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Abstract 
 

Inspired by the foraging behavior of ants, the well-known metaheuristic Ant Colony Optimization (ACO) provides strong answers to 

challenging optimization issues in many spheres. This work investigates current developments in ACO algorithms with an emphasis on 

hybridization, employing methods including machine learning, adaptive mechanisms, and genetic algorithms to improve performance. 

Applications such as robotics, telecommunications, healthcare, and logistics show ACO's adaptability in handling path planning, resource 

allocation, and data optimization. Dynamic pheromone methods, multi-objective optimization, and domain-specific adaptations , which 

have raised computing efficiency, scalability, and solution quality, have been key advances. Notwithstanding these developments, problems, 

including parameter sensitivity and real-time adaptation, remain unresolved. Future studies include integrating real-time data, creating 

scalable adaptive algorithms, and tackling domain-specific restrictions to further increase ACO's relevance. This work emphasizes ACO's 

possible importance as a fundamental instrument for addressing problems of real-world optimization. 
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1. Introduction 

Inspired by ant foraging behavior, especially in their food search, Ant Colony Optimization (ACO) has become a well-known metaheuristic 

method. Originally developed in the early 1992s, ACO has evolved into a flexible instrument for addressing challenging optimization 

issues in many fields, including logistics, robotics, telecommunications, and bioinformatics [1]. The method works on pheromone deposi-

tion, in which synthetic ants travel a solution space, leaving pheromone trails guiding the next ants toward optimal solutions. This group 

behavior offers a strong basis for addressing combinatorial optimization problems, including the Traveling Salesman Problem (TSP) and 

vehicle routing concerns, since it reflects the natural process of ants discovering the most effective path to food sources [2] [3]. 

Recent ACO improvements have focused on increasing its efficiency and applicability using several changes and hybrid approaches. Re-

searchers have looked at multi-objective optimization techniques, allowing Ant Colony Optimization (ACO) to solve problems like cost, 

time, and quality with numerous conflicting objectives [4][5]. These improvements have significantly reduced processing time and better 

solution quality, hence establishing ACO as a preferred choice for complex real-world uses. Combining Ant Colony Optimization (ACO) 

with other optimization techniques, such as particle swarm optimization and genetic algorithms, has generated hybrid models that make 

use of the benefits of both approaches to achieve improved performance [6 - 8]. 

ACO's versatility is well shown by its application in several fields. Ant Colony Optimization (ACO) has been applied successfully in 

logistics to improve supply chain management and routing problems, therefore lowering operating costs and raising efficiency [9- 11]. In 

robotics, ACO has been utilized for path planning, enabling robots to navigate complex environments while avoiding obstacles [12- 14]. 

Furthermore, proving its adaptability throughout many issue areas, ACO has been applied in bioinformatics for protein interaction predict-

ing and in telecommunications to improve network routing [15 – 17]. 

The constant improvement of ACO methods has produced customized variants meant for certain uses. Particularly helpful in situations 

like traffic control and drone path optimization, the application of dynamic ACO algorithms helps real-time adjustments in response to 

changing surroundings [18] [19]. The adoption of multi-colony approaches has been proposed to improve exploration capacity and avoid 

local optima, hence strengthening the general resilience of the algorithm [20] [21]. These innovations reflect the ongoing research efforts 

to address traditional ACO's limitations and expand its applicability. 

http://creativecommons.org/licenses/by/3.0/
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In the end, the study of present advancements in Ant Colony Optimization reveals a dynamic and growing discipline that keeps expanding 

the boundaries of optimization strategies. Its relevance as a strong tool for addressing difficult optimization problems is shown by the 

integration of ACO with other methods, the creation of variants, and its effective use over numerous sectors. As researchers are developing 

ACOs and thereby enhancing both theoretical and practical applications, they would gain considerably from such improvements; hence, 

the ability of ACOs to solve practical problems is still great. 

This review aims to explore recent advancements in Ant Colony Optimization (ACO) algorithms, focusing on their hybridization with 

other techniques, enhanced scalability, and dynamic adaptation mechanisms. The study aims to evaluate ACO's applications in diverse 

fields such as robotics, telecommunications, and healthcare, while identifying challenges and future directions for improved real-world 

implementation. 

Section 2 outlines the remaining work, providing a brief review of current developments in Ant Colony Optimization, including their uses 

and enhancements. Together with the most important conclusions, Section 3 shows the results of the review analysis. Section 4 discusses 

the review study. Section 5 compiles the research findings for future directions and concludes the study. 

2. Background theory 

Ant Colony Optimization (ACO) is a nature-inspired metaheuristic algorithm that simulates the foraging behavior of ants to solve complex 

optimization problems. Since its inception, ACO has been widely adopted for applications ranging from network routing to machine sched-

uling and robotic path planning. Recent advancements in ACO emphasize its expanded applications and significant algorithmic improve-

ments to address computational efficiency, adaptability, and scalability [1]. 

 

 
Fig. 1: Choice of the Shortest Path by an Ant Colony. After Dispersing the Pheromone Along Its Course, an Ant Discovers A Food Source (F) and Then 
Returns to the Nest (N) [22]. 

2.1. Theoretical foundations 

The ACO algorithm is based on indirect communication via pheromones, in which artificial ants iteratively develop solutions and deposit 

pheromones to instruct future ants. ACO algorithms are distinguished by their positive feedback mechanism, distributed computing, and 

capacity to generate approximation solutions to NP-hard problems. The algorithm's versatility enables it to combine with other metaheu-

ristics and optimization approaches, increasing its effectiveness [24 – 26]. 

2.2. Key improvements in ACO algorithms 

Hybrid Approaches: Recent years have seen a lot of research on the hybridization of ACO with techniques such as particle swarm optimi-

zation (PSO) and genetic algorithms (GA). By integrating the capabilities of many approaches, these hybrids seek to exceed ACO's con-

straints like delayed processing and premature convergence. For UAV route planning, for example, the merging of ACO with sparrow 

search has been used to provide improved outcomes in collaborative evolution and pheromone updating techniques [23]. 

Dynamic Pheromone Strategies: Using adaptive pheromone updates and unequal pheromone distribution will help to raise convergence 

rates. Such improvements maximize the exploration-exploitation trade-off, which is essential for real-time applications like multi-trip 

vehicle routing difficulties [26]. 

Multi-Objective Optimization: Multi-objective ACO versions have become very popular in handling issues with competing objectives, 

including energy efficiency and work offloading in-vehicle edge computing [25]. These approaches often incorporate Pareto front strategies 

to balance different optimization criteria effectively. 

Algorithmic Speed and Scalability: The computing performance of ACO is more improved in using clustering-based preprocessing and 

graph reduction methods. For 3D path planning in robotic systems, for instance, multi-algorithm hybrid ant colony optimizers (MAHACO) 

have shown promise [25]. 

Domain-Specific Adaptations: Customizing ACO for particular uses has produced creative modifications like enhanced defect diagnosis 

in milling machines utilizing convolution neural networks mixed with ACO [27], and optimization in healthcare task scheduling leveraging 

runtime-aware algorithms. 

2.3. Expanding applications 

The adaptability of ACO is evident in its growing application domains: 

• Transportation and Logistics: ACO has proved essential in vehicle routing issues by including dynamic needs and diverse fleet 

concerns [28]. 

• Robotics: Multi-objective methods and farthest-point optimization using enhanced ACO algorithms guide robot path planning [29]. 
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• Wireless Networks: ACO maximizes safe path planning and resource allocation in UAV communication networks by use of block-

chain architectures [30]. 

• Healthcare and Edge Computing: Task scheduling in cloud-based healthcare systems evidence ACO's capacity to maximize resource 

allocation [31]. 

2.4. Challenges and future directions 

ACO still has problems like parameter sensitivity, scalability to bigger datasets, and real-time implementation, notwithstanding recent 

developments. More strong hybrid algorithms, incorporating machine learning for adaptive parameter tweaking, and improving ACO's 

applicability in dynamic, real-world contexts are among future fields of research. 

3. Literature review 

This part offers a thorough review of the body of knowledge already in use, stressing important results, techniques, and gaps pertinent to 

the project. It provides the theoretical basis and places the present research in the larger scholarly debate. This part points out topics of 

additional research to progress knowledge of the issue: 

Particularly for the Traveling Salesman Problem (TSP), Y. Liu and Cao in 2020 presented an upgraded Ant Colony Optimization (ACO) 

algorithm using the Levy flight to boost solution diversity and efficiency. Although the study mostly concentrates on TSP benchmarks, 

showing notable performance improvements and needing 42% fewer iterations than Max-min ACO and surpassing other state-of-the-art 

solvers. This restriction limits its application range and leaves scalability to unknown challenging real-world issues void. Future studies 

could stretch the Levy ACO to several real-world optimization problems and include adaptive parameter tweaking to improve scalability 

and resilience over several domains, so overcoming this restriction [32]. 

Presenting an Adaptive Ant Colony Algorithm (AACO) for global path planning in autonomous cars, Y. Li et al. in 2021 showed notable 

increases in path quality, convergence speed, and resilience in stationary situations. Its main restriction, though, is its emphasis on stationary 

settings, which limits its efficacy in dynamic, real-world situations, including moving impediments. Future studies could improve AACO 

by including real-time obstacle recognition and predictive motion planning, therefore allowing the algorithm to dynamically change to fit 

changing surroundings and increase its practical relevance [33]. 

González et al. in 2022, using multi-colony and asynchronous distributed techniques to improve efficiency and scalability, introduced a 

new parallel Ant Colony Optimization (ACO) framework intended for High-Performance Computing (HPC) scenarios. Although it shows 

notable performance gains, especially in solving challenging problems like the Traveling Salesman Problem (TSP), a drawback is that the 

framework may need considerable tuning for cases or different HPC architectures, restricting its general relevance. Developing adaptive 

tuning mechanisms and automated configuration tools could help to accomplish this by facilitating optimization and lowering the demand 

for hand adjustments, thereby improving the usability of the framework in several situations [34]. 

In 2021 Dahan et al. developed the EFACO - Enhanced Flying Ant Colony Optimization algorithm, which uses a multi-pheromone distri-

bution technique and an efficient adjacent selection process to improve QoS-aware web service composition. By addressing both explora-

tion and exploitation, this method is claimed to suitably handle the combinatorial optimization problem of online service selection in terms 

of QoS criteria, including cost, response time, availability, and dependability. In 13 out of 22 datasets connected to the problem, EFACO 

is shown to be more efficient than current methods, hence, the suggested solution helps to reach improved quality of services. Still, it 

should be remembered that a limited flying ant process does result in a loss in solution quality. Future research may use adaptive parameters 

to be able to control the execution of the algorithm depending on the feedback obtained to enhance solution quality and execution efficiency 

[35]. 

Zhang, Pu, and Si, in 2021, using non-uniform starting pheromone distribution and a pheromone diffusion model to maximize exploration 

and lower convergence difficulties, proposed an Adaptive Improved Ant Colony System (AIACSE) for mobile robot path planning. Alt-

hough the method exhibits better effectiveness in stationary contexts, its emphasis on these conditions limits it and calls for more study for 

dynamic situations. Integrating real-time sensor data and adaptive learning techniques would help the AIACSE to constantly modify its 

path planning in response to changing surroundings, hence increasing its relevance in useful contexts [36]. 

In 2020, Ding et al.. proposed an Improved Ant Colony Algorithm (IMACA) for best band selection in remotely sensed hyperspectral 

images. Incorporating a pre-filter and an adaptive information update strategy helps the method improve convergence and population 

diversity, hence enhancing the basic Ant Colony Algorithm (ACA). Using three public databases, Indian Pines, Pavia University, and 

Botswana, the methodology assesses performance. Reaching the best overall classification accuracy, the method often beats benchmarks. 

Crucially, IMACA-BS improves classification performance far more than conventional techniques. The fact that the process of parameter 

optimization in this work is labor-intensive and time-consuming indicates the need for more effective techniques. Using automated param-

eter tuning techniques, including evolutionary algorithms or Bayesian optimization, could help to simplify the optimization process [37]. 

In 2022 Manogaran et al. presented a fitness-based ant colony optimization (FACO) method meant to improve electric vehicle (EV) driving 

range. Using a two-phase model for both conditional route finding and sustained traversing, depending on the FACO method while max-

imizing route efficiency, the algorithm emphasizes reducing travel time and energy usage. Important findings show that FACO retains 

7.15% of charge, increases driving distance by 28.58%, and lowers power depletion by 51.99%, thereby improving routing performance. 

The research ignores the incorporation of real-time traffic data, which can improve the routing efficiency of electric cars even more. Future 

studies should include real-time traffic data and dynamic charging station availability into the FACO algorithm to improve the routing 

efficiency of electric vehicles, hence enabling adaptive route optimization depending on current conditions [38]. 

H. Wang, Zhang, and Dong in 2022, investigated an enhanced Ant Colony Optimization (ACO) method for path planning of Unmanned 

Surface Vehicles (USVs) combined with an Immune Algorithm (IA). The IA-IACO model improves optimization efficiency depending on 

methods including pheromone generation and change of transition probability. Convergence speed and global path planning efficacy show 

notable increases in the algorithm. One of the significant outcomes is the effective simulation demonstrating the superiority of the algorithm 

in useful applications. The study does not, however, assess the performance of the algorithm in highly dynamic settings, thus restricting its 

relevance. Future studies should include adaptive methods to properly manage dynamic situations during path planning for USVs, thereby 

increasing the applicability of the algorithm [39]. 

Liang and Wang in 2020, Depending on the method applied to address the traveling salesman problem (TSP), presented a hybrid method 

combining the Genetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACOA) to maximize marine investigation path planning. 

In studies of marine resources, the model greatly increases efficiency and lowers expenses. The significant outcome shows that this hybrid 
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strategy, which shows better resilience and solution quality than conventional techniques, clearly finds ideal routes for research vessels. 

The generalizability of the findings may be affected, therefore, by a restriction of this study whereby the complexity of many marine 

ecosystems may not be entirely explained. Future studies should include real-world marine environmental factors and limitations in the 

model to increase its resilience and generalizability, hence improving the applicability of the method [40]. 

X. Chen et al., in 2020, investigated, utilizing Ant Colony Optimization (ACO) approaches, the AI-empowered path selection in Wireless 

Sensor Networks (WSNs). It groups models into stationary and mobile networks and describes several ACO techniques meant to maximize 

data flow. One of the main outcomes is the thorough review of ACO techniques that noticeably improve WSN performance. The report 

does not, however, include a thorough comparison of many ACO approaches. Extensive comparative studies and empirical evaluations of 

ACO techniques should be part of future studies to improve their usability and efficacy in practical situations [41]. 

In 2021, Imtiaz et al. suggested the Multi-Layer Ant Colony Optimization (MLACO) method. It uses Kernel K-means (KKM) and Ratio 

Cut (RC), depending on the approach as objective functions. Three big-scale datasets allow the model to show efficiency. Based on 

measures including modularity and Normalized Mutual Information (NMI), the approach beats current techniques. One significant outcome 

shows its better performance in both synthetic and actual networks. The effect of different network architectures on the performance of the 

algorithm is not, therefore, thoroughly discussed in this work. Future studies should investigate the algorithm's adaptability across various 

network configurations and apply dynamic changes depending on network features to improve its robustness [42]. 

Sangeetha et al., in 2021, proposed the Green Ant Colony Optimization (GDGACO) algorithm intended for effective path planning in 

dynamic 3D environments. It combines Octrees for effective spatial representation and uses a gain function-based pheromone augmentation 

method to maximize energy use. With thorough simulations confirming its efficacy, the method shows considerable increases in path length, 

calculation time, and energy efficiency when compared to conventional approaches. Its main emphasis on energy efficiency, which could 

overlook other crucial factors like real-time adaptation and scalability in complicated situations, limits us, though. Future studies could 

combine adaptive mechanisms and scalability elements addressing real-time environmental changes and challenging barrier scenarios to 

surpass the GDGACO algorithm [43]. 

In 2021 Tabrizi, Reza, and Jameii developed a nanite drug delivery adaptive algorithm combining Ant Colony Optimization (ACO) methods 

with Reinforcement Learning. This concept aims to improve autonomous path planning for nanites such that their navigation efficiency is 

much raised, and path lengths are shortened. The ability of the method to recalculate optimal pathways in real-time improves decision-

making accuracy in dynamic medical environments using its capacity. The paper does not, however, thoroughly address the scalability of 

the algorithm in more complicated and larger biological systems, therefore perhaps influencing its real-world application. Aiming for higher 

scalability in intricate biological systems, future studies should try to develop adaptive algorithms using multi-layered models and real-

time data [44]. 

Gong et al. in 2022, using grid mapping and self-adaptive parameters, presented a Parallel Self-Adaptive Ant Colony Optimization Algo-

rithm (PSAACO) for UAV path planning in Cloud IoT. Depending on the method, it uses parallel computing together with inversion and 

insertion operators to improve efficiency. An important model is the dynamic Floyd algorithm for no-fly zone avoidance. Particularly in 

complicated contexts, the major outcome shows that PSAACO drastically lowers energy usage and completion time compared to current 

methods. The study does not, however, really investigate real-time adaptation in fast-changing environments. Including machine learning 

methods for dynamic course alterations depending on environmental changes would help to increase real-time flexibility and hence oper-

ational efficiency of the UAV [45]. 

Kalantari, Ebrahimnejad, and Motameni 2020 put forward a dynamic software rejuvenation method meant to reduce software aging in 

online services. To improve server choice and availability, depending on the technique it combines Ant Colony Optimization (ACO) with 

Gravitational Emulsion Local Search (GELS). The method emphasizes finding ideal rejuvenation times to reduce failure rates. One signif-

icant outcome showed a 28% drop-in failure rates relative to current approaches. This work does not, however, address the fundamental 

reasons for software aging, which might continue even with efforts at rejuvenation. Regular maintenance and root cause investigation, 

along with improved monitoring and load balancing, help greatly reduce software aging problems in online services [46]. 

Wu et al. in 2022, proposed the Modified Adaptive Ant Colony Optimization Algorithm (MAACO), hence improving conventional ACO 

methods for mobile robot path planning. It uses an unequal initial pheromone distribution to maximize search efficiency, modulates state 

transition probability, and uses a heuristic method, including orientation information to increase convergence speed. Tested in five station-

ary and one dynamic situation, the model shows notable gains over 13 current methods, including shorter path lengths and fewer twists. 

The main finding shows a 22.2% decrease in turn times relative to the best current approaches. The restrictions, however, include a dearth 

of thorough testing in extremely dynamic settings, which might compromise MAACO's resilience. Future studies should concentrate on 

thorough testing in many highly dynamic environments and real-world scenarios to evaluate MAACO's adaptability and efficiency, 

strengthening its robustness [47]. 

In 2020, Mendonça et al., emphasizing swarm robotics concepts, presented a Multi-Robot System (MRS) for victim rescue missions. Using 

a Fuzzy Logic Controller (FLC), a Dynamic Fuzzy Cognitive Map (DFCM), and DFCM with Ant Colony Optimization (DFCM-ACO) 

models depending on the method. To assess efficiency, the algorithms run through real-life situations. Important findings reveal that DFCM-

based methods maintain performance while using less processing time and traveling lesser distances. The fact that this study depends on 

simulated environments limits it since they might not completely reflect the complexity of the real world. Future studies should combine 

physical testing in several settings with simulation to better depict difficult conditions in victim rescue operations, hence mastering real-

world applicability [48]. 

Jiang et al. (2020) proposed for the best path seeking and control of mobile robots in different situations a hybridized Advanced Sine-

Cosine Algorithm (ASCA) and Advanced Ant Colony Optimization (AACO). Based on the approach, the models improve navigation by 

using real-time obstacle detection. The method chooses optimum standpoints and efficiently determines the worldwide best locations for 

robots. An interesting outcome shows a 10.21% increase in path length efficiency over current techniques. The scalability of the suggested 

methods in bigger or more complicated environments is not thoroughly discussed in the work, though. Adaptive algorithms for better 

scalability in challenging contexts should be developed in the next studies [49]. 

In 2021, Thirugnanasambandam et al. 2021 investigated a new method for Document Information Retrieval (DIR) based on fuzzy C-means 

clustering and ant colony optimization. Based on these methods, the suggested model intelligibly searches clusters to extract pertinent 

information and efficiently preprocesses documents. Retention efficiency across small, medium, and large document sizes showed notable 

increases under the method. The study's restriction, however, is in its reliance on the quality of the input data, which might influence general 

performance. Using data quality assessment techniques could help to improve the preprocessing step [50]. 

In 2020, Luo et al., depending on methods that improve search efficiency and convergence speed, presented an enhanced ant colony opti-

mization algorithm for mobile robot path planning. The method avoids local optima by using pseudo-random path selection models and 

unequal starting pheromone distribution. Deadlock is addressed using a dynamic punishment approach, therefore improving the worldwide 
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search capability. The complexity of the study, which can impede real-time implementations, is its drawback, though. One possible fix is 

to streamline the method for quicker running without sacrificing its efficiency [51]. 

Z. Li et al. (n.d. in 2022) investigated a Floyd-based improved ant colony algorithm for mobile robot path planning. This approach uses a 

multi-objective optimization model including path length, safety, and energy consumption. The method uses a fallback approach to direct 

ants and raises pheromone levels, therefore enhancing path quality and convergence speed. The effective reduction of local optima and 

path length by quadratic B-spline optimization is one of the significant outcomes. The study might, however, lack thorough practical testing 

of the suggested model. Using simulations in various surroundings could help one overcome issues by verifying the resilience of the method 

[52]. 

Onan in 2023, proposed the SRL-ACO framework to improve training sets for NLP models by use of Semantic Role Labeling (SRL) and 

Ant Colony Optimization (ACO). SRL detects semantic roles depending on the method, while ACO generates fresh phrases, therefore 

enhancing models such as classifiers for sentiment analysis and sarcasm detection. One of the significant outcomes is the shown 

performance increase over seven text classification challenges. The study might, however, lack a thorough assessment across several 

languages and circumstances. Future studies should incorporate a greater spectrum of datasets and languages to demonstrate the universal 

efficacy of the framework and help to address this [53]. 

In 2020, Yi et al. proposed the use of an enhanced Ant Colony Algorithm to optimize tasks in distributed Cyber-Physical Systems (CPS). 

Based on this approach, a task management model is suggested to improve the efficiency of resource allocation. The method uses adaptive 

mechanisms to achieve higher convergence speed and adaptability, thereby improving task scheduling quality and local search capacity. 

The study's shortcomings, meanwhile, include a dearth of thorough real-world application testing to support the efficacy of the suggested 

methodology. By doing such tests across different CPS contexts, the effectiveness of the model would be improved through insightful 

validation and validation for more enhancement [54]. 

S. Li et al., in 2022, suggested a concept of tourism route optimization concentrated on raising tourist attraction income and satisfaction. 

For efficient data processing, depending on the method, it makes use of random sampling and hierarchical clustering. Improved by a 

bacterial foraging algorithm, the models include a knowledge-based hybrid Ant Colony Algorithm. One significant outcome of this work 

is the efficacy of the method in identifying the best options for different travel preferences. Nevertheless, the restrictions include a possible 

lack of relevance in practical situations resulting from simplistic presumptions. Including real-world factors such as seasonal variations 

and different visitor behavior in the next models, could improve their practical relevance and efficiency [55].  

In 2021, Zhang et al. presented EACSPGO, a hybrid method for mobile robot path planning to combine a local optimization algorithm 

grounded on geometric features with improved ant colony optimization strategies. Among the models are an unequal starting allocation 

method and a simplified pheromone diffusion model. The significant outcome reveals that in terms of adaptability, stability, and conver-

gence speed, EACSPGO beats conventional methods. One drawback of complicated ecosystems is possible processing overhead. I believe 

that future studies should concentrate on maximizing the computing efficiency of the method to overcome this restriction even more [56]. 

Table 1 summarizes advancements in Ant Colony Optimization (ACO) algorithms, focusing on diverse applications such as robotic path 

planning, logistics optimization, healthcare scheduling, and hyperspectral image processing. It outlines key methods like hybrid algorithms, 

dynamic pheromone strategies, and multi-objective optimization, highlighting improvements in efficiency, scalability, and solution quality. 

Despite these advancements, challenges such as parameter sensitivity, lack of real-time adaptation, and dataset dependency persist. Future 

directions emphasize real-time data integration, automated parameter tuning, and enhancing generalizability for dynamic, large-scale prob-

lems. The table showcases ACO's versatility and its evolving role in solving complex optimization tasks. 

 
Table 1: Comparative Summary Table of Ant Colony Optimization (ACO) Algorithms: Algorithms, Research Focus, Applied Techniques, Key Findings, 

Limitations, and Future Work Directions Across Diverse Domains 

Ref. 
No., 

Year 

Algorithms 
Research Fo-

cus 
Methods/Techniques Key Findings/Outcomes Limitations 

Future Work Recom-

mendations 

[32]. 

In 
2020 

Levy-ACO 

Enhancing 

TSP optimiza-
tion 

Levy flight-en-

hanced ACO 

Improved solution diver-
sity and efficiency, 42% 

fewer iterations vs. Max-

min ACO 

Limited to TSP 
benchmarks; scalabil-

ity for real-world is-

sues unknown 

Extend Levy ACO to 
real-world problems, 

including adaptive pa-

rameter tuning 

[33]. 
In 

2021 

Adaptive Ant 
Colony 

(AACO) 

Path planning 
for autono-

mous vehicles 

Adaptive mechanism 
for stationary envi-

ronments 

Improved path quality, 
convergence speed, and 

resilience 

Limited to stationary 

conditions; not appli-

cable to dynamic sce-
narios 

Integrate real-time ob-

stacle recognition and 

predictive motion plan-
ning 

[34]. 

In 

2022 

Parallel ACO 

High-perfor-

mance compu-

ting 

Multi-colony, asyn-

chronous distributed 

framework 

Improved scalability and 

efficiency in solving 
complex problems like 

TSP 

Requires significant 

tuning for specific 

HPC architectures 

Develop adaptive tun-

ing mechanisms and 
automated configura-

tion tools 

[35]. 

In 
2021 

EFACO 

QoS-aware 

web service 
composition 

Multi-pheromone 

distribution and effi-
cient selection 

Improved QoS perfor-

mance in service selec-
tion 

Limited flying ant 

process impacts solu-
tion quality 

Use adaptive parame-
ters for better control 

and improved solution 

quality 

[36]. 
In 

2021 

Adaptive Im-

proved ACS 

Robot path 

planning 

Non-uniform start-
ing pheromones, dif-

fusion model 

Better effectiveness in 

stationary conditions 

Focused only on sta-

tionary conditions; 

lacks dynamic sce-
nario application 

Incorporate real-time 

sensor data and adap-

tive learning tech-
niques 

[37]. 

In 

2020 

IMACA 

Band selection 

for hyperspec-

tral imagery 

Pre-filter, adaptive 
info update 

Enhanced convergence 

and diversity, superior 

classification accuracy 

Parameter optimiza-
tion is labor-intensive 

Employ automated pa-

rameter tuning like 
evolutionary or Bayes-

ian methods 

[38]. 

In 
2022 

FACO 

Route optimi-
zation for 

electric vehi-

cles 

Two-phase condi-

tional route finding 

Improved driving range, 

energy use, and effi-
ciency 

No incorporation of 

real-time traffic data 

Add real-time traffic 
data and dynamic 

charging station availa-

bility 

[39]. 
In 

2022 

IA-IACO 
USV path 

planning 

Immune algorithm 

integrated with ACO 

Enhanced convergence 
speed and planning effi-

cacy 

No testing in highly 

dynamic settings 

Incorporate adaptive 

methods for better han-

dling of dynamic sce-
narios 
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[40]. 

In 

2020 

Hybrid GA-

ACO 

Marine inves-

tigation path 

planning 

Genetic algorithm 

with ACO 

Improved efficiency and 

cost reduction 

Lacks generalizabil-

ity for complex ma-

rine ecosystems 

Include real-world ma-

rine environmental fac-

tors 

[41]. 

In 

2020 

ACO Variants 

Path selection 

in wireless 
sensor net-

works 

Review of stationary 

and mobile network 

techniques 

Improved WSN perfor-
mance 

Lack of extensive 
comparative studies 

Perform comparative 

studies and empirical 

evaluations 

[42]. 

In 
2021 

MLACO 

Community 

detection in 
networks 

Kernel K-means, 

Ratio Cut 

Superior performance in 

synthetic and real-world 
networks 

Limited discussion on 
adaptability across di-

verse network config-

urations 

Explore adaptability 

across various network 
structures 

[43]. 
In 

2021 

GDGACO 
Path planning 
in 3D dynamic 

environments 

Octrees and gain-
based pheromone 

augmentation 

Increased energy effi-
ciency and shorter path 

lengths 

Limited focus on 
real-time adaptation 

and scalability 

Combine adaptive 

mechanisms to address 

real-time environmen-
tal changes 

[44]. 

In 

2021 

ACO with Rein-

forcement 

Learning 

Nanite drug 

delivery path 

planning 

Real-time recalcula-
tion capability 

Improved navigation ef-

ficiency in medical envi-

ronments 

Scalability in larger 

biological systems 
not thoroughly ex-

plored 

Develop scalable algo-

rithms using multi-lay-
ered models and real-

time data 

[45]. 
In 

2022 

PSAACO 
UAV path 
planning in 

Cloud IoT 

Grid mapping, self-

adaptive parameters 

Reduced energy usage 

and completion time 

Lack of real-time ad-

aptation 

Integrate machine 
learning for dynamic 

course alterations 

[46]. 

In 
2020 

ACO with 

GELS 

Software reju-

venation 

Dynamic rejuvena-

tion schedules 

Reduced failure rates in 

online services 

No focus on the root 

causes of software 
aging 

Combine rejuvenation 
with root cause analy-

sis and improved moni-

toring 
[47]. 

In 

2022 

MAACO 
Mobile robot 
path planning 

Unequal pheromone 

distribution, heuris-

tic method 

Shorter paths, reduced 
twists 

Insufficient testing in 

highly dynamic envi-

ronments 

Conduct testing in dy-

namic real-world sce-

narios 

[48]. 
In 

2020 

DFCM-ACO 
Multi-robot 
rescue mis-

sions 

Dynamic fuzzy cog-

nitive map 

Better performance with 

less processing time 

Dependence on simu-

lated environments 

Combine physical test-

ing with simulations 

for better real-world 
applicability 

[49]. 

In 

2020 

ASCA-ACO 
Mobile robot 

navigation 

Advanced sine-co-

sine with ACO 

Improved navigation ef-

ficiency 

Scalability for larger 

environments not ad-

dressed 

Focus on scalable 

adaptive algorithms for 

complex scenarios 

[50]. 
In 

2021 

Fuzzy C-means 

with ACO 

Document in-
formation re-

trieval 

Cluster-based intelli-

gent preprocessing 

Increased retention effi-

ciency 

Relies on input data 

quality 

Integrate data quality 

assessment techniques 

[51]. 
In 

2020 

Enhanced ACO 
Mobile robot 

path planning 

Pseudo-random path 

selection 

Improved search effi-
ciency and global search 

capability 

High complexity af-
fects real-time imple-

mentation 

Simplify methods for 
faster execution with-

out losing efficiency 

[52]. 
In 

2022 

Floyd-based 

ACO 

Mobile robot 

path planning 

Multi-objective opti-

mization model 

Better path quality and 

convergence speed 

Lack of thorough 

practical testing 

Use diverse simula-
tions to verify model 

resilience 

[53]. 
In 

2023 

SRL-ACO 
Text augmen-

tation for NLP 

Semantic role label-

ing and ACO 

Improved performance 
across text classification 

tasks 

Limited assessment 
across languages and 

contexts 

Expand to more da-

tasets and languages 

[54]. 

In 
2020 

ACO with 

Adaptive Mech-
anisms 

Cyber-Physi-
cal Systems 

task optimiza-

tion 

Adaptive scheduling 

for efficiency 

Enhanced convergence 

speed and task schedul-
ing quality 

Insufficient real-

world application 
testing 

Validate across differ-

ent CPS contexts 

[55]. 

In 

2022 

Hybrid ACO 
with BFA 

Tourism route 
optimization 

Knowledge-based 
hybrid algorithm 

Improved tourist satis-
faction and income 

Simplistic assump-

tions affect real-

world relevance 

Incorporate real-world 

factors like seasonal 

variations 
[56]. 

In 

2021 

EACSPGO 
Mobile robot 
path planning 

Geometric feature-

based local optimi-

zation 

Superior adaptability, 

stability, and conver-

gence speed 

Processing overhead 

in complex ecosys-

tems 

Optimize computing 

efficiency for complex 

environments 

4. Discussion 

The advancements in Ant Colony Optimization (ACO) have significantly enhanced its performance and applicability across various do-

mains. Liu and Cao (2020) introduced a Levy-ACO algorithm, which utilizes Levy flights to improve solution diversity and efficiency, 

achieving 42% fewer iterations compared to Max-min ACO for the Traveling Salesman Problem (TSP). However, its focus on benchmark 

problems limits its scalability to real-world applications, necessitating future research on adaptive parameter tuning. Similarly, Li et al. 

(2021) developed the Adaptive Ant Colony Algorithm (AACO) for autonomous vehicle path planning, demonstrating improved path qual-

ity and resilience in stationary environments. This method's limitation lies in its lack of adaptation to dynamic scenarios, suggesting a need 

for real-time obstacle recognition and motion prediction. 

In the realm of high-performance computing, González et al. (2022) proposed a Parallel ACO framework using multi-colony and asyn-

chronous distributed techniques, achieving notable scalability and efficiency improvements. However, the framework's dependency on 

specific HPC architectures poses challenges for broader applicability. Adaptive tuning mechanisms and automated configuration tools are 

recommended for further enhancement. Dahan et al. (2021) developed EFACO for QoS-aware web service composition, leveraging multi-

pheromone strategies for improved service selection. Despite its success, the limited flying ant process affects solution quality, highlighting 

the need for adaptive control to balance exploration and exploitation. 

For robotics, Zhang et al. (2021) introduced the Adaptive Improved ACS (AIACSE) with a non-uniform starting pheromone distribution, 

enhancing robot path planning in stationary conditions. Its applicability to dynamic environments is limited, calling for integration with 

real-time sensor data and adaptive learning. Ding et al. (2020) proposed IMACA for hyperspectral image band selection, utilizing pre-
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filters and adaptive information updates for superior classification accuracy. However, the labor-intensive parameter optimization process 

necessitates automated techniques such as evolutionary algorithms. 

In energy-efficient transportation, Manogaran et al. (2022) presented the FACO algorithm for electric vehicle routing, improving energy 

usage and driving range. The exclusion of real-time traffic data limits its practical relevance, suggesting future integration of dynamic 

traffic and charging station availability. Wang et al. (2022) developed the IA-IACO model for unmanned surface vehicle path planning, 

combining immune algorithms with ACO for enhanced convergence. This method's performance in highly dynamic settings remains un-

tested, pointing to opportunities for adaptive strategies to manage environmental variations. Liang and Wang (2020) combined Genetic 

Algorithms with ACO for marine investigation path planning, demonstrating efficiency and cost reductions. However, its generalizability 

to complex marine ecosystems requires further exploration of environmental factors. 

 

 
Fig. 2: Distribution of Ant Colony Optimization (ACO) Algorithms with Algorithm Name. 

 

Figure 2 illustrates the distribution of Ant Colony Optimization (ACO) algorithms, highlighting their grouping into Standard Algorithms, 

Adaptive Algorithms, and Similarity-Based Algorithms. Standard Algorithms, including Levy-ACO, Parallel ACO, FACO, and ACO 

Variants, dominate with 44.4%, reflecting their foundational role in optimization studies. Adaptive Algorithms, such as AACO, Adaptive 

Improved ACS, and IMACA, account for 33.3%, showcasing their importance in dynamic and scalable applications. Lastly, Similarity-

Based Algorithms, which include EFACO, IA-IACO, and Hybrid GA-ACO, represent 22.2%, emphasizing their hybrid and domain-spe-

cific enhancements. This distribution underscores the evolving focus on adaptability and hybrid approaches to address complex, real-world 

challenges. 

 

 
Fig. 3: Revised Distribution of Methodology / Techniques in ACO Algorithms. 

 

Figure 3 illustrates the distribution of merged methodologies and techniques in ACO algorithms. Optimization Techniques are the most 

prominent, comprising 56.3%, emphasizing their importance in enhancing algorithmic efficiency. Adaptive Techniques follow at 25.0%, 

reflecting the growing focus on dynamic and scalable solutions. AI-based techniques account for 12.5%, highlighting their role in hybrid 

approaches. Finally, Data Processing Techniques represent 6.3%, showcasing their application in pre-processing tasks. This distribution 

reveals the dominance of traditional optimization methods while highlighting the gradual adoption of adaptive and AI-driven methodolo-

gies. 

Finally, these studies collectively underscore the continuous evolution of ACO, showcasing innovative solutions while identifying areas 

for future research to overcome existing limitations. 

5. Conclusion 

To conclude, Ant Colony Optimization (ACO) continues to demonstrate significant advancements in addressing complex optimization 

problems across domains such as robotics, logistics, and telecommunications. Statistical improvements highlight its efficacy, with the 

Levy-ACO achieving a 42% reduction in iterations for the Traveling Salesman Problem, fitness-based ACO enhancing electric vehicle 

driving range by 28.58% and reducing power depletion by 51.99%, and Modified Adaptive ACO cutting robot turn times by 22.2%. Addi-

tionally, the Parallel Self-Adaptive ACO improved energy efficiency and completion times in UAV path planning, while the Improved Ant 

Colony Algorithm enhanced classification accuracy in hyperspectral imaging. These advancements underscore the adaptability and 
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efficiency of ACO algorithms. However, challenges such as parameter sensitivity, scalability, and real-time adaptation remain. Future 

research is poised to integrate dynamic data processing, automated parameter tuning, and hybridization with machine learning to further 

enhance scalability and performance. Overall, ACO continues to be a robust and evolving solution for real-world optimization challenges, 

with a promising trajectory for innovation. 
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