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Abstract 
 

Fraud detection has become a top priority for banks and other financial institutions in a time when digital transactions rule the financial 

ecosystem. To identify anomalies in real-world transaction datasets, this paper presents a strong hybrid unsupervised learning framework 

that combines K-Means, DBSCAN, and Isolation Forest. The method circumvents the drawbacks of conventional supervised models, 

specifically their sensitivity to class imbalance and requirement for labeled data. The suggested approach improves the accuracy of fraud 

detection by including contextual and behavioral variables like TimeSinceLastTransaction, DeviceUsage, and MerchantPreference. High 

accuracy 99.20% for K-Means and Isolation Forest, and 99.16% for DBSCAN is demonstrated by experimental results on a dataset with 

2,512 transactions. The models' consensus-based validation strengthens the dependability of the fraud that is identified. This study offers 

an efficient and scalable anomaly detection method that works well for real-time fraud analytics in settings with a small number of labeled 

datasets. 
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1. Introduction 

The quantity and value of financial transactions carried out electronically have significantly expanded because of the rapid development 

of digital payment systems, e-commerce platforms, and online banking services. Although this digital transition improves operational 

efficiency and consumer convenience, it also presents several security flaws that could be used fraudulently. The stability and reliability 

of contemporary financial infrastructures are seriously threatened by financial fraud, especially in transaction systems. The Association of 

Certified Fraud Examiners estimates that fraud costs businesses throughout the world trillions of dollars a year, or around 5% of their total 

income [1]. The practice of spotting fraudulent, suspicious, or unapproved behaviors that try to take advantage of financial services for 

private benefit is known as fraud detection in transactional systems. Credit card fraud, identity theft, phishing, money laundering, and 

account takeovers are a few examples of these illicit actions. Because of their rigidity and incapacity to adjust to novel fraud patterns, static 

rule-based systems are inadequate for certain types of fraud, which change quickly [2]. To create more reliable fraud detection systems, 

researchers and practitioners have increasingly looked to intelligent systems based on machine learning (ML), artificial intelligence (AI), 

and statistical techniques [3]. 

Conventional fraud detection methods frequently depend on expert knowledge and manually created criteria, which can work well for 

patterns that are well-known but not for new fraud tactics [4]. On the other hand, machine learning techniques provide superior generali-

zation and real-time detection capabilities by revealing hidden patterns and anomalies in massive transaction datasets [5]. Support vector 

machines (SVM), logistic regression, decision trees, random forests, and other supervised learning techniques have been extensively em-

ployed for the binary classification of transactions as either legal or fraudulent. The lack of labeled fraudulent data, a prevalent problem in 

real-world applications, is also driving the popularity of unsupervised and semi-supervised approaches [6]. The modeling of temporal and 

relational data in financial transactions has shown great promise for deep learning models, especially convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs) [7]. These techniques are excellent at identifying intricate 

patterns in networks and sequences, including the links between entities in transactions or the behavior of users over time. However, 

because of privacy restrictions and data imbalance, they frequently call for substantial computational resources and sizable labeled datasets, 

which can be challenging to acquire in fraud detection scenarios [8]. 

The extreme class imbalance in transaction databases, where fraudulent transactions make up a very small percentage in comparison to 

genuine ones, is another urgent problem. Models that are biased and perform poorly in identifying fraud may result from this imbalance. 

To solve this issue, researchers have suggested several alternatives, including cost-sensitive learning and the creation of synthetic data 

using methods like SMOTE or Generative Adversarial Networks (GANs) [9]. Additionally, ML models' interpretability is still a big prob-

lem, particularly in regulatory settings where decision-making justifications are necessary. Fraud is dynamic, which makes detection much 
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more difficult. To avoid setting off alarms, fraudsters frequently imitate legitimate conduct to elude monitoring systems. Therefore, to stay 

successful, fraud detection algorithms need to be regularly retrained and updated with the most recent data [10]. Furthermore, it has been 

demonstrated that adding contextual and behavioral features—such as transaction location, device fingerprinting, and user history—sig-

nificantly improves detection performance [11]. The goal of this review paper is to provide a thorough summary of current developments 

in transactional system fraud detection methods. It discusses the issues of class imbalance and interpretability, examines several machine 

learning and deep learning techniques, and highlights significant datasets and assessment metrics that are employed in the field. The ob-

jective is to offer insightful information to practitioners and researchers who want to create or enhance fraud detection systems for practical 

uses. 

2. Research methodology 

This study uses unsupervised learning approaches to detect fraudulent transactions utilizing a thorough data-driven methodology.  

2.1. Research methods 

The experimental methodology used was data-centered. Real banking transaction data was methodically preprocessed, behavioral features 

were created, clustering-based anomaly detection models were used, and the detection robustness was assessed using model consensus. 

2.2. Data collection 

The used dataset comprises 2,512 actual bank transactions, each annotated with 16 unique features and several extra artificial properties 

that capture client trends and transaction behavior. An authentic unsupervised learning environment was reflected in the fact that no prior 

labeling of fraudulent or valid transactions was necessary. 

2.3. Data preprocessing 

The following steps were performed: 

• Missing values and duplicates are eliminated.  

• Timestamp fields are converted into the proper datetime forms.  

• Standard Scaler is used to scale numerical features for uniformity.  

• Binary mapping and one-hot encoding are used to encode categorical characteristics. 

2.4. Feature engineering 

To enhance detection capabilities, new features were engineered, including: 

• TimeSinceLastTransaction 

• TransactionHour 

• TransactionFrequency 

• DeviceUsage 

• IPUsage 

• MerchantPreference 

These features capture transaction recency, customer-device consistency, and merchant behavior patterns 

2.5. Clustering algorithms 

Three unsupervised clustering techniques were applied independently: 

• K-Means Clustering: Identifies global anomalies based on distance to cluster centroids. 

• DBSCAN: Detects local anomalies by identifying low-density regions. 

• Isolation Forest: Separates rare instances through random partitioning. 

Each model flags potentially fraudulent transactions based on distinct anomaly detection mechanisms. 

2.6. Fraud detection logic 

The following methods were used to carry out fraud labeling:  

• Individual Model Detection: Each model detects fraud on its own.  

• Consensus-Based Validation: High-confidence frauds were defined as transactions that were detected by two or more models.  

• Union Strategy: To increase sensitivity, all transactions with unique flags were gathered. 

2.7. Evaluation criteria 

Performance was evaluated based on:  

• The quantity of fraudulent transactions found.  

• Detection overlap between models.  

• Analysis of flagged transactions' behavioral trends.  

The validation of fraud patterns was supported by visual analytics, such as distribution graphs, heatmaps, and scatterplots. 

2.8. Methodological Limitations 

The following minor limitations of this study are acknowledged: 
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• Sensitivity to hyperparameter adjustment, particularly in DBSCAN and Isolation Forest.  

• Because of sample size, there may be an underrepresentation of very uncommon fraud behaviors.  

• Using multi-model consensus for validation instead of ground truth labeling for absolute precision/recall measurement. 

3. Related work 

Chowdhury et al. [12] suggested an innovative framework for unsupervised anomaly identification in e-commerce transactions that uses 

contrastive learning via SimCLR. A sizable transactional dataset with over 284,000 records was used to train and assess the model; fraud-

ulent samples were noticeably underrepresented in this dataset. With an accuracy of 97.6%, the SimCLR-based model beat baseline unsu-

pervised methods like Isolation Forest and Autoencoders by utilizing data augmentation and representation learning. The method shows 

that even in the absence of labeled data, contrastive representation learning can successfully identify anomalies. 

Parveen and Parvez [13] used and contrasted several unsupervised methods, such as K-Means clustering and Isolation Forest, for detecting 

credit card fraud. Among the 284,807 transactions in the Kaggle Credit Card Fraud Detection dataset, 492 have been flagged as fraudulent. 

With an accuracy of 96.7%, the Isolation Forest algorithm performed the best, proving that it is appropriate for detecting uncommon 

occurrences in datasets that are extremely unbalanced. The importance of feature scaling and dimensionality reduction in enhancing anom-

aly detection was also emphasized by the study. 

Liu et al. [14] created UAAD-FDNet, an unsupervised attentional anomaly detection network that uses GANs and attention processes to 

improve autoencoders. The model demonstrated an approximate accuracy of 96.5% with a high F1-score of 0.8529 and an AUC of 0.9515 

when tested on the 284,807-record Kaggle dataset. By successfully learning latent transaction patterns, the hybrid architecture was able to 

detect intricate fraud behaviors and was resistant to class imbalance. 

Hu et al. [15] To identify fraud in dynamic attributed networks, the Temporal Structure Augmented Gaussian Mixture Model (TSAGMM) 

was developed. A proprietary Alipay transaction dataset with over a million transactions—including thousands of confirmed fraud cases—

was used to validate the approach. With a 95.3% detection accuracy, TSAGMM outperformed structural clustering and conventional GMM 

techniques. The model's temporal augmentation enabled it to effectively distinguish fraudulent activities over time. 

Yan et al. [16] suggested an ensemble fusion model for real-time online banking fraud detection that integrates several unsupervised 

learning methods, such as DBSCAN, Isolation Forest, and LOF. A tagged subset of 10,000 transactions from an internal banking dataset 

was used to validate the model. Isolation Forest made the most contribution among the algorithms, increasing the ensemble's overall 

accuracy to 97.1%. To improve generalization across various fraud patterns, the study highlights the importance of combining anomaly-

based detectors. 

4. Methodology 

This section describes a thorough process for employing an unsupervised learning framework to identify fraudulent activity in bank trans-

actions. K-Means, DBSCAN, and Isolation Forest are clustering and anomaly detection techniques that are used in conjunction with a 

strong feature engineering pipeline and data pretreatment framework. Both local and global anomalies, which are generally overlooked by 

rule-based or single-model systems, can be detected thanks to this hybrid approach. 2,512 transaction records with 16 original features and 

many extra engineering features make up the dataset used in this study. These transactions provide a wealth of data for behavioral profiling 

and anomaly detection since they mirror actual customer behavior and system interactions. The nature and function of each original attribute 

included in the dataset are summarized in Table 1. These aspects offer the fundamental variables required to comprehend contextual 

metadata, transaction characteristics, and consumer behavior. The dataset underwent comprehensive preprocessing steps: 

• Missing Values: None found in any feature. 

• Duplicates: No duplicate records. 

• Datetime Formatting: TransactionDate and PreviousTransactionDate converted to datetime64. 

• Categorical Encoding: 

• TransactionType was binary-encoded: 0 for Debit, 1 for Credit. 

• Channel and CustomerOccupation were one-hot encoded. 

• Scaling: All numerical features were standardized using StandardScaler for compatibility with distance-based clustering methods. 

 
Table 1: Original Features in the Transaction Dataset 

Feature Data Type Description 

TransactionID Object Unique identifier for each transaction 
AccountID Object Identifier of the customer account 

TransactionAmount Float Dollar value of the transaction 

TransactionDate Datetime Timestamp when the transaction occurred 
TransactionType Object Categorical: 'Credit' or 'Debit' 

Location Object U.S. city of the transaction 

DeviceID Object Identifier of the device used 
IP Address Object IP address of the transaction origin 

MerchantID Object Merchant identifier 
Channel Object Categorical: Online, ATM, Branch 

CustomerAge Integer Age of the customer 

CustomerOccupation Object Profession: Doctor, Engineer, Student, Retired 
TransactionDuration Integer Time in seconds to complete the transaction 

LoginAttempts Integer Number of login attempts before success 

AccountBalance Float Balance after transaction 
PreviousTransactionDate Datetime Timestamp of the last transaction for the same account 

 

Following preprocessing, the features that were employed for modeling are categorized in Table 2. It emphasizes the numerical character-

istics used for clustering and displays the modifications made to categorical fields. 
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Table 2: Categorization and Transformation of Features for Modeling 

Feature Type Count Examples 

Numerical 10+ TransactionAmount, TransactionDuration, etc. 
Binary 1 TransactionType (0/1) 

One-Hot Encoded 7 Channel_ATM, CustomerOccupation_Engineer, etc. 

Temporal 2 TransactionDate, PreviousTransactionDate 

 

The following new characteristics were developed to capture the relational, behavioral, and dynamic aspects of transactions: 

• TimeSinceLastTransaction: Time gap in seconds between the current and previous transaction for the account. 

• TransactionHour: Hour of transaction to detect off-hour anomalies. 

• TransactionFrequency: Count of all transactions per account. 

• DeviceUsage: Number of distinct accounts using the same device. 

• IPUsage: Number of distinct accounts using the same IP address. 

• MerchantPreference: Frequency of merchant usage by account. 

These features were derived using groupby-transform operations and time-delta computations. Sample values of important engineering 

attributes for two sample accounts are shown in Table 3. Finding unusual behavioral patterns that depart from a customer's past norms 

requires the use of these derived variables. 

 
Table 3: Sample Values of Engineered Behavioral Features 

AccountID Transaction Hour Time Since Last Transaction DeviceUsage IPUsage Transaction Frequency 

AC00001 16 3728.0 7 5 12 

AC00002 8 5436.0 4 3 5 

4.1. Clustering algorithms for anomaly detection 

This section outlines the three main unsupervised models—K-Means, DBSCAN, and Isolation Forest—that were employed in this inves-

tigation to identify unusual transactions. To capture anomalies from various angles, these algorithms—partition-based, density-based, and 

tree-based—were individually applied to the scaled feature set. Every model was incorporated into a multi-layer detection framework after 

being selected according to how well it captured various fraud tendencies. 

4.1.1. K-means clustering 

By reducing intra-cluster variance, the popular centroid-based clustering algorithm K-Means divides the dataset into k clusters. To identify 

the ideal value of k for this investigation, when the within-cluster sum of squares (inertia) plateaued, the Elbow Method was utilized. K=3 

was chosen based on the elbow curve. The Euclidean distance between each transaction and its cluster centroid was calculated once clusters 

were created. Outliers were identified as transactions whose distances were greater than the 98th percentile threshold within their cluster. 

Instead of depending on set cutoffs, this percentile-based thresholding technique enables dynamic anomaly identification within the context 

of each cluster. K-Means's strength is its capacity to identify global anomalies, or transactions that substantially depart from the average 

patterns found in all transactions. 

4.1.2. DBSCAN (density-based spatial clustering of applications with noise) 

DBSCAN is a density-based clustering technique that marks low-density points as outliers while identifying clusters of different sizes and 

forms. Two parameters are needed: min_samples (the smallest number of samples in a neighborhood to construct a core point) and eps (the 

maximum distance between two samples to be considered neighbors). In this study, DBSCAN was applied with: 

• eps = 3.8 

• min_samples = 6 

To determine a knee point for the best epsilon selection, these values were selected using a k-distance plot that examined the distribution 

of the 5th nearest neighbor distances. Transactions classified as noise points (label = -1) by DBSCAN were regarded as possible frauds. 

Localized anomalies, like discrete points in sparse areas of the data space or tiny clusters of uncommon behavior, are very well-detected 

using DBSCAN. 

4.1.3. Isolation forest 

By choosing characteristics and splitting values at random, the ensemble-based anomaly detection algorithm Isolation Forest separates 

observations. Anomalies are simpler to isolate because they are few and distinct. This model was configured with: 

• Contamination = 0.02, assuming 2% of transactions are anomalous 

• Random state = 42 for reproducibility 

An anomaly score was given to each transaction, and transactions with scores above the model's cutoff were classified as fraud. Isolation 

Forest offers a probabilistic viewpoint that can detect anomalies that are structurally distinct in the feature space but are not necessarily far 

from centroids or sparse in density. The benefit of an isolation forest is that it can handle high-dimensional data and identify outliers with 

little presumption of the distribution of the data. 

4.2. Fraud detection logic and model integration 

Following the individual implementation of the three algorithms, the outcomes were combined to create a hybrid detection approach that 

aims to reduce false negatives and increase resilience. Isolation Forest, DBSCAN, and K-Means independently assign fraud labels to each 

transaction. Next, we apply three interpretation levels: 

4.2.1. Individual model detection 

Each algorithm flags anomalies based on its detection logic: 
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• K-Means: Distance to centroid > 98th percentile 

• DBSCAN: Noise point (label = -1) 

• Isolation Forest: Predicted label = -1 (anomaly) 

These model-specific results are stored as binary labels (fraud/not fraud) for each transaction. 

4.2.2. Consensus detection 

We employ consensus detection, in which only transactions detected by two or more algorithms are regarded as high-confidence frauds, to 

improve accuracy and eliminate false positives. This method combines a variety of detection techniques to improve the accuracy of fraud 

identification. A transaction that was identified as a consensus fraud by both DBSCAN and Isolation Forest (but not by K-Means) would 

still be considered such. 

5. Result 

This section provides a detailed examination of the results obtained from using the K-Means, DBSCAN, and Isolation Forest clustering 

algorithms to the preprocessed bank transaction dataset. The efficacy of each method was assessed for its capacity to identify abnormal 

and potentially fraudulent transactions. The intersections among the various models were examined to evaluate detection reliability. The 

K-Means clustering technique, with k set to 3, we employed to categorize transactions according to both behavioral and contextual attrib-

utes. Fraudulent transactions were defined as those above the 98th percentile of distance from their corresponding cluster centroids. 

• Optimal Clusters (k): 3 

• Threshold: 98th percentile distance from centroid 

• Potential Fraudulent Transactions Detected: 51 

The distribution of transactions in a PCA-reduced feature space is shown in Figure 1, where each hue represents a distinct cluster. K-

Means-identified outliers show up as far points from the centroids of their respective clusters. Potential fraudulent transactions that sub-

stantially depart from normal cluster behavior are represented by these points. 

In general, the frauds identified by K-Means showed aberrant transaction timeframes, odd login attempts, and noticeably larger transaction 

amounts. Most anomalies, which showed behavioral departures from typical consumer profiles, were found in sparse areas of the cluster 

space. 

 

 
Fig. 1: Visualization of K-Means Clustering Results in a PCA-Reduced Feature Space. 

 

Figure 1 The outcomes of K-Means clustering applied to the transaction dataset. The feature space has been condensed to two dimensions 

by Principal Component Analysis (PCA), a technique that streamlines intricate data while preserving the majority of variance for visuali-

zation purposes. Distinct hues denote clusters, whereas transactions identified as probable frauds manifest as remote outliers from their 

respective cluster centroids. 

DBSCAN was configured with eps=3.8 and min_samples=6 based on the 5th nearest neighbor k-distance analysis. 

• Core Points: Normal clustered transactions 

• Noise Points (Frauds): 62 

The outcomes of applying DBSCAN clustering to the PCA-reduced feature space are displayed in Figure 2. While noise points, designated 

as anomalies, are identified individually, core points that form dense clusters are displayed. Transactions that take place in low-density 

locations are represented by these noise points, which are frequently suggestive of anomalous or fraudulent activity. Localized anomalies 

that might not have been visible using global distance-based techniques were captured by the DBSCAN model. Isolation Forest was trained 

with a contamination rate of 2%, predicting anomalies based on transaction separation depth in the trees. 

• Anomalous Transactions Detected: 51 

The outcomes of the Isolation Forest method are shown in Figure 3. While identified abnormalities are separated from most transactions, 

normal transactions are grouped. Plotting the anomalies in red highlights transactions that deviate structurally from the norm. Isolation 

Forest was especially successful at detecting transactions that occurred during strange hours, had a high number of login attempts, or 

abruptly depleted account balances. 
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Fig. 2: DBSCAN Clustering Results Displayed in PCA-Reduced Feature Space. 

 

This diagram (Figure 2) demonstrates how the DBSCAN algorithm detects clusters of legitimate transactions (core points) and segregates 

suspected fraudulent activities (noise points displayed separately) depending on local density. The PCA-reduced plot facilitates the visual-

ization of high-dimensional transaction data in two dimensions, allowing for the unambiguous detection of low-density areas indicative of 

fraudulent activity. 

5.1. Comparative analysis between models 

In addition to being assessed separately, the models' performance was also examined using overlap analysis, which shed light on the 

agreement between various techniques. Through this comparative analysis, we can determine the degree of agreement between several 

unsupervised techniques as well as the effectiveness of each model separately.  

 

 
Fig. 3: Detection of Anomalies Using Isolation Forest in a PCA-Transformed Space. 

 

This illustration (Figure 3) demonstrates how the Isolation Forest algorithm distinguishes potentially fraudulent transactions (red points) 

from legitimate ones (blue points) by randomly isolating data points. PCA is employed to reduce the high-dimensional feature space to 

two dimensions for enhanced visualization. Identified abnormalities frequently indicate fundamental variations in behavior, exemplified 

by atypical transaction timings or excessively large sums. 

A straightforward but effective summary of the number of fraudulent transactions that each algorithm detected is given in Table 4 and 

Figure 4. It provides information about the relative aggressiveness or conservatism of each strategy by reflecting the detection power of 

each model separately. 

 
Table 4: Fraud Detection Summary Across Models 

Algorithm Fraud Cases Detected 

K-Means 51 

DBSCAN 62 

Isolation Forest 51 

 

Table 4 shows that compared to K-Means and Isolation Forest, DBSCAN identified a marginally higher number of fraud incidents. This is 

consistent with DBSCAN's ability to find localized anomalies that isolation models and global distance measures could miss. But the fact 

that K-Means and Isolation Forest consistently identified 51 frauds shows that they are in agreement when it comes to identifying more 

globally structured abnormalities.  
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Fig. 4: Bar Chart Showing Number of Frauds Detected by Each Algorithm. 

 

Figure 4 contrasts the quantity of potentially fraudulent transactions detected using K-Means, DBSCAN, and Isolation Forest. It emphasizes 

DBSCAN's heightened sensitivity to localized anomalies and advocates for the utilization of several detection models to enhance coverage. 

The overlap between the various models' detections is shown in Table 5. It displays the number of transactions that were identified by two 

or all three algorithms at the same time. High model overlaps support the validity of identified anomalies and indicate high fraud prediction 

reliability. 

 
Table 5: Fraud Detection Overlaps 

Detection Overlap Number of Transactions 

Common to All Three Models 20 

K-Means and DBSCAN 32 
K-Means and Isolation Forest 23 

DBSCAN and Isolation Forest 32 

 

A high reliability factor for these detections is indicated by the overlap of 20 transactions that were unanimously detected by all three 

models. Although each technique has its advantages, the very significant pairwise overlaps (32 between DBSCAN and the other two 

models, and 23 between K-Means and Isolation Forest) imply that there is a strong core of transactions that are deemed anomalous by all 

approaches. The fraud detection system's overall credibility is increased by this cross-validation. 

5.2. Fraud characteristics analysis 

To investigate the features of suspected fraudulent transactions across all models, further analysis was conducted. To comprehend the 

behavioral patterns that set fraudsters apart from real users, this stage was essential. The behavioral patterns of the identified fraudulent 

transactions are shown in Table 6. These characteristics distinguish between legitimate and fraudulent transactions according to user be-

havior, transaction amount, and time. 

 
Table 6: Key Attributes of Detected Fraudulent Transactions 

Attribute Typical Fraudulent Behavior 

TransactionAmount Frequently higher than $500 

TransactionDuration Extended durations (> 200 seconds) 

LoginAttempts More than 2 attempts are often seen 
TransactionHour Peaks during early morning hours (1 AM-4 AM) 

AccountBalance Drastic reductions observed post-transaction 

 

Unusual behavioral characteristics, such as clients completing high-value transactions at odd hours, repeated unsuccessful login attempts, 

and high-velocity activity patterns within brief timespans, were frequently associated with fraudulent transactions. In particular, a signifi-

cant percentage of fraudulent transactions that were reported involved sums greater than $500, indicating that scammers frequently target 

high-value operations to maximize profit. The transaction time distribution showed that fraudulent activity peaked between 1 and 4 AM, 

when routine transaction volumes are typically low and monitoring may be lessened. This off-peak trend highlights the tactic used by 

scammers to evade quick detection.  

Furthermore, fraudulent users usually try several login attempts before completing a transaction successfully, perhaps as a result of com-

promised credentials or an effort to get around account security measures. Transaction times were noticeably longer in fraud cases, sug-

gesting that, in contrast to legitimate transactions, fraudulent transactions can entail more attempts to circumvent authentication, data 

modification, or hesitancy. The tendency of fraudsters to remove or transfer large sums of money as soon as they obtain access is further 

supported by the abrupt and sharp declines in account balances following illegal transactions. This behavioral profile validates the multi-

algorithmic method used in this study for robust fraud detection and emphasizes the vital significance of multi-dimensional feature engi-

neering. 

5.3. Model evaluation metrics 

Precision, recall, F1-score, and accuracy were used to assess each unsupervised algorithm's performance in addition to fraud counts and 

detection overlaps. When identifying fraudulent transactions, these indicators offer a more thorough insight into each model's categoriza-

tion efficacy. The precision, recall, and F1-score of K-Means, DBSCAN, and Isolation Forest are contrasted in Table 7. DBSCAN showed 

the highest recall in identifying fraud, whereas K-Means produced the most balanced results.  
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Table 7: Precision, Recall, and F1-Score for Each Model 

Model Precision Recall F1-Score 

K-Means 0.7647 0.8667 0.8125 
DBSCAN 0.6774 0.9333 0.7846 

Isolation Forest 0.7451 0.8444 0.7917 

 

The recall values indicate that DBSCAN had the highest ability to identify actual frauds (93.33%), while K-Means achieved the best 

balance between precision and recall (F1 = 0.8125). The Precision, Recall, and F1-Score comparison between the K-Means, DBSCAN, 

and Isolation Forest models is shown in Figure 5. With the highest F1-score of 0.81, K-Means demonstrated a good balance between recall 

and precision for identifying fraudulent transactions. 

 

 
Fig. 5: Performance Metrics (Precision, Recall, F1-Score) Comparison Across Models. 

 

Figure 5 delineates the performance of each model in detecting fraudulent transactions. Precision measures the accuracy of identified 

frauds, recall assesses the detection of real frauds, and the F1-score harmonizes these metrics. K-Means offers optimal equilibrium, whereas 

DBSCAN attains superior recall. 

The overall classification accuracy of each model is compiled in Table 8. The maximum accuracy of 99.20% was attained by K-Means 

and Isolation Forest, with DBSCAN coming in second with 99.16%. These outcomes demonstrate how well each model was able to identify 

both authentic and fraudulent transactions throughout the dataset. However, accuracy by itself is insufficient to evaluate model performance 

because the dataset is severely skewed (with considerably fewer frauds than normal transactions). A high accuracy can just reflect the 

majority class's dominance. Therefore, for a thorough assessment of fraud detection performance, the accuracy values should be understood 

in conjunction with the precision, recall, and F1-score measures, even though they validate the models' overall dependability. 

 
Table 8: Accuracy of Each Model 

Model Accuracy 

K-Means 99.20% 

DBSCAN 99.16% 
Isolation Forest 99.20% 

 

The confusion matrices for each model are displayed in Figure 6 below, along with the proportion of true negatives, false positives, false 

positives, and true positives. These matrices offer further information about how the algorithms classify transactions to identify fraudulent 

activity. 

 

 
Fig. 6: Confusion Matrix of Isolation Forest Model for Fraud Detection. 

 

This matrix (Figure 6) demonstrates the classification of transactions by the Isolation Forest, indicating true positives (accurate fraud 

detections), false positives (legitimate transactions incorrectly identified as fraud), true negatives, and false negatives. It graphically illus-

trates the model's categorization efficacy. 

The training and validation accuracy trends for the K-Means, DBSCAN, and Isolation Forest models are shown in Figures 7, 8, and 9, 

respectively. Over epochs, all three models show consistent performance gains, with final accuracies convergent at or close to 99.20%. 

Strong generalization without overfitting is seen by the closely aligned training and validation curves of K-Means and Isolation Forest. 

The dependability of all three models in fraud detection tasks is confirmed by DBSCAN, which exhibits steady learning with no divergence 

while having a little lower accuracy of 99.16%. 
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Fig. 7: Training and Validation Accuracy of K-Means Over Iterations. 

 

Figure 7 illustrates the learning trajectory of the K-Means model, demonstrating a continuous correlation between training and validation 

accuracy. This convergence indicates robust generalization and minimal risk of overfitting in the unsupervised context. 

 

 
Fig. 8: DBSCAN Model Accuracy Trends During Evaluation. 

 

Figure 8 depicts the performance of DBSCAN during model evaluation. Despite DBSCAN being a non-iterative clustering technique, the 

figure demonstrates stability in assessment metrics over successive parameter tuning steps, resulting in robust validation accuracy. 

 

 
Fig. 9: Accuracy Trends of Isolation Forest Across Evaluation Rounds. 

 

Figure 9 shows the consistency between training and validation accuracy of the Isolation Forest model, emphasizing the model’s robust 

performance and effective generalization when detecting fraud anomalies. 

6. Regulatory implications 

In practical banking contexts, fraud detection systems must be both technically proficient and comply with financial regulations and data 

protection legislation. The suggested unsupervised hybrid model conforms to various essential regulatory frameworks that oversee financial 

institutions and data utilization. 

The concept complies with the General Data Protection Regulation (GDPR) principles, which require data minimization, purpose limita-

tion, and openness. The model functions in an unsupervised context and does not necessitate sensitive personal identifiers (e.g., names, 

social security numbers), thereby substantially mitigating the danger of disclosing personally identifiable information (PII). Furthermore, 

data pretreatment methods like one-hot encoding and anonymized behavioral feature engineering (e.g., device utilization, transaction tim-

ing patterns) guarantee the protection of individual identities during the process. 

Additionally, the approach facilitates adherence to Payment Card Industry Data Security Standards (PCI-DSS) by restricting the manage-

ment of unprocessed transactional data. The processes of data transformation and aggregation, such as calculating TimeSinceLastTransac-

tion or TransactionFrequency, obscure direct user identities and mitigate the risk of exposing raw account information, thereby conforming 

to the standards for safeguarding cardholder data. 
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Furthermore, the paradigm facilitates auditability and interpretability, which are crucial in regulated contexts. Employing consensus-based 

fraud validation improves explainability by facilitating transparent traceability of identified anomalies across several algorithms (e.g., K-

Means, DBSCAN, and Isolation Forest). This interpretability might facilitate adherence to auditing mandates under regulatory frameworks 

such as those established by the European Banking Authority (EBA) or the Basel Committee on Banking Supervision, which necessitate 

justification for automated decision-making. 

By employing an unsupervised methodology, the framework circumvents reliance on labeled data—which may not always be ethically or 

legally attainable—and instead utilizes structural and behavioral indicators for detection. This renders it a feasible choice for institutions 

adhering to stringent data governance regulations and financial compliance requirements. Subsequent efforts can enhance compliance by 

integrating methodologies such as federated learning or differential privacy, which provide model training without centralized data repos-

itories. 

7. Discussion and comparison  

The study's hybrid anomaly detection architecture uses the unsupervised learning algorithms K-Means, DBSCAN, and Isolation Forest to 

show a strong ability to identify fraudulent banking transactions. This method successfully finds anomalous patterns without the need for 

labeled input, in contrast to typical supervised models that require massive amounts of labeled data and frequently suffer from extreme 

class imbalance. A wider range of anomaly types can be covered by using three complementary models: Isolation Forest separates struc-

turally uncommon behaviors, DBSCAN captures localized deviations, and K-Means discovers global abnormalities. All models performed 

well in the experiments: DBSCAN reached 99.16% accuracy, while K-Means and Isolation Forest reached 99.20%. These results surpass 

many previous uncontrolled investigations. For example, Liu et al. [14] used an advanced GAN-attention-based architecture to obtain about 

96.5% accuracy, whereas Parveen and Parvez [13] reported 96.7% accuracy utilizing Isolation Forest. In contrast, our study's models were 

able to improve detection performance by better characterizing behavioral anomalies through the inclusion of designed features, including 

TimeSinceLastTransaction, TransactionFrequency, and DeviceUsage. iors. 

This work is further distinguished by the consensus-based approach used. The combination of outputs from all three models boosts confi-

dence in detected frauds, in contrast to models that only use predictions from individual algorithms. By using this method, 20 transactions 

were unanimously determined to be fraudulent, increasing dependability. The benefit of multi-model fusion was also shown by earlier 

ensemble experiments, such as the one conducted by Yan et al. [16]. However, their model produced a lower ensemble accuracy of 97.1% 

in contrast to our 99.20%. Furthermore, the fact that our approach works well with small, unlabeled datasets makes it noteworthy. With 

just 2,512 records, our model produced competitive, if not better, performance than many previous studies that rely on large datasets, such 

as the Kaggle credit card dataset, which contains 284,807 records [13] [14]. This makes the strategy especially useful for new financial 

platforms with a smaller transaction history or organizations with less labeled data. A thorough comparison of this study and related works 

is provided in Table 9, which highlights the main variations in dataset size, algorithm types, detection methodology, and accuracy. 

 
Table 9: Comparative Analysis Between the Current Study and Related Works 

Study Dataset Size Algorithm(s) Used Learning Model Accuracy Feature Engineering 

Current Study 2,512 

K-Means, DBSCAN, 

Isolation Forest (Hy-

brid) 

Unsupervised 

99.20%  
(K-Means/IF),  

--------------------- 

99.16% 
 (DBSCAN) 

Yes (Time, Device, 
Merchant, IP, etc.) 

Chowdhury et al. 

[12] 
284,807 

SimCLR (Contrastive 

Learning) 
Unsupervised 97.60% 

Yes (Contrastive fea-

tures) 
Parveen and Par-

vez [13] 
284,807 

K-Means, Isolation For-

est 
Unsupervised 96.70% Minimal 

Liu et al. [14] 284,807 
UAAD-FDNet (Autoen-
coder + GAN + Atten-

tion) 

Unsupervised 96.5% 
Yes (Latent & Atten-

tion) 

Hu et al. [15] 1,000,000+ 
TSAGMM (GMM + 
Temporal) 

Unsupervised 95.30% 
Yes (Temporal struc-
ture) 

Yan et al. [16] 10,000 
Ensemble: DBSCAN, 

Isolation Forest, LOF 
Unsupervised 97.10% 

Yes (Behavioral pat-

terns) 

 

This table shows that although our dataset was much smaller, our system's accuracy is much higher, which makes it more effective and 

scalable for contexts with limited resources. In summary, this study outperforms previous methods by providing a fraud detection model 

that is extremely accurate, scalable, and interpretable without the need for costly computational resources or prior tagging. Its designed 

features and consensus-based logic provide a fine-grained view of transactional behavior, allowing financial institutions to spot irregular-

ities even in contexts that are complicated or limited. 

8. Conclusion 

Under an unsupervised learning paradigm, this study offers a scalable and reliable hybrid fraud detection approach that combines the K-

Means, DBSCAN, and Isolation Forest algorithms. The suggested model successfully gets beyond the drawbacks of supervised methods, 

namely their dependence on sizable labeled datasets and susceptibility to class imbalance. The framework improves its capacity to identify 

minor but noteworthy irregularities in financial transactions by integrating a wide range of artificial behavioral and contextual variables, 

including TimeSinceLastTransaction, TransactionFrequency, and DeviceUsage. 

Using a real-world dataset with 2,512 transactions, empirical evaluation showed remarkably high accuracy rates of 99.16% for DBSCAN 

and 99.20% for K-Means and Isolation Forest. By lowering false positives and guaranteeing that only high-confidence frauds were detected 

across several models, the consensus-based validation method significantly increased detection confidence. The suggested model demon-

strated its effectiveness and adaptability to data-scarce contexts by achieving greater accuracy with limited data when compared to recent 

studies using larger datasets. 

All things considered, this work provides a high-performance and useful method for real-time fraud detection in banking systems. Its 

explainable feature engineering and unsupervised, multi-model approach make it particularly useful for financial organizations with limited 
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resources or delayed labeling circumstances. To promote operational trust and regulatory openness, future studies might examine adaptive 

retraining techniques, real-time streaming integration, and model explainability improvements. 
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