1

5,5
0.4097 0.4393 0.4345 0.4442 0.4167 0.4118 0.4216 0.4174 0.4125 0.4222
0.0220 0.0112 0.0107 0.0116 0.0182 0.0180 0.0184 0.0193 0.0190 0.0196

10,10
0.4045 0.4231 0.4206 0.4257 0.4087 0.4061 0.4113 0.4106 0.4079 0.4132
0.0112 0.0078 0.0076 0.0080 0.0103 0.0102 0.0104 0.0104 0.0104 0.0106

15,15
0.4031 0.4166 0.4147 0.4185 0.4067 0.4050 0.4084 0.4043 0.4026 0.4061
0.0075 0.0058 0.0058 0.0059 0.0071 0.0071 0.0072 0.0070 0.0070 0.0072

20,20
0.4013 0.4119 0.4107 0.4131 0.4042 0.4027 0.4057 0.4047 0.4035 0.4060
0.0056 0.0046 0.0050 0.0049 0.0054 0.0058 0.0057 0.0054 0.0058 0.0057

10,5
0.3965 0.4661 0.4622 0.4701 0.4158 0.4120 0.4196 0.4108 0.4071 0.4146
0.0160 0.0126 0.0121 0.0131 0.0142 0.0140 0.0144 0.0150 0.0149 0.0153

10,15
0.4063 0.4065 0.4044 0.4087 0.4072 0.4050 0.4094 0.4074 0.4052 0.4095
0.0094 0.0064 0.0064 0.0065 0.0087 0.0087 0.0088 0.0087 0.0087 0.0088

10,25
0.4107 0.3952 0.3934 0.3970 0.4047 0.4029 0.4066 0.4047 0.4029 0.4065
0.0082 0.0057 0.0056 0.0057 0.0074 0.0074 0.0075 0.0076 0.0076 0.0077

10,35
0.4117 0.3894 0.3877 0.3910 0.4048 0.4030 0.4065 0.4064 0.4047 0.4081
0.0076 0.0053 0.0053 0.0053 0.0067 0.0067 0.0068 0.0070 0.0070 0.0071

10,45
0.4119 0.3859 0.3842 0.3875 0.4055 0.4037 0.4072 0.4047 0.4030 0.4064
0.0074 0.0052 0.0053 0.0052 0.0067 0.0067 0.0068 0.0066 0.0066 0.0067

10,75
0.4139 0.3823 0.3808 0.3838 0.4036 0.4020 0.4052 0.4053 0.4039 0.4067
0.0070 0.0049 0.0051 0.0050 0.0063 0.0063 0.0064 0.0064 0.0064 0.0065

10,95
0.4137 0.3804 0.3789 0.3818 0.4034 0.4018 0.4050 0.4049 0.4035 0.4064
0.0067 0.0048 0.0050 0.0048 0.0062 0.0063 0.0063 0.0062 0.0063 0.0063

5,10
0.4181 0.3977 0.3941 0.4013 0.4114 0.4077 0.4151 0.4120 0.4083 0.4157
0.0175 0.0085 0.0084 0.0085 0.0144 0.0142 0.0146 0.0152 0.0150 0.0154

25,10
0.3954 0.4389 0.4368 0.4409 0.4080 0.4064 0.4098 0.4060 0.4042 0.4079
0.0079 0.0071 0.0069 0.0073 0.0073 0.0073 0.0076 0.0074 0.0075 0.0077

10,15
0.4082 0.4081 0.4060 0.4102 0.4082 0.4060 0.4105 0.4068 0.4046 0.4089
0.0097 0.0066 0.0065 0.0067 0.0090 0.0089 0.0091 0.0085 0.0085 0.0087

15,15
0.4031 0.4166 0.4146 0.4185 0.4068 0.4050 0.4086 0.4052 0.4035 0.4069
0.0074 0.0058 0.0058 0.0059 0.0070 0.0070 0.0071 0.0071 0.0070 0.0072

20,15
0.4008 0.4210 0.4194 0.4226 0.4066 0.4050 0.4083 0.4061 0.4046 0.4076
0.0066 0.0056 0.0056 0.0057 0.0063 0.0064 0.0065 0.0064 0.0064 0.0066

25,15
0.4010 0.4251 0.4237 0.4266 0.4059 0.4043 0.4074 0.4055 0.4040 0.4070
0.0060 0.0054 0.0056 0.0056 0.0057 0.0061 0.0059 0.0058 0.0062 0.0061

Table 2: Average estimates (first row) and MSE’s (second row) of the stress-strength reliability R for different variation of
n,m when α1 = 3 and α2 = 2, when R = 0.5

n,m
MLE Bayes1 Bayes2 Bayes0

R̂ML R̂BS R̂BL R̂BL1 R̂BS R̂BL R̂BL1 R̂BS R̂BL R̂BL1

5,5
0.5039 0.5028 0.4979 0.5077 0.5014 0.4963 0.5065 0.4965 0.4915 0.5015
0.0233 0.0099 0.0099 0.0099 0.0183 0.0183 0.0183 0.0187 0.0188 0.0187

10,10
0.4997 0.4997 0.4971 0.5024 0.5013 0.4985 0.5041 0.4992 0.4964 0.5020
0.0116 0.0073 0.0073 0.0073 0.0107 0.0107 0.0107 0.0108 0.0108 0.0108

15,15
0.4998 0.4998 0.4980 0.5017 0.4990 0.4971 0.5009 0.5009 0.4990 0.5028
0.0082 0.0059 0.0060 0.0060 0.0075 0.0076 0.0075 0.0076 0.0076 0.0076

20,20
0.4998 0.4998 0.4984 0.5013 0.5001 0.4985 0.5016 0.5005 0.4992 0.5019
0.0061 0.0048 0.0050 0.0049 0.0059 0.0060 0.0061 0.0058 0.0060 0.0060
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Table 3: Average estimates (first row) and MSE’s (second row) of the stress-strength reliability (R = 0.6) for different
variation of n,m when α1 = 2 and α2 = 2

n,m
MLE Bayes1 Bayes2 Bayes0

R̂ML R̂BS R̂BL R̂BL1 R̂BS R̂BL R̂BL1 R̂BS R̂BL R̂BL1

5,5
0.5930 0.5552 0.5505 0.5599 0.5825 0.5776 0.5873 0.5845 0.5795 0.5893
0.0213 0.0093 0.0098 0.0089 0.0178 0.0181 0.0175 0.0187 0.0190 0.0184

10,10
0.5983 0.5732 0.5707 0.5758 0.5898 0.5871 0.5924 0.5913 0.5887 0.5939
0.0109 0.0068 0.0069 0.0066 0.0101 0.0102 0.0101 0.0104 0.0105 0.0103

15,15
0.5971 0.5792 0.5773 0.5810 0.5915 0.5896 0.5934 0.5938 0.5921 0.5955
0.0074 0.0054 0.0055 0.0053 0.0070 0.0071 0.0070 0.0072 0.0073 0.0072

20,20
0.5971 0.5831 0.5819 0.5842 0.5952 0.5936 0.5966 0.5940 0.5925 0.5953
0.0056 0.0045 0.0047 0.0048 0.0055 0.0058 0.0058 0.0056 0.0058 0.0059

Table 4: The values of different statistical measures for the data set I and II respectively.

Data Set-I
MODEl ESTIMATE AIC BIC -LOGL KS
GIED (0.7770681,49.2410155) 773.1815 777.3024 384.5908 0.245329
IRD 741.3652 840.1341 842.066 419.0671 0.6039
IED 59.12589 773.3742 775.4346 385.6871 0.287505

Data Set-II
GIED (1.1799,83.8998) 572.4309 576.0443 284.215 0.1901
IRD 2547.4170 962.7151 964.4993 480.3576 0.3783
IED 75.3793 571.0622 572.8689 284.5311 0.1823

Table 5: Summary of the data set I and data set II

Descriptive Statistics
Data Min. Q1 Median Mean Q3 Max.
I 6.53 83.25 151.5 226.2 237 1417
II 12.2 63.47 127 219.5 209 1776
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