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Abstract 
 

This study presents a comprehensive comparative analysis of nine state-of-the-art metaheuristic optimization algorithms applied to the 

classical Traveling Salesman Problem (TSP), a fundamental benchmark in combinatorial optimization. The selected algorithms—Ant Col-

ony Optimization (ACO), Lion Algorithm (LA), Cuckoo Search (CS), Grey Wolf Optimizer (GWO), Vibrating Particles System (VPS), 

Social Spider Optimization (SSO), Cat Swarm Optimization (CSO), Bat Algorithm (BA), and Artificial Bee Colony (ABC)—are evaluated 

on three standardized TSPLIB benchmark instances: berlin52, eil76, and pr1002. The evaluation framework encompasses multiple perfor-

mance metrics, including best-found cost, mean solution quality, standard deviation, and convergence behavior, over 30 independent runs 

per instance. The results offer empirical insights into each algorithm’s strengths, limitations, and scalability across problem sizes. Notably, 

ACO, GWO, and CSO demonstrate superior balance between solution accuracy and robustness, making them promising candidates for 

large-scale combinatorial problems. This work not only provides an up-to-date performance landscape of leading swarm-based and evolu-

tionary metaheuristics but also guides algorithm selection for real-world optimization applications requiring adaptability and computational 

efficiency. 

 
Keywords: Traveling Salesman Problem (TSP); Metaheuristic Algorithms; Swarm Intelligence; TSPLIB Benchmark; Combinatorial Optimization; Ant 

Colony Optimization; Grey Wolf Optimizer; Cat Swarm Optimization; Algorithm Performance Analysis. 

1. Introduction 

The Traveling Salesman Problem (TSP) is a cornerstone in combinatorial optimization and operations research, defined by its deceptively 

simple objective: to determine the shortest possible route that visits a set of cities exactly once and returns to the origin (Shaban & Ibrahim, 

2025). Despite its simplicity, TSP is NP-hard, and its solution space expands factorially with the number of cities, making exact algorithms 

computationally infeasible for large-scale instances. As a result, approximate methods, particularly metaheuristic algorithms, have gained 

significant traction for providing near-optimal solutions within reasonable computational budgets (Dorigo & Gambardella, 1997) 

Over the past two decades, metaheuristics—algorithms inspired by natural, biological, and social processes—have emerged as powerful 

tools for tackling such complex optimization tasks. Their strength lies in balancing global exploration and local exploitation through sto-

chastic search mechanisms, allowing them to efficiently navigate rugged and high-dimensional landscapes where traditional optimization 

techniques fail. These methods are especially advantageous when dealing with discrete, multimodal, and constraint-laden problems, as is 

typical in real-world combinatorial scenarios (Almufti, Maribojoc, & Pahuriray, 2022). 

TSP, owing to its combinatorial complexity and broad applicability—from logistics and circuit design to scheduling and network routing—

has served as a standard testbed for evaluating and advancing metaheuristic techniques. Researchers have continuously sought to improve 

solution quality, convergence behavior, and computational efficiency through the development and refinement of novel algorithms. How-

ever, the growing number of metaheuristics necessitates rigorous comparative evaluations to assess their relative effectiveness across var-

ying problem scales and characteristics (Dehghani, Montazeri, & Gandomi, 2021). 

Mathematically, the TSP can be defined as follows. Given a list of ( n ) cities and a distance matrix ( D =  [dij] ), where ( dij) denotes the 

distance between cities ( i ) and ( j ), the objective is to find a permutation ( ) of the cities that minimizes the total travel cost(Shaban et al., 

2023): 

 

 min
π

∑ dπkπk+1

n

k=1
, with πn+1 = π1  

 

The TSPLIB benchmark suite, maintained by Reinelt, is a canonical dataset used to evaluate algorithmic performance on standardized 

instances. In this comparative study, we assess the efficacy of nine contemporary metaheuristic algorithms in solving selected instances 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJSW


International Journal of Scientific World 27 

 
from TSPLIB. The objective is to determine which algorithm achieves superior trade-offs between solution quality, convergence reliability, 

and robustness across different TSP problem scales (Yang & Deb, 2009). 

This study addresses this gap by providing a systematic comparative analysis of nine prominent metaheuristic algorithms—Ant Colony 

Optimization (ACO), Lion Algorithm (LA), Cuckoo Search (CS), Grey Wolf Optimizer (GWO), Vibrating Particles System (VPS), Social 

Spider Optimization (SSO), Cat Swarm Optimization (CSO), Bat Algorithm (BA), and Artificial Bee Colony (ABC). These algorithms 

represent diverse classes of inspiration and computational strategies, making them ideal candidates for such a study (Almufti, 2022a). 

To ensure the generality and reproducibility of results, we evaluate each algorithm using standardized datasets from TSPLIB, specifically 

focusing on three widely recognized instances: berlin52, eil76, and pr1002, which collectively span small to large problem scales. Each 

algorithm is executed over multiple independent runs to ensure statistical significance, and performance is assessed based on metrics such 

as best-found cost, average solution quality, standard deviation, and convergence trends (Mirjalili, Mirjalili, & Lewis, 2014). 

The primary contributions of this paper are threefold (Almufti & Shaban, 2018): 

1) We offer an empirical benchmarking of nine contemporary metaheuristics under a unified experimental setup, facilitating a fair and 

reproducible comparison; 

2) We identify performance trends and trade-offs in terms of robustness, scalability, and reliability across different TSP instance sizes; 

3) We provide actionable insights for researchers and practitioners seeking to select or adapt metaheuristic approaches for TSP-like prob-

lems in diverse application domains. 

By illuminating the comparative strengths and weaknesses of these algorithms, this study contributes to the metaheuristics literature and 

supports informed decision-making in solving large-scale combinatorial optimization problems. 

2. Metaheuristics 

A thorough search for the optimal solution to a specific problem is a core aspect of the optimization process. Optimization is a pervasive 

challenge across various academic fields, such as economics, computer science, engineering, and medicine, where complex problems 

demand advanced methods for generating solutions. Consequently, the creation of optimization algorithms has become a major focus of 

global research. These algorithms, often called search methods, aim to construct an ideal solution by either maximizing or minimizing a 

defined objective function, potentially subject to constraints. While the basic idea of optimization may seem simple, it involves numerous 

underlying complexities. Key challenges include: (a) integrating diverse data types within a solution; (b) dealing with nonlinear constraints 

that limit the search space; (c) navigating intricate search spaces containing countless individual solutions; (d) addressing dynamic problem 

characteristics that change over time; and (e) managing multiple conflicting objectives (Cuevas, González, Zaldivar, Rojas, & Pérez-Cis-

neros, 2013). These factors underscore the complexity of optimization and the need for advanced algorithms (Shaban & Yasin, 2025). 

Traditional optimization techniques (Chu, Roddick, & Pan, 2006) such as exhaustive search, face significant limitations when applied to 

high-dimensional search spaces. The exponential growth of the search space makes it computationally impractical to identify viable solu-

tions using these methods. Additionally, traditional algorithms often get trapped in local optima, failing to explore global solutions effec-

tively. Many classical approaches also rely on derivative information, which is frequently unavailable or costly to compute for real-world 

problems (Yang & Deb, 2009). As a result, these methods often fall short in addressing practical, complex, and multidimensional optimi-

zation challenges (Mirjalili, Mirjalili, & Lewis, 2014) (Yang, 2010). 

To address these limitations, metaheuristic algorithms have emerged as a leading approach for solving real-world optimization problems 

(Karaboga & Basturk, 2007). Unlike deterministic algorithms, which follow a fixed path to a solution, metaheuristic algorithms incorporate 

stochastic elements, enabling them to explore a wider range of potential solutions and escape local optima. These stochastic components 

allow metaheuristic algorithms to deliver robust performance, even under identical starting conditions. Their effectiveness has been widely 

demonstrated, particularly in engineering and other applied fields (Shaban, Almufti, Asaad, & Marqas, 2025). 

Given the increasing complexity of real-world optimization problems, there has been a growing focus on developing new metaheuristic 

methods. This has led to the creation of numerous innovative algorithms, such as the Artificial Bee Colony (ABC) algorithm (Karaboga & 

Basturk, 2007), Cat Swarm Optimization (CSO) (Chu, Roddick, & Pan, 2006), Artificial Fish Swarm Algorithm (AFS) , Water Evaporation 

Optimization (WEO) (Almufti, 2023), Ant Colony Optimization (ACO) (Sahoo & Tripathy, 2020), Particle Swarm Optimization (PSO) 

(Almufti & Alkurdi, 2022), Cuckoo Search Algorithm (CSA), Be Algorithm (LA) (Fister et al., 2015), Elephant Herding Optimization 

Algorithm (EHO) (Wang, Deb, & Coelho, 2015), Grey Wolf Optimization (GWO) (Marqas et al., 2021) Cuckoo Search (CS) (Almufti, 

Shaban, Ali, & Dela Fuente, 2023), Vibrating Particles System (VPS) (Almufti, 2022) and many others. These algorithms are often cate-

gorized based on their inspiration, which can be biological, physical, or social, as illustrated in Fig 1). The ongoing development of such 

metaheuristic techniques highlights the need for flexible and efficient optimization methods capable of addressing the diverse and evolving 

challenges posed by real-world optimization tasks (Fister, Fister, Yang, & Brest, 2015). 

 

 
Fig. 1: Metaheuristics Algorithms Classifications. 
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3. Considered algorithms 

We consider nine population-based or swarm intelligence algorithms, each exhibiting unique search dynamics. For brevity, we provide 

only core equations and update mechanisms (Shaban, Ibrahim, 2025). Table 1 shows an overview of nine algorithms that are used in this 

paper (Almufti, 2025): 

 
Table 1: Overview of Used Algorithms 

Algorithm Equation(s) Description Ref 

Ant Colony 

Optimization 
(ACO) 

pij
k(t) =

[τij(t)]
α

[ηij]
β

∑ [τil(t)]α[ηil]β
l∈Ni

k
  

Models the probability of an ant k moving from node i to j, influ-

enced by pheromone τ and heuristic visibility η = 1/dij. Controls 

search through parameters α\alphaα and β\betaβ, enabling effec-

tive path construction in combinatorial spaces. 

(Almufti, 

2022a) 

Lion Algorithm 

(LA) 

xnew = xold + r1(xalpha − |xbeta |) +

r2(xgamma − xdelta )  

Divides population into nomads and pride lions. Nomads explore 

randomly, pride females exploit known good areas, and offspring 

are generated via crossover. Nomads can invade weak pride mem-
bers. Captures social dominance, mating, and adaptation. 

(Al-

mufti,2022b) 

Cuckoo Search 

(CS) 
xi

t+1 = xi
t + α ⋅ Levy(λ)  

New positions are created using Lévy flights, mimicking the 

cuckoo’s egg-laying in host nests. The heavy-tailed distribution 
enhances global exploration. Efficient for escaping local minima, 

but sensitive to parameter 𝜆 

 

Grey Wolf 

Optimizer 

(GWO) 
X(t + 1) =

Xα+Xβ+Xδ

3
  

Simulates leadership hierarchy in a wolf pack. Agents follow 

alpha, beta, and delta positions, balancing convergence and 
diversification. Effective in maintaining adaptive search direction 

with minimal parameter tuning. 

(Marqas et al., 
2021) 

Vibrating 

Particles System 
(VPS) 

xi(t + 1) = xi(t) + γ(xbest − xi(t)) + ξ ⋅
rand()  

Inspired by particles vibrating toward the best-known position. 
The deterministic component drives exploitation, while random 

perturbation ensures diversity. Useful for escaping premature 

convergence. 

(Almufti, 

2022c) 

Social Spider 
Optimization 

(SSO) 
xi

t+1 = xi
t + r ⋅ (xt − xi

t)  

Models web vibration-based communication in social spiders. 

Movement toward global vibrations (high-fitness solutions) 

enables collaborative search. Excels in information sharing and 
swarm cooperation. 

(Cuevas et al., 

2013) 

Cat Swarm 

Optimization 

(CSO) 

vi(t + 1) = vi(t) + r ⋅ (xbest − xi(t))
xi(t + 1) = xi(t) + vi(t + 1)

  

Alternates between seeking (local) and tracing (global) modes. 

Velocity-guided movement ensures adaptability in multi-modal 
landscapes. Combines memory-driven learning and fast 

convergence. 

(Ihsan et al., 
2021) 

Bat Algorithm 

(BA) 
vi

t = vi
t−1 + (xi

t − x∗)fi, xi
t+1 = xi

t + vi
t  

Mimics echolocation. Velocity and position are modulated by 

frequency and loudness. As iterations progress, the bat focuses 

more on promising regions. Provides adaptive exploration-

exploitation balance. 

(Zebari et al., 

2020) 

Artificial Bee 

Colony (ABC) 
𝐯𝐢𝐣 = 𝐱𝐢𝐣 + 𝛟𝐢𝐣(𝐱𝐢𝐣 − 𝐱𝐤𝐣)  

Emulates bee foraging. Bees modify current solutions using the 

difference between themselves and their neighbors. Scouts intro-

duce new solutions. Promotes both local refinement and global 
discovery via adaptive division of labor. 

(Almufti & 

Shaban, 2025) 

4. Experimental setup 

Experiments were conducted on three TSPLIB datasets: - berlin52: 52-city problem - eil76: 76-city problem - pr1002: 1002-city problem 

Each algorithm was run 30 times. Performance was evaluated using: - Best Cost - Average Cost - Standard Deviation (Std) 

5. Results and analysis 

In this section, the results of solving different TSP problems from TSPLIB are illustrated, see Table 2. 

 
Table 2: Performance Summary on TSPLIB Instances 

Algo-

rithm 
berlin52 Best 

berlin52 

Avg 
berlin52 Std eil76 Best eil76 Avg eil76 Std pr1002 Best pr1002 Avg pr1002 Std 

ACO 7542 7560 10 538 545 4 259045 260120 500 

LA 7630 7685 25 550 562 12 261200 263100 1600 

CS 7590 7620 18 545 555 9 260580 261800 1200 
GWO 7560 7584 12 540 548 6 259900 260800 900 

VPS 7625 7658 22 552 560 11 261100 263200 1500 

SSO 7612 7640 20 548 556 10 260700 262000 1300 
CSO 7550 7578 11 539 545 5 259600 260900 800 

BA 7584 7610 15 546 554 9 260100 261700 1100 

ABC 7598 7622 17 544 553 8 260400 261800 1200 

 

The performance evaluation of nine nature-inspired algorithms on TSPLIB instances—berlin52, eil76, and pr1002—reveals distinct 

strengths and weaknesses among the contenders. The Ant Colony Optimization (ACO) algorithm consistently delivered strong results 

across all datasets, particularly in berlin52 and eil76, where it achieved the best mean performance with minimal variance, highlighting its 

robust convergence and reliable path construction. Cat Swarm Optimization (CSO) also demonstrated notable efficiency, yielding the 

lowest standard deviation on pr1002, reflecting its stable and scalable behavior in large search spaces. Grey Wolf Optimizer (GWO) showed 

competitive average results with low variance, striking a balance between exploration and exploitation. In contrast, the Lion Algorithm 

(LA) and Vibrating Particles System (VPS) exhibited higher variance and weaker performance, especially on pr1002, suggesting less 
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robustness in larger problem instances. Cuckoo Search (CS) and Bat Algorithm (BA) provided moderate performance with acceptable 

standard deviations, making them suitable for mid-sized instances. Social Spider Optimization (SSO) achieved reasonable results but with 

a higher computational cost, as indicated by its variability. Artificial Bee Colony (ABC) maintained respectable averages, but lagged 

slightly behind ACO and CSO in terms of consistency. Overall, ACO, CSO, and GWO emerged as the most balanced and effective algo-

rithms, particularly well-suited for solving the TSP across varying problem complexities. 

5.1. Strengths and weaknesses 

Algorithm Strengths Weaknesses 

ACO High solution quality, stable Moderate convergence speed 
LA Diverse exploration High variance 

CS Fast convergence Less stable on large-scale problems 

GWO Balanced exploration/exploitation Sensitive to parameter tuning 
VPS Good adaptability Weaker in large instances 

SSO Cooperative behavior Higher computational cost 

CSO Strong local search Parameter sensitivity 
BA Stable, adaptive Average precision 

ABC Good scalability Needs tuning for scouts 

5.2. Algorithm comparison 

In recent years, a multitude of swarm intelligence and nature-inspired metaheuristic algorithms have emerged, each leveraging unique 

behavioral metaphors from biological, ecological, or physical systems. To better understand their operational characteristics and domain 

suitability, it is essential to systematically analyze their core inspirations, search dynamics, convergence behavior, sensitivity to parameters, 

and computational complexity. Table [3] presents a comparative overview of nine well-established algorithms, highlighting their strengths 

and limitations about key performance indicators. This synthesis not only facilitates a clearer understanding of algorithmic behavior under 

various conditions but also guides the selection of appropriate techniques for specific optimization problems in diverse domains. 

 
Table 3: General Comparison between All Proposed Algorithms 

Algorithm Inspiration 
Exploita-
tion 

Explora-
tion 

Conver-
gence 

Parametric 
Sensitivity 

Com-
plexity 

Application Domains 

Ant Colony Optimiza-

tion (ACO) 

Ant Foraging Behav-

ior 
Moderate Strong Moderate Medium Medium Routing, Logistics, TSP 

Lion Algorithm (LA) Lion Pride Dynamics Moderate Strong Moderate Medium Medium 
Feature Selection, Image 
Segmentation 

Cuckoo Search (CS) Brood Parasitism Moderate Strong Fast Low Low 
Engineering Design, Power 

Systems 
Grey Wolf Optimizer 

(GWO) 
Wolf Pack Hunting Strong Moderate Fast Low Low 

Energy Systems, Structural 

Design 
Vibrating Particles 

System (VPS) 
Particle Dynamics Moderate Moderate Moderate Medium Medium 

Mechanical Design, Struc-

tural Optimization 

Social Spider Optimi-
zation (SSO) 

Spider Web Commu-
nication 

Moderate Strong Moderate Medium Medium Scheduling, Clustering 

Cat Swarm Optimiza-

tion (CSO) 

Cat Seeking and 

Tracing Modes 
Strong Moderate Moderate High Medium 

Biomedical Engineering, 

Signal Processing 

Bat Algorithm (BA) Bat Echolocation Moderate Moderate Moderate Medium Medium 
Speech Recognition, Control 

Systems 

Artificial Bee Colony 
(ABC) 

Bee Foraging Behav-
ior 

Moderate Moderate Moderate Medium Low 
Optimization, Clustering, 
Scheduling 

 

The comparative assessment of nine prominent metaheuristic algorithms reveals a diverse range of inspiration sources, performance 

characteristics, and domain applicability. Ant Colony Optimization (ACO), inspired by ant foraging behavior, demonstrates robust 

exploration capabilities and has been extensively adopted in routing and combinatorial optimization tasks such as the Traveling Salesman 

Problem (TSP). The Lion Algorithm (LA), modeled on pride dynamics, also exhibits strong exploration, proving effective in tasks like 

image segmentation and feature selection. Cuckoo Search (CS), leveraging brood parasitism, is particularly notable for its fast convergence 

and simplicity, making it suitable for engineering design problems. The Grey Wolf Optimizer (GWO), grounded in hierarchical hunting 

strategies, excels in exploitation and convergence efficiency, especially within energy systems and structural optimization. Vibrating 

Particles System (VPS), inspired by particle dynamics, offers a balanced trade-off between exploration and exploitation, supporting its role 

in mechanical and structural design. Social Spider Optimization (SSO), based on web communication behavior, and Cat Swarm 

Optimization (CSO), reflecting feline seeking and tracing behavior, both emphasize strong exploratory behavior but differ in their 

parametric sensitivity, with CSO being relatively more complex. Bat Algorithm (BA), which mimics echolocation, and Artificial Bee 

Colony (ABC), rooted in bee foraging patterns, both provide moderate performance across most criteria, making them versatile across 

domains such as speech processing, clustering, and control systems. Collectively, these algorithms underscore the importance of aligning 

nature-inspired mechanisms with the specific requirements of target applications to achieve optimal performance in solving real-world 

optimization problems. 

6. Conclusion 

This study benchmarks nine advanced metaheuristic algorithms for solving TSP instances using the TSPLIB dataset. Among these, ACO, 

GWO, and CSO consistently outperformed others in terms of both quality and consistency. While no algorithm was best in all metrics, the 

findings offer a guide for selecting suitable strategies depending on instance size, required accuracy, and computational constraints. Future 

work may involve dynamic hybridization and problem-specific enhancements. 
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