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Abstract 
 

Deep learning's developments have greatly changed automatic picture categorization, proving great accuracy and efficiency in many fields. 

Medical imaging, agriculture, and environmental monitoring are just a few innovative uses for techniques including hybrid models, transfer 

learning, and convolutional neural networks (CNNs). Improved precision using ensemble and attention-based models has helped medical 

diagnosis including diabetic retinopathy and breast cancer detection benefit. Likewise, CNNs are used in environmental monitoring systems 

for species identification and wind turbine inspection. Although these developments highlight the transforming power of deep learning, 

problems still exist including limited datasets, computing requirements, and lack of generalizability across many settings. Researchers 

support lightweight model designs, innovative augmentation techniques, and dataset extension to help solve these challenges. Future de-

velopments in architectures and cross-domain applications have great potential to widen the range of efficiency of deep learning in auto-

mated picture categorization. This analysis underlines the need for ongoing research to fully utilize deep learning in the solution of chal-

lenging categorization tasks. 

 
Keywords: Automated Image Classification; Deep Learning; Convolutional Neural Networks; Transfer Learning; Medical Image Analysis; Advanced 

Preprocessing Techniques. 

 

1. Introduction 

The advent of deep learning has revolutionized the field of automated image classification, providing unprecedented accuracy and effi-

ciency in various applications. Deep learning, particularly through the use of Convolutional Neural Networks (CNNs), has emerged as a 

powerful tool for extracting complex features from images, enabling machines to classify pictures with remarkable precision [1]. This 

capability is particularly significant in domains such as medical imaging, where accurate classification can lead to timely and effective 

diagnoses. The integration of transfer learning further enhances the performance of deep learning models, allowing them to leverage 

knowledge gained from large datasets to improve classification tasks on smaller, domain-specific datasets [2]. 

Deep learning technologies have shown notable medical field improvements in the imaging-based diagnosis of certain disorders [3]. For 

example, transfer learning from pre-trained and deep learning models has been used to identify chest X-rays for pneumonia detection, 

hence attaining great accuracy rates [4]. Likewise, deep learning techniques have helped to improve the categorization of breast cancer 

pictures utilizing ultrasonic and mammography as they have been demonstrated to be more accurate and efficient than conventional tech-

niques [5] [6]. In healthcare, where the stakes are sometimes life and death, these uses highlight the vital part deep learning performs in 

improving diagnostic capacity [7]. 

Deep learning has found use outside of medical applications in legal document analysis, environmental monitoring, and agriculture among 

other disciplines[8]. For agricultural uses, for instance, deep learning methods have been used to identify soil pictures thereby improving 

crop management and soil health monitoring [9]. Deep learning has helped to classify photos and documents in the framework of legal 

document evaluation, therefore simplifying the review process and raising the efficiency [10]. These cases show how flexible deep learning 

is in tackling challenging categorization problems in many different fields and emphasize its ability to revolutionize sectors by automating 

labor-intensive and time-consuming activities. 

Deep learning's success in automated picture categorization may be ascribed to several elements, including the availability of big datasets, 

improvements in computer capacity, and the creation of complex neural network topologies. Particularly the application of transfer learning 

has been revolutionary since it lets models be optimized for certain tasks without requiring significant retraining from scratch [2] [11]. This 

strategy is preferable in situations when annotated data is limited as it not only saves time and money but also improves the generalizing 

capacity of the model over several datasets [2] [12]. 
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Moreover, the performance of picture classification tasks has been much enhanced by the ongoing development of deep learning architec-

tures including attention mechanisms and residual networks (ResNets). These developments capture complex patterns and characteristics 

necessary for good categorization, therefore enabling algorithms to learn from data more efficiently [13]. Deep learning's possible uses in 

automatic picture categorization are projected to grow as research develops, opening the path for ever more advanced systems able to 

address challenging problems in several domains [14]. 

Finally, deep learning finds extensive and diverse applications in automated picture categorization across several sectors and disciplines. 

Particularly in important domains like medical imaging, deep learning methods especially CNNs and transfer learning have produced 

notable improvements in accuracy and efficiency when combined. Deep learning has great potential to improve automatic picture catego-

rization as technology develops; with continuous study, new capabilities, and uses are likely to be unlocked that would help society as a 

whole. 

The purpose of this review is to explore the transformative impact of deep learning in automated image classification across various fields. 

It highlights advancements such as convolutional neural networks, hybrid models, and transfer learning while discussing challenges like 

limited datasets and computational requirements. The review emphasizes the potential for future innovations in architectures and cross-

domain applications to address these issues and expand the utility of deep learning in tackling complex classification tasks. 

The rest of this work is arranged as follows: in Section 2, a succinct overview of applications of deep learning in automated image classi-

fication. Section 3 presents the findings of the review analysis together with the most significant conclusions. Section 4 offers a discussion 

of the review analysis. Section 5 concludes with a summary of the study results and future directions. 

2. Background theory 

The theory underlying deep learning (DL) in automated image classification is rooted in the computational modeling of neural networks 

designed to mimic the human brain's ability to process and classify visual data. Automated image classification, which aims to assign 

categorical labels to input images, has historically relied on handcrafted feature extraction methods combined with traditional machine 

learning algorithms. However, these methods were often limited by their reliance on domain-specific expertise and inability to generalize 

across datasets and tasks [15]. 

 

 
Fig. 1: ML Is A Subset of AI Focused on Algorithms That Improve with Data Exposure, and DL Is A Specialized Subset of ML Leveraging Multilayered 

Neural Networks for Complex Data Analysis. [16]. 

2.1. Deep learning: an evolutionary in image classification 

Deep learning revolutionized image classification through architectures such as convolutional neural networks (CNNs). Unlike traditional 

methods, CNNs automatically learn hierarchical feature representations from raw image data. This ability to extract low-level features 

(e.g., edges, textures) and combine them into higher-level representations (e.g., object shapes) makes CNNs particularly effective for image 

classification tasks. The advent of deep learning enabled significant breakthroughs in benchmark datasets like ImageNet, demonstrating its 

superiority over traditional methods [17].  

CNNs utilize convolutional layers, pooling layers, and fully connected layers to progressively refine feature extraction. The incorporation 

of backpropagation for gradient-based learning allows networks to minimize classification errors effectively [15]. This paradigm shift set 

the stage for the rapid adoption of DL across diverse image classification domains, from medical imaging to autonomous vehicles. 

 

 
Fig. 2: Machine Learning vs Deep Learning. 
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Figure 2 The difference between deep learning and traditional machine learning is that in machine learning, preprocessing, feature extrac-

tion, and feature selection are performed separately before classification, whereas deep learning integrates these steps within a single deep 

learning model, streamlining the process [16]. 

2.2. Architectures and techniques enhancing image classification 

Advancements in image classification have been driven by novel architectures and techniques that improve accuracy and efficiency. Con-

volutional Neural Networks (CNNs), like AlexNet, VGG, and ResNet, have significantly enhanced feature extraction and learning capa-

bilities through layered convolutional filters and residual connections [17]. The introduction of transformers, such as Vision Transformers 

(ViTs), utilizes self-attention mechanisms to capture global dependencies across images, further improving performance on complex da-

tasets [18]. Techniques like transfer learning allow pre-trained models to be fine-tuned for specific tasks, reducing computational require-

ments [19]. Regularization strategies such as dropout and data augmentation mitigate overfitting, while ensemble methods enhance robust-

ness by combining predictions from multiple models [20]. Integrating hybrid models combining CNNs with transformers is an emerging 

trend, showcasing improved adaptability for diverse applications. These advancements collectively enable more accurate and versatile 

image classification systems. 

2.3. Applications in diverse fields 

Deep learning has been instrumental in transforming image classification applications across various fields: 

• Medical Imaging: CNNs and attention-based models facilitate automated disease diagnosis from X-rays, MRIs, and histopathological 

images, significantly improving diagnostic precision [21]. 

• Agriculture: DL models detect crop diseases, classify plant species, and monitor nutrient deficiencies, enhancing agricultural produc-

tivity [22]. 

• Autonomous Vehicles: Real-time image classification systems aid object detection and road scene segmentation, contributing to 

vehicle safety and efficiency [23]. 

• Remote Sensing: DL-powered methods analyze satellite images for land use, deforestation, and urban planning, offering unparalleled 

scalability and accuracy [24]. 

2.4. Challenges and emerging trends 

Despite its success, DL in image classification faces challenges, such as the need for large labeled datasets, high computational costs, and 

interpretability concerns. To address these issues, researchers are exploring unsupervised and semi-supervised learning, lightweight models, 

and explainable AI frameworks [25]. 

3. Literature review 

This section provides a comprehensive overview of the existing body of knowledge, highlighting key findings, methodologies, and gaps 

relevant to the study. It establishes the theoretical framework and situates the current research within the broader academic discourse. 

Additionally, it identifies areas for further investigation to advance understanding of the subject: 

Sadak et al., in 2020 Provided a real-time deep-learning system for microinjection tasks' automated zebrafish embryo recognition and 

placement. It accomplished 89% mean IoU accuracy, 100% detection accuracy, and 33 FPS using YOLOv2 with a ResNet-50 backbone. 

To consistently place embryos inside the microscope's field of view, the system used bounding box localization, data augmentation, and 

transfer learning, thereby improving automation and reducing manual participation in biological microinjection applications. However, the 

system was constrained to zebrafish embryo records, which limited its application to other biological cells or settings. The authors proposed 

using domain adaptation methods to increase adaptability and applicability and extending the dataset to incorporate different biological 

cells to address this limitation [26]. 

R. J. S. Raj et al., in 2020 Provided a deep learning-based medical image classification model utilizing Optimal Feature Selection via the 

Opposition-based Crow Search (OCS) technique. The framework comprises preprocessing (histogram equalizing), feature extraction 

(GLCM and GLRLM), and deep neural network classification. On datasets for brain, lung, and Alzheimer's disease it achieved 95.22% 

accuracy, 86.45% sensitivity, and 100% specificity by methods of feature selection and computational time reduction. These results demon-

strate great potential for automated medical diagnosis. Still, the method incurred significant computing costs, which would hinder scala-

bility for large-scale projects. The authors advocated employing lightweight designs and parallel processing techniques to overcome this 

issue [27]. 

Alyoubi et al., in 2021 A deep learning-based system for lesion localization and diabetic retinopathy (DR) diagnosis was presented in this 

work On the DDR dataset it obtained 89% accuracy, 89% sensitivity, and 97.3% specificity by using CNN512 for classifying pictures into 

five DR phases and a modified YOLOv3 for lesion location. Transfer learning, data augmentation, and model fusion methods helped to 

produce these outcomes. The technique was intended to help ophthalmologists by allowing exact lesion location and accurate DR stage 

categorization. Nevertheless, unbalanced datasets hindered the effectiveness of the model, especially in the Mild and Severe DR categories, 

hence lowering sensitivity for these phases. The authors proposed balancing the dataset via data augmentation or further data collecting to 

overcome this restriction and raise sensitivity and resilience [28]. 

Hameed et al., in 2020 Presented an ensemble deep-learning system for categorizing breast cancer histomorphology photos into carcinoma 

and non-carcinoma classes. With data augmentation and 5-fold cross-valuation, the method combines fine-tuned VGG16 and VGG19 

models to provide an F1 score of 95.29%, 95.29% accuracy, and 97.73% sensitivity. Designed to provide pathologists with accurate, 

automated breast cancer detection, the method improved classification accuracy by the use of average probability fusion. The study limited 

its extension to more complicated, multi-class classification scenarios by depending on a tiny, binary-class dataset, though. The authors 

proposed increasing the amount of the dataset and using multi-class classification for other histological categories to solve this restriction 

thereby enhancing model robustness and usefulness [29]. 

In 2019 Yan et al., To evaluate breast cancer histopathology pictures, the work presented a hybrid deep learning model combining Inception-

V3 for patch-wise feature extraction and Bidirectional LSTM for image-wise classification. With fine-tuning, data augmentation, and 

multilayer feature representation, the model attained 91.3% accuracy for 4-class classification (normal, benign, in situ cancer, aggressive 
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carcinoma). Using a sizable, varied collection consisting of 3771 photos improved performance and showed promise for automated cancer 

diagnosis. Limited and varied feature representation in the model, however, caused it to show reduced classification accuracy for benign 

and normal categories. To raise classification accuracy and resilience, the authors advised increasing feature diversity for benign and 

normal categories and extending the dataset [30]. 

Welikala et al. in 2020 presented a deep learning-based system to support oral cancer screening using early identification and categorization 

of oral lesions. ResNet-101 was used for image classification; with an F1 score of 87.07% for lesion detection and 78.30% for referral case 

identification; Faster R-CNN was used for object detection and produced an F1 score of 41.18% for lesion detection. Transfer learning, 

data enrichment, and composite annotations from several doctors helped to produce these outcomes. Still, the tiny dataset, fluctuating 

image quality, and uneven annotations limited the system's performance. The writers proposed using enhanced attention techniques to 

boost consistency and performance as well as expanding the dataset size with standardized, high-quality photos [31]. 

Hadeer A. Helaly et al. in 2021 suggested utilizing CNN architectures and transfer learning with VGG19 the E2AD2C framework for early 

detection and categorization of Alzheimer's disease phases. For 2D and 3D multi-class classification, the model attained 93.61% and 

95.17% respectively; with the fine-tuned VGG19, it attained 97% accuracy. Preprocessing, data augmentation, resampling, and weight 

leveraging pre-trained helped to produce these outcomes. Along with stage detection, web apps for remote Alzheimer's screening and 

tailored advice comprised the system. Its generalizability was constrained, therefore, by the short dataset size and dependence on simple 

augmentation methods, which also limited its efficacy. The authors proposed using more varied datasets to improve the generalizability 

and resilience of the framework and include cutting-edge augmentation techniques such as GANs to handle this [32]. 

Banan et al., in 2020 proposed a VGG16-based CNN model-based deep learning-based system for automatic identification of four carp 

species. By using hierarchical feature extraction, global average pooling, and data augmentation methods, the system attained 100% clas-

sification accuracy by 5-fold cross-valuation. By addressing pragmatic demands including species monitoring and economic evaluation, 

this non-destructive approach offered a quick tool for fish species identification, thereby supporting aquaculture and fisheries management. 

The model's real-world relevance was limited, though, to controlled settings with unchanging backdrops and one fish in each photograph. 

The authors proposed using photos with natural backdrops, many fish, and improved model adaptability using sophisticated fine-tuning 

approaches to increase its resilience and generalizability and thus solve the issue [33]. 

Tulin Ozturk et al., in 2020 created the DarkCovidNet model from chest X-ray images for automatic COVID-19 detection. For binary 

classification (COVID-19 against No-Findings) the model attained 98.08% accuracy; for multi-class classification, it obtained 87.02%. 

Customized CNN architecture based on DarkNet-19 with 17 convolutional layers, data augmentation, and 5-fold cross-valuation produced 

these findings. Particularly in resource-limited regions, the model gave radiologists a quick and reasonably priced diagnostic tool to help. 

A tiny and unbalanced dataset, however, hampered the model's efficacy and hence limited its generalizability to many clinical settings. 

The authors proposed expanding the dataset with varied, high-quality photos and fine-tuning the model to increase resilience and usability 

in practical environments to solve this restriction [34]. 

Soumya Ranjan Nayak et al., in 2021 Evaluated eight pre-trained CNN models and developed a deep learning-based technique for auto-

matic COVID-19 identification using chest X-ray images. With an accuracy of 98.33% and a sensitivity of 100% for binary classification 

(COVID-19 against normal ResNet-34 showed the best result. These outcomes were obtained using hyperparameter tuning, data augmen-

tation, and transfer learning. Particularly in resource-constrained environments, the technique gave radiologists a quick and dependable 

diagnostic tool. The study's narrow dataset and emphasis on binary categorization, which limited its generalizability to more general situ-

ations, however, hindered its The writers advised broadening the dataset with varied samples and adding multi-class classification features 

to increase the model's resilience and applicability to handle this [35]. 

Muralikrishna Puttagunta and S. Ravi, in 2021 examined deep learning applications in medical image processing, with an eye toward X-

ray, CT scan, mammography, and histopathology tasks including classification, detection, and segmentation. By using feature extraction, 

transfer learning, and sophisticated architectures, they discovered that methods like CNNs, U-Net, GANs, and DenseNet attained great 

accuracy in illness identification and localization. These techniques greatly improved diagnosis efficiency and healthcare results as well as 

automating difficult activities. However, the assessment found that two main obstacles restricting the generalizability of deep learning 

models in medical image analysis are the absence of big, varied datasets and standardizing. The authors proposed creating several, high-

quality datasets and implementing consistent assessment techniques to increase the generalizability and repeatability of deep learning 

models to handle these problems [36]. 

In 2020 Argyris et al., looked examined how visual congruence, via influencer marketing on Instagram, may improve brand engagement. 

Examining over 45,000 photos using deep learning models—including VGG19, ResNet-50, and Inception-V3—they obtained an accuracy 

range of 85–95% in categorizing visual themes. The study showed that visual congruence enhanced influencer-follower interaction by 

73.5%, which then mediated rises in brand engagement. This research offered a scalable means of examining visual marketing tactics and 

revealed how common visual interests enhanced social ties and motivated customer engagement. However, the study's dependence on 

Instagram data reduced its generalizability to other social media platforms and other cultural settings. The authors proposed extending the 

research to include more platforms and using cross-cultural datasets to improve the applicability and resilience of the model to solve this 

restriction [37]. 

Abubakr et al. in 2024 investigated the application of deep learning in damage classification for reinforced concrete bridges, focusing on 

five common defects: cracks, corrosion, efflorescence, spalling, and exposed steel reinforcement. They used Convolutional Neural Net-

works (CNNs), particularly the Xception model and a Vanilla CNN. The Xception model achieved a higher accuracy of 94.95% compared 

to the Vanilla model’s 85.71%, utilizing transfer learning and depth-wise separable convolutions. Both models were trained and tested on 

the CODEBRIM dataset, with their performance validated using metrics like precision-recall and ROC curves. However, the study heavily 

depended on the CODEBRIM dataset, limiting generalizability to datasets with different defect distributions. Incorporating additional 

datasets with diverse defect types and augmenting the training data was suggested to improve the model’s adaptability [38]. 

Armstrong and Fletcher in 2019 Using Hinode/SOT data, created a convolutional neural network (CNN) for solar picture categorization. 

With 99.92% accuracy on unseen photos, the model categorized five solar features: filaments, prominences, flare ribbons, sunspots, and 

calm Sun—processing findings within 4.66 seconds. Data preparation, transfer learning, and hyperparameter optimization helped to get 

this great precision. Managing the increasing data volume in solar physics depends on quick and dependable automation of solar image 

processing, which the system supplied. The model did, however, have limited generalizability across several wavelengths and data from 

other solar observatories. The authors proposed expanding the dataset to include multi-wavelength pictures and adding other training 

techniques to improve the resilience and applicability of the algorithm to handle this [39]. 

Xiyun Yang et al. in 2021 suggested a deep learning model for UAV image-based wind turbine blade flaw detection combining AlexNet 

with transfer learning and a random forest ensemble classifier. Through random forest for robust classification and transfer learning for 

feature extraction, the approach attained an accuracy of 97.11% with a sensitivity of 87% and specificity of 100%. This technology helped 
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with maintenance by offering a non-destructive and effective means of blade inspection for wind turbines, therefore lowering running costs. 

The study's general diagnostic efficacy was restricted, nonetheless, by its detection of flaws devoid of classification or evaluation of their 

degree. The authors proposed using multi-class classification for fault kinds and severity and investigating sophisticated deep learning 

architectures to improve their diagnostic capacities and applicability to handle this [40]. 

Tang et al., in 2020 suggested a deep learning-based system employing electroluminescence (EL) pictures for automated flaw identification 

in photovoltaic (PV) modules. Generative Adversarial Networks (GANs) for data augmentation and a bespoke CNN for fault classification 

were combined in the method. Using GANs to create varied high-quality datasets and improving the CNN architecture, the technique 

attained a validation accuracy of 83% in identifying micro-cracks, breaks, and finger interruptions. Among the uses were scaled solar farms 

and better PV quality management. The model showed significant computing needs and could not identify several coexisting fault kinds, 

nevertheless. Lightweight CNN architectures tuned for real-time UAV-based operations and multi-label classification were proposed to 

handle this [41].  

K. Shankar et al., in 2020 presented the HPTI-v4 model, which used Inception-v4 with Bayesian optimization for hyperparameter tuning 

and feature extraction, histogram-based segmentation, and Contrast-limited Adaptive Histogram Equalization (CLAHE) for preprocessing. 

We used a multilayer perceptron (MLP) for classification. Utilizing preprocessing, segmentation, and parameter adjustment, the model 

attained 99.49% accuracy, 98.83% sensitivity, and 99.68% specificity on the MESSIDOR dataset. The program aimed at automated dia-

betic retinopathy detection sought to enable early diagnosis and stop visual loss. However, the model's reliance on the MESSIDOR dataset 

limited its capacity to generalize to other imaging settings. Larger, more varied datasets and the use of transfer learning approaches were 

advised to improve generalizability and adaptability [42]. 

Malhotra et al. in 2022 Emphasized applications including tumor identification and organ segmentation, the research investigated the usage 

of deep neural networks (DNNs), including CNNs, U-Net, and Mask R-CNN, for medical picture segmentation. With possible uses in 

automated illness diagnosis and treatment planning, it asserted to reach great accuracy using optimal designs and strong dataset usage. 

However, problems including data inconsistencies, improper citations, and peer-review manipulation compromised the validity of the 

paper's conclusions, therefore it was withdrawn. It was advised to guarantee thorough peer review, open data reporting, and strong adher-

ence to ethical publishing standards to handle similar problems in the next studies [43]. 

Salama and Aly, in 2021 proposed a mammography image-based deep learning-based breast cancer screening system. It applied modified 

U-Net and CNN models including ResNet50, DenseNet121, and InceptionV3 for segmentation under classification. Employing data aug-

mentation and transfer learning, the system obtained 99.43% accuracy, 99.22% AUC, and 99.12% sensitivity on the DDSM dataset. These 

results revealed lessened radiologist effort, improved detection accuracy, and automated breast cancer diagnosis performance. Therefore, 

depending on specific datasets like DDSM, MIAS, and CBIS-DDSM limited the application of the study to different demographics and 

imaging conditions. The authors suggested tackling this by means of additional imaging sources to increase dataset variation and to improve 

generalizability and robustness utilizing domain adaptation techniques [44]. 

In 2021 Yadav et al., introduced SqueezeNet and VGG-16 CNN models to provide a deep-learning approach for automated food photo 

recognition. SqueezeNet obtained an accuracy of 77.20%; VGG-16, with its deeper architecture, obtained an accuracy of 85.07%, on the 

Food-101 dataset. One arrived at these results by use of hyperparameter fine-tuning and data augmentation. The curriculum focused on 

dietary management, calorie approximations, and techniques of health-related monitoring. The study limited itself to a subset of ten food 

categories, so its generalizability to bigger datasets with more diverse food items was reduced. More food categories should be included in 

the dataset, and ensemble learning techniques should be used to increase generalizability and classification performance [45]. 

Sommer and Schumann, in 2021 investigated deep learning-based UAV type categorization using electro-optical (EO) images to handle 

UAV-induced safety concerns. It assessed two-stage techniques like Faster R-CNN and PA-FPN and single-stage models including YOLO 

and RetinaNet, with the latter obtaining greater results. ResNetV1D-152 with asymmetric loss, class-balanced sampling, and enough UAV 

resolution (≥482 pixels) produced the best classification accuracy—89.3%. Among the applications were UAV capability evaluation and 

early threat detection security systems. The study was hindered, nonetheless, by incorrect classifications brought on by overlapping detec-

tions and identical UAV appearances as well as low training data variety. Using multi-frame input and sophisticated augmentation methods 

to increase training data variety was advised as a means of addressing these problems [46]. 

Pierdicca et al., in 2023 Leveraging deep learning models like ResNet, DenseNet, InceptionV3, and Vision Transformer, the UAV4Tree 

system recognized tree species using RGB optical pictures acquired by UAVs. By up to 10%, dataset augmentation and super-resolution 

(SR-GAN) enhanced classification accuracy; on supplemented datasets, the Vision Transformer B16 model attained the best overall accu-

racy of 81%. Important strategies included learning rate changes and fine-tuning via dropout as well as using high-resolution pictures for 

optimal performance. The research used these techniques to assist in conservation, monitoring of biodiversity, and forest management. 

Variations in image perspectives, resolutions, and phenological states between training and test datasets limited the accuracy of the research, 

nevertheless. The authors proposed using sophisticated data augmentation methods to increase model resilience and generalization and 

including several datasets with thorough ground truth annotations to help solve the issue [47]. 

In 2019 Seong and Park, demonstrated a two-photon calcium imaging automated brain cell identification method. U-Net was used for 

segmentation with 93.2% accuracy; ResNet18, ResNet50, and Inception-v3 were used for transfer learning classification. By use of elastic 

deformation for data augmentation and re-training certain layers, Inception-v3 attained the highest classification accuracy of 96.17%). 

Highly relevant in high-throughput neuroscience research, these methods assisted in finding excitatory, inhibitory, and glial cells. Re-

strictions also resulted from the small and less diverse dataset of the study, which limited its generalizability to other imaging conditions, 

therefore affecting varied imaging conditions. The authors suggested utilizing more complex augmentation methods to improve model 

generalizability and resilience as well as boosting the volume and diversity of the dataset [48]. 

Nigjeh et al., in 2023 developed an automatic method for white matter lesion (WML) categorization in MRI imaging multiple sclerosis 

(MS). Its preprocessing was gray-level augmented using ResNet18 with transfer learning for classification to get a 93% accuracy. Gray-

level linear correction and data augmentation among other techniques improved lesion visibility and model performance. The system aimed 

to assist radiologists by automating WML classification, raising MS diagnosis accuracy, and thereby reducing manual work. Still, a small 

dataset reduced the generalizability of the model to various imaging settings. To address this, the authors suggested looking at customized 

CNN architectures to improve robustness and accuracy for more broad clinical usage and increasing the dataset size [49]. 

In 2024 Surya et al. created a Hierarchical feature extraction and transfer learning-based automated medical picture classification system 

utilizing PyramidNet. Among the various imaging modalities tested, X-rays, MRIs, CT scans, and histopathology slides brought the model 

an AUC score of 0.96, 92.5% accuracy, 91.2% precision, and 93.1% recall. Support for these results came from data augmentation, adaptive 

learning rates, and regularizing techniques. The technology demonstrated ability across several medical disciplines to improve diagnosis 

accuracy, efficiency, and clinical workflow quality. Still, the generalizability of the method was limited by imaging modality-specific 
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challenges and dataset heterogeneity. The authors suggested enhancing PyramidNet's architecture for some medical contexts and increasing 

dataset diversity to increase robustness and applicability to overcome this [50]. 

Table 1 provides a comparative summary of recent advances in deep learning for automated image classification, showcasing various 

algorithms (e.g., CNNs, YOLO, VGG16), datasets, and applications across domains such as medical imaging, agriculture, and environ-

mental monitoring. It highlights techniques like transfer learning, data augmentation, and ensemble methods, which have improved accu-

racy and efficiency, with results often exceeding 90%. Despite these advancements, limitations such as small, imbalanced datasets, high 

computational demands, and challenges in generalizability persist. Key recommendations for future research include expanding datasets, 

adopting lightweight models, improving augmentation techniques, and integrating advanced architectures like transformers and GANs to 

enhance model robustness and cross-domain applicability. 

 
Table 1: Comparison Summary Table of Literature Review Recent Advances in Deep Learning Techniques for Automated Image Classification 

Reference 

No., Au-
thor(s), and 

Year 

Algorithm Name 
Dataset(s) 
Used 

Accuracy 
Research 
Focus 

Meth-

ods/Tech-

niques 

Key Findings Limitations 

Future Work 

Recommen-

dations 

[26] Sadak 

et al., 2020 

YOLOv2 with 

ResNet-50 

Zebrafish 

embryo rec-

ords 

89% mean 

IoU, 

100% de-

tection 

Zebrafish 

embryo 

automa-

tion 

Bounding box 

localization, 

transfer learn-

ing 

Enhanced automa-

tion in biological 

applications 

Limited to 

zebrafish 

embryos 

Expand da-

tasets, do-

main adapta-

tion 

[27] R. J. S. 

Raj et al., 
2020 

Deep neural net-

work with OCS 

Brain, lung, 
and Alzhei-

mer's da-

tasets 

95.22% 

Medical 
image 

classifica-

tion 

Histogram 
equalization, 

GLCM, 

GLRLM 

Improved diagno-

sis with optimal 
features 

High com-

putational 
cost 

Lightweight 
designs, par-

allel pro-

cessing 

[28] 
Alyoubi et 

al., 2021 

CNN512 and 

YOLOv3 

DDR da-

taset 
89% 

Diabetic 
retinopa-

thy 

Transfer learn-
ing, data aug-

mentation 

High accuracy for 

lesion localization 

Unbalanced 

dataset 

Balance da-

taset, im-

prove sensi-
tivity 

[29] 

Hameed et 
al., 2020 

VGG16 and 

VGG19 ensemble 

Binary-class 

dataset 
95.29% 

Breast 

cancer 
detection 

Probability fu-

sion, cross-
validation 

F1 score improve-

ment through en-
semble methods 

Binary clas-

sification 
only 

Increase da-

taset size, 
multi-class 

[30] Yan et 
al., 2019 

Inception-V3 and 
BiLSTM 

3771 breast 

cancer im-

ages 

91.30% 

Breast 

cancer 
classifica-

tion 

Patch-wise 

and image-
wise classifi-

cation 

Better classifica-

tion of breast can-

cer histopathology 

Reduced ac-

curacy for 
benign/nor-

mal 

Enhance fea-
ture diversity 

[31] Wel-
ikala et al., 

2020 

ResNet-101 and 

Faster R-CNN 

Oral lesion 

images 
87.07% 

Oral can-
cer detec-

tion 

Transfer learn-
ing, data en-

richment 

Support for oral 
cancer early detec-

tion 

Small da-

taset, une-

ven annota-
tions 

Expand da-

taset, im-

prove annota-
tions 

[32] Helaly 
et al., 2021 

VGG19 

2D and 3D 

Alzheimer’s 

datasets 

97% 

Alz-

heimer’s 

detection 

Transfer learn-

ing, augmen-

tation 

Efficient Alz-

heimer’s classifi-

cation 

Small da-

taset, simple 
augmenta-

tion 

Diverse da-

tasets, GANs 
for augmenta-

tion 

[33] Banan 

et al., 2020 

VGG16-based 

CNN 

Carp spe-

cies images 
100% 

Fish spe-
cies clas-

sification 

Hierarchical 
feature extrac-

tion 

Non-destructive 
fish species identi-

fication 

Controlled 
settings 

only 

Photos with 
natural back-

drops 

[34] Ozturk 

et al., 2020 
DarkCovidNet 

Chest X-ray 

images 
98.08% 

COVID-
19 detec-

tion 

DarkNet-19, 
5-fold cross-

validation 

Quick COVID-19 
diagnosis for bi-

nary/multi-class 

Small da-

taset 

Expand da-
taset, fine-

tune model 

[35] Nayak 

et al., 2021 
ResNet-34 

Chest X-ray 

images 
98.33% 

COVID-
19 detec-

tion 

Hyperparame-

ter tuning 

ResNet-34 excels 
in binary COVID 

detection 

Binary clas-
sification 

focus 

Broaden da-
taset, multi-

class support 

[36] Putta-

gunta and 
Ravi, 2021 

CNNs, U-Net, 

GANs 

Medical im-

aging da-
tasets 

High ac-

curacy 

Medical 

image 
analysis 

Transfer learn-

ing, advanced 
architectures 

Diverse uses in 

medical image 
segmentation 

Small, non-
standard-

ized da-

tasets 

Create large, 

diverse da-
tasets 

[37] Ar-

gyris et al., 

2020 

VGG19, ResNet-
50, Inception-V3 

Instagram 
data 

85 - 95% 
Brand en-
gagement 

Visual congru-
ence analysis 

Visual marketing 

strategies im-

proved 

Instagram-

specific 

data 

Apply to 

other plat-

forms 

[38] Abu-
bakr et al., 

2024 

Xception and Va-

nilla CNN 

CODE-
BRIM da-

taset 

94.95% 

Bridge 

defect 

classifica-
tion 

Depth wise 
separable con-

volutions 

Xception outper-
forms in defect de-

tection 

Dataset de-

pendence 

Add diverse 

datasets 

[39] Arm-

strong and 
Fletcher, 

2019 

CNN 

Hi-

node/SOT 

data 

99.92% 

Solar im-

age clas-

sification 

Transfer learn-

ing, optimiza-

tion 

High-speed solar 
image processing 

Limited 

generaliza-

bility 

Include 

multi-wave-

length data 

[40] Yang 

et al., 2021 

AlexNet and 

Random Forest 

Wind tur-
bine blade 

images 

97.11% 
Wind tur-
bine in-

spection 

Random For-

est ensemble 

Robust wind tur-
bine inspection 

tool 

No fault se-
verity clas-

sification 

Multi-class 
fault classifi-

cation 

[41] Tang 

et al., 2020 

Custom CNN and 

GANs 

Electrolu-

minescence 
images 

83% 
PV defect 

detection 

GANs for 

augmentation 

PV module defect 

detection aug-
mented by GANs 

High com-
putational 

require-

ments 

Lightweight 

models for 
UAVs 

[42] Shan-
kar et al., 

2020 

Inception-v4 
MESSI-
DOR da-

taset 

99.49% 

Diabetic 

retinopa-

thy detec-
tion 

Bayesian opti-

mization 

Accurate DR de-

tection via ad-

vanced prepro-
cessing 

Dataset de-

pendence 

Add transfer 

learning 
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[43] Mal-

hotra et al., 

2022 

DNNs, including 

U-Net and Mask 

R-CNN 

Various 

medical da-

tasets 

Various 

(no spe-

cific 

value) 

Medical 

image 

segmen-

tation 

DNN optimi-

zation 

Potential in auto-

mated segmenta-

tion 

Ethical and 

consistency 

issues 

Standardize 

and validate 

datasets 

[44] 
Salama and 

Aly, 2021 

ResNet50, 
DenseNet121, In-

ceptionV3 

DDSM da-

taset 
99.43% 

Breast 
cancer 

screening 

Augmentation, 
transfer learn-

ing 

Streamlined mam-
mography work-

flows 

Limited de-
mographic 

variation 

Improve da-

taset diversity 

[45] Yadav 

et al., 2021 

SqueezeNet and 

VGG-16 

Food-101 

dataset 
85.07% 

Food 
recogni-

tion 

Hyperparame-
ter tuning, 

augmentation 

Accurate food im-

age classification 

Small food 

categories 

Expand da-
taset, ensem-

ble learning 

[46] Som-
mer and 

Schumann, 

2021 

YOLO and Reti-

naNet 

Electro-op-

tical images 
89.30% 

UAV 

classifica-
tion 

Asymmetric 

loss, sampling 

Improved UAV 

classification for 
security 

Low data 

variety 

Increase 

training data 
variety 

[47] 
Pierdicca et 

al., 2023 

ResNet, Dense-

Net, InceptionV3, 

Vision Trans-
former 

UAV RGB 

images 
81% 

Tree spe-
cies iden-

tification 

Super-resolu-
tion, augmen-

tation 

Tree species 
recognition for 

conservation 

Dataset lim-

itations 

Sophisticated 

augmentation 

[48] Seong 

and Park, 
2019 

U-Net and Incep-

tion-v3 

Multi-pho-

ton images 
96.17% 

Brain cell 

identifi-
cation 

Elastic defor-

mation 

Efficient brain cell 

identification 

Limited da-

taset diver-
sity 

Complex 

augmentation 
methods 

[49] Nigjeh 

et al., 2023 
ResNet18 

MRI images 

of MS pa-
tients 

93% 

MS lesion 

classifica-
tion 

Gray-level en-

hancement 

MS lesion identifi-

cation improve-
ments 

Small da-

taset 

Increase da-

taset size 

[50] Surya 
et al., 2024 

PyramidNet 

Various 

medical im-
aging mo-

dalities 

92.50% 

Medical 

image 
classifica-

tion 

Adaptive 
learning rates 

Hierarchical fea-

ture extraction 
benefits medical 

imaging 

Modality-

specific 

challenges 

Enhance ar-

chitecture ro-

bustness 

4. Discussion 

Emphasizing its transforming power, the examined literature shows the major developments in deep learning applications for automatic 

image categorization in several fields. With excellent identification accuracy but restricted by dataset specificity, Sadak et al. (2020) showed 

the efficiency of a YOLOv2-ResNet50 system in automating zebrafish embryo recognition. Likewise, R. J. S. Raj et al. (2020) demonstrated 

great accuracy but at the expense of computing economy by optimizing medical picture categorization using feature selection approaches. 

While Hameed et al. (2020) used VGG16 and VGG19 ensembles for breast cancer identification, highlighting ensemble learning's efficacy 

despite dataset restrictions, Alyoubi et al. (2021) enhanced diabetic retinopathy diagnosis using CNNs and YOLOv3, addressing lesion 

localization issues. For breast cancer histology, Yan et al. (2019) presented a hybrid model integrating Inception-V3 with BiLSTM, hence 

improving classification accuracy but needing more feature variety. Though both types of research suffered with dataset variety, Welikala 

et al. (2020) and Helaly et al. (2021) broad deep learning's reach to oral cancer and Alzheimer's detection respectively. While struggling 

with generalization to natural settings, Banan et al. (2020) obtained 100% accuracy in fish species recognition using VGG16-based CNN.  

Emphasizing fast diagnostic methods despite dataset constraints, COVID-19 diagnosis was notably expedited by Ozturk et al. (2020) and 

Nayak et al. (2021) utilizing DarkCovidNet and ResNet-34. Advanced models such as PyramidNet investigated by Surya et al. (2024) 

showed strong performance in medical picture classification, therefore highlighting the function of adaptive learning in tackling modality-

specific difficulties. Acknowledging the ongoing problem of tiny, non-standardized datasets, Puttagunta and Ravi (2021) further confirmed 

the value of CNNs and U-Net in different medical imaging applications, including segmentation and classification, thus improving the 

diagnosis efficiency. Armstrong and Fletcher (2019) also showed the extraordinary potential of CNN-based models in solar image classi-

fication, attaining great accuracy and processing speed while emphasizing the difficulty of generalizing across several data sources and 

wavelengths.  

Yang et al. (2021) used AlexNet mixed with random forest classifiers in agricultural settings for wind turbine blade inspection, obtaining 

strong results albeit with limits in defect severity classification. Emphasizing the application of GANs and CNNs for solar module defect 

diagnosis, Tang et al. (2020) noted increased fault detection boosted by GAN-generated data but also significant processing demands. 

Though its reliance on a single dataset is limited to more general use, Shankar et al. (2020) used Inception-v4 for diabetic retinopathy 

identification, attaining considerable accuracy with enhanced preprocessing approaches.  

Figure 3 highlights the diverse algorithms applied in automated image classification and their corresponding accuracy. Notably, VGG16-

based CNN achieved 100% accuracy for fish species classification, demonstrating the potential of specialized hierarchical feature extrac-

tion in controlled settings. Inception-v4 and ensemble methods like VGG16 and VGG19 also showed high accuracy (>99%), emphasizing 

the effectiveness of advanced architectures and ensemble learning in improving diagnostic performance. Algorithms like YOLOv2 with 

ResNet-50 and ResNet-34 effectively achieved high accuracy (above 89%) in applications requiring fast and reliable classifications. How-

ever, lower accuracy for some models, such as custom CNNs with GANs (83%), indicates challenges like computational overhead or 

dataset limitations. The discussion underscores the importance of dataset diversity, advanced architectures, and model optimization for 

enhanced generalizability and accuracy in image classification tasks. 
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Fig. 3: Accuracy by Reference and Algorithm Name. 

 

Figure 4 illustrates the frequency of different categorized methodologies and techniques employed in damage similarity analysis across 

various research. Transfer learning is the most commonly utilized method, demonstrating its adaptability in applying pre-trained models to 

other applications. Augmentation approaches, such as GANs and data augmentation techniques, are extensively employed to mitigate 

dataset restrictions and boost model resilience. Feature extraction and optimization methods are crucial for enhancing model accuracy, 

whereas sophisticated architectures such as DarkNet-19 and adjustable learning rates reflect a movement toward utilizing modern technol-

ogy for superior performance. These developments highlight the necessity of integrating several techniques to attain dependable and effec-

tive solutions. 

 

 
Fig. 4: Frequency of Grouped Methods/Techniques. 

 

The examined research taken together highlights how important deep learning is in improving accuracy and efficiency in many different 

applications. These developments highlight how clever designs such as transformers, hybrid models, and ensemble approaches combine to 

address problems including limited datasets, computational restrictions, and domain-specific adaptation. Maximizing the generalizability 

and effectiveness of deep learning applications in automated image classification will depend on addressing these constraints via dataset 

extension, multi-class classification, improved augmentation methodologies, and cross-domain adaptations. 

5. Conclusion 

Deep learning is transforming automatic picture categorization, therefore advancing fields including environmental monitoring, medical 

imaging, and agriculture. Accuracy and efficiency have been improved significantly thanks to methods including hybrid models, convolu-

tional neural networks, and transfer learning. From agriculture monitoring to disease diagnostics to renewable energy and biodiversity 

preservation, these developments have supported uses. Still, there are difficulties like limited datasets, computing requirements, and a lack 

of generalizability throughout several environments. Future work on these problems should concentrate on building big, varied datasets, 

designing lightweight models, and using innovative augmentation methods. Architectural constant change, including transformers and 

attention methods, promises to improve model performance yet more. Deep learning has great potential to transcend present constraints 

and offer creative answers to challenging categorization problems, therefore transforming its effect over additional disciplines. 
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