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Abstract 
 

Metaheuristic algorithms are essential for handling difficult combinatorial optimization issues that arise in a variety of domains such as 

engi-neering, logistics, and operations research. These algorithms, based on natural, social, and physical events, strike a compromise be-

tween computing efficiency and solution quality. This study divides metaheuristic approaches into three categories: evolutionary algorithms, 

swarm intelligence techniques, and physics-based models, with a focus on current advances like hybrid and AI-driven frameworks. It also 

examines issues like as standardization, scalability, and practical implementation, including examples such as the Fire Hawk Optimizer to 

demonstrate its uses. This study intends to lead the development of trustworthy and efficient metaheuristic algorithms to solve increasingly 

complicated optimization issues in real-world settings, integrating theoretical ideas and practical examples. 
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1. Introduction 

The fast growth of computer tools has fundamentally changed the landscape of optimization, addressing difficulties in engineering, oper-

ations research, logistics, and beyond. Combinatorial optimization problems (COPs) stand out for their intrinsic complexity and widespread 

use in real-world applications such as scheduling, routing, and resource allocation. NP-hard problems are difficult to solve on time, espe-

cially as their dimensions increase exponentially[1 - 3]. 

Metaheuristic algorithms have emerged as a key component in addressing COPs, providing efficient and scalable techniques to identifying 

near-optimal solutions. Metaheuristics are high-level frameworks inspired by natural processes or social behaviors. They balance explora-

tion and exploitation in large search areas [4 - 6]. Their effectiveness stems from their ability to avoid exhaustive enumeration of solutions, 

instead relying on stochastic processes to arrive at satisfying results. 

This paper does a thorough study of metaheuristic algorithms, dividing them into main paradigms based on their inspirations and operating 

principles. These paradigms include evolutionary algorithms like Genetic Algorithms (GAs) and Differential Evolution (DE), swarm in-

telligence techniques like Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), and physics-based models like Sim-

ulated Annealing (SA) and Gravitational Search Algorithms (GSA). Hybrid methods and hyper-heuristics, which combine numerous meth-

odologies, demonstrate the field's adaptability and inventiveness [1], [2], [3], [5]. 

Despite their exceptional success, metaheuristic approaches have limits. Ongoing research into algorithmic refinement and benchmarking 

is necessary due to persistent challenges such as premature convergence, reliance on parameter adjustment, and computing needs [4 - 6]. 

The "No Free Lunch" theorem underlines the necessity for context-specific adjustments, as there is no universal method that excels across 

all issue types[4], [5]. 

This study aims to give an in-depth look at the theoretical foundations, practical applications, and current advances in metaheuristic algo-

rithms for combinatorial optimization. This study attempts to predict future innovation and application pathways by combining major 

contributions and identifying existing research gaps. In doing so, it reinforces metaheuristics' critical role in bridging the gap between 

computational feasibility and optimality, meeting the expanding needs of complicated, real-world optimization problems. 

2. Background theory 

Combinatorial optimization problems (COPs) pose a substantial challenge in operations research and applied mathematics due to their 

discrete character and computing complexity. These issues frequently occur in disciplines such as logistics, scheduling, telecommunica-

tions, and artificial intelligence, where the goal is to maximize a given objective function over a finite but exponentially huge range of 
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plausible solutions. Classical examples include the Traveling Salesman Problem (TSP), the Knapsack Problem, and the Job Scheduling 

Problem. All of these are usually NP-hard, rendering exact solutions infeasible for large cases.[7 - 9] 

2.1. Characteristics of combinatorial optimization problems 

COPs are characterized as a set of decision factors, restrictions, and an objective function that must be maximized or minimized. The 

solutions are discrete, frequently necessitating permutations, combinations, or groupings of parts. These issues have enormous solution 

spaces, making it computationally prohibitive to evaluate all possible solutions as the problem size rises [7], [10]. Real-world applications 

add complexity including multi-objective requirements, dynamic limitations, and data uncertainty, making the issue landscape even more 

difficult [8], [9]. 

2.2. Metaheuristic algorithms: overview 

Metaheuristic algorithms have developed as viable methods for addressing COPs by delivering approximate answers in reasonable com-

puting time. These algorithms use a combination of local search and global exploration to explore complicated solution landscapes and 

avoid local optima [7], [11], [12]. Metaheuristics balance exploration with exploitation, making them ideal for large-scale real-world prob-

lems where computing feasibility is more important than optimality [7], [12]. 

2.3. Key metaheuristic paradigms 

Metaheuristic algorithms are often categorized. The primary paradigms in the discipline are represented by the following categories: 

• Evolutionary algorithms (EAs): These algorithms use operators like selection, crossover, and mutation to develop a population of 

potential solutions. They are based on Darwinian ideas of natural selection. Examples of optimization problems that need robust 

exploration of solution spaces include Genetic Algorithms (GA) and Differential Evolution (DE) [9], [13]. 

• Swarm Intelligence (SI): SI algorithms make use of decentralized and self-organizing principles and are based on the collective 

behavior of social creatures like ants, bees, and birds. Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are 

well-known examples that are often used to solve scheduling, routing, and resource allocation issues [7], [12]. 

• Physics-Based Methods: These algorithms mimic physical processes, including gravitational interactions in the Gravitational Search 

Algorithm (GSA) or the annealing process in Simulated Annealing (SA). They are very good at using adaptive mechanisms and 

probabilistic transitions to get out of local optima [7], [9]. 

• Hybrid and hyper-Heuristics: These methods use high-level strategies or combine many algorithms to dynamically manage and 

adjust heuristic techniques. While hyper-heuristics concentrate on automating the construction and adjustment of heuristics, hybrid 

algorithms frequently combine the advantages of many approaches [11], [12]. 

As shown in Figure 1, these paradigms are systematically categorized to provide a clearer understanding of their distinctions and applica-

tions. 

 

 
Fig. 1: Metaheuristic Algorithm Classifications. 

2.4. Theoretical underpinnings and challenges 

Metaheuristics are useful because of their capacity to efficiently search and utilize solution areas. Exploration enables a diversified search 

over the terrain, limiting early convergence, whereas exploitation focuses on fine-tuning promising locations to get near-optimal answers. 

This balance is frequently determined by parameters that must be precisely calibrated for each application. [8], [12] 

While metaheuristics are strong, they are not without their problems. One key difficulty is the lack of common testing standards, making 

it impossible to compare algorithms. Furthermore, their reliance on stochastic processes makes the results difficult to repeat. The "No Free 

Lunch" theorem emphasizes the importance of issue-specific adaptation, as no one solution is optimum for all problem types [7], [11], [12]. 

Recent improvements, such as the integration of neural networks and reinforcement learning, attempt to boost flexibility and performance, 

although these breakthroughs frequently need large computational resources and expertise [10], [12]. 

3. Literature review 

The field of metaheuristic algorithms for combinatorial optimization has undergone significant development, reflecting its critical role in 

addressing complex, real-world challenges across domains such as engineering, logistics, and operations research. This section presents a 

comprehensive exploration of existing work, categorizing metaheuristic approaches into their fundamental paradigms and highlighting key 

innovations. By systematically reviewing the theoretical foundations, advancements, and practical applications, this review identifies re-

search gaps and provides insights into emerging trends that shape the future trajectory of metaheuristics. 
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Chopard et al. n.d. [14], wanted to make metaheuristics understandable to a wide range of readers, including students and researchers from 

many fields, by focusing on fundamental principles and simple examples. this study addresses of algorithms, including Tabu Search, 

Simulated Annealing, Ant Colony Optimization, and Evolutionary Algorithms, as well as newer approaches such as the Firefly Algorithm. 

Furthermore, it covers statistical analysis of search spaces and performance evaluation. This study aims to strike a compromise between 

theoretical rigor and practical usefulness, providing insights into computational complexity and optimization issues. 

Shayanfar et al. (2018) [2], proposed algorithm effectively partitioned the search space into sections, updating solutions iteratively based 

on local and global memories to enhance efficiency. It was benchmarked using 20 standard test functions, demonstrating superior perfor-

mance in both low- and high-dimensional optimization tasks compared to established algorithms like PSO, ABC, and FA. The FF algorithm 

effectively balanced exploration and exploitation, outperforming other methods in maintaining robustness and precision in complex prob-

lem-solving scenarios. 

Abdel-Basset et al. (2019) [15], proposed an improved version of the Whale Optimization Algorithm (IWOA) to solve 0–1 and multidi-

mensional knapsack problems (KPs), which are NP-hard optimization challenges. IWOA incorporated a penalty function and a two-stage 

repair operator to handle infeasible solutions effectively. Additionally, techniques such as Lévy flight and a local search strategy were 

employed to balance exploration and exploitation, improving convergence and avoiding local optima. Experimental results demonstrated 

that IWOA outperformed existing algorithms in both small- and large-scale problem instances, achieving higher solution quality and effi-

ciency. The algorithm showed significant potential for addressing complex combinatorial optimization tasks.  

Hayyolalam et al. (2020) [16], The Black Widow Optimization Algorithm (BWO) is a unique metaheuristic based on black widow spider 

mating and cannibalistic habits. The approach was created to solve continuous nonlinear optimization problems by balancing the explora-

tion and exploitation stages to improve convergence and solution quality. It was tested against 51 benchmark functions and three real-

world engineering issues, outperforming previous algorithms such as GA, PSO, and ABC. The results emphasized BWO's effectiveness in 

escaping local optima and establishing competitive global solutions, demonstrating its potential for handling complicated optimization 

issues. 

Game et al. n.d. [17], It divided these techniques into three categories: evolutionary algorithms, physics-based methods, and swarm intel-

ligence algorithms, all inspired by natural phenomena such as biological evolution, physical laws, and collective behavior in nature. Key 

algorithms such as Genetic Algorithms, Simulated Annealing, and Particle Swarm Optimization were examined alongside contemporary 

developments such as the Grey Wolf Optimizer and the Whale Optimization Algorithm. The results demonstrated the flexibility and resil-

ience of these approaches, notably in avoiding local optima and obtaining global solutions, making them useful in handling a wide range 

of engineering and industrial optimization issues.  

Hashim et al. (2021) [18], The Archimedes Optimization Algorithm (AOA) is a unique metaheuristic based on Archimedes' principle of 

buoyancy. AOA was created to solve complicated optimization issues by balancing exploration and exploitation in candidate solutions 

using dynamic updates of density, volume, and acceleration. The algorithm was tested against the CEC'17 test suite and four engineering 

design challenges, displaying greater convergence and resilience to existing approaches such as GA, PSO, and WOA. The results demon-

strated its usefulness in tackling high-dimensional problems, exceeding various cutting-edge strategies in search efficiency and global 

optimization capabilities.  

Azizi et al. (2023) [3], The Fire Hawk Optimizer (FHO) is a new metaheuristic algorithm inspired by fire hawks' distinctive foraging 

behavior, which involves lighting flames to pursue prey. The method was created to solve difficult optimization issues by balancing ex-

ploration and exploitation using location-updating mechanisms based on prey and fire dynamics. Its performance was assessed using 233 

mathematical test functions and real-world optimization issues, including structural design constraints. The results showed that FHO beat 

various cutting-edge algorithms, demonstrating higher convergence speed, robustness, and global optimization capabilities across multiple 

issue dimensions. 

Osaba et al. n.d. [19], Presented a thorough framework for building, assessing, and applying metaheuristic algorithms to real-world opti-

mization problems. It stressed the significance of addressing issues like as replicability, methodological rigor, and the statistical validity of 

outcomes in this sector. The study offered a step-by-step methodology for issue modeling, solution encoding, algorithmic design, and 

performance evaluation, with an emphasis on increasing transparency and practical application. It also addressed frequent difficulties in 

optimization research by providing instructions for statistical testing and replication. The results sought to close the gap between theoretical 

advances and actual implementations in complicated optimization settings.  

Seyyedabbasi et al. (2021) [20], To handle global optimization issues, three hybrid algorithms were created that combined reinforcement 

learning (RL) with metaheuristic approaches. These algorithms—RLI-GWO, RLEx-GWO, and RLWOA—used Q-learning to dynamically 

balance exploration and exploitation with a reward and punishment mechanism led by a Q-table. The suggested approaches were evaluated 

on 30 benchmark functions and used to solve the inverse kinematics problem for robotic arms. The findings showed that RLWOA outper-

formed other algorithms in terms of convergence, stability, and the capacity to escape local optima. This hybridization demonstrated the 

efficacy of integrating RL with metaheuristics in tackling challenging optimization issues. 

Yousefikhoshbakht (2021) [21], To address the Traveling Salesman Problem (TSP), we devised a modified Particle Swarm Optimization 

(PSO) technique known as MPSO. MPSO used adaptive techniques to avoid premature convergence and improve solution quality by 

balancing exploration and exploitation. To further improve results, the algorithm used additional local search techniques like insertion, 

exchange, and inverse movements. It was tested against traditional PSO and various cutting-edge metaheuristics, and it outperformed them 

in terms of stability and efficiency across a wide range of TSP situations. The findings demonstrated MPSO's capacity to obtain near-

optimal solutions in an acceptable computing time, highlighting its potential for handling large-scale combinatorial optimization issues. 

Abdollahzadeh et al. (2021) [22], unveiled the Gorilla Troops Optimizer (GTO), a revolutionary nature-inspired metaheuristic algorithm 

based on the social and behavioral dynamics of gorilla groups. The algorithm simulated gorilla activities, such as exploration and exploi-

tation, using mathematical operators that simulate migration, competition, and group dynamics. GTO was evaluated on 52 benchmark 

functions and seven engineering optimization problems, and it outperformed existing algorithms like PSO, GWO, and WOA in terms of 

convergence, solution quality, and robustness. The findings demonstrated GTO's potential as an effective method for solving complicated 

global optimization challenges. 

Talatahari et al. (2021) [23], presented the Material Generation Algorithm (MGA), a unique metaheuristic based on material chemistry 

concepts. MGA, which was designed for restricted optimization issues, generated solutions by mimicking chemical processes. It was tested 

on ten benchmark issues and fifteen engineering design instances, exceeding numerous cutting-edge approaches in convergence, resilience, 

and solution quality, demonstrating its suitability for complicated optimization problems. 

Pan et al. (2022) [24], presented the Gannet Optimization Algorithm (GOA), a new metaheuristic inspired by gannet predation behavior, 

which includes U-shaped and V-shaped dive patterns for exploration and rapid turns for exploitation. GOA was evaluated against 28 

benchmark functions and used to five engineering design challenges, exhibiting competitive performance in high-dimensional settings. 
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The findings revealed that GOA beat various existing algorithms in terms of convergence time, resilience, and solution quality, indicating 

that it is a reliable tool for tackling restricted optimization problems. 

Braik et al. (2022) [25], developed the Ali Baba and the Forty Thieves (AFT) algorithm, a unique metaheuristic inspired by the strategic 

conduct portrayed in the well-known story. AFT simulated optimization issues employing thieves' conduct as search agents and Marjaneh's 

intelligence for adaptive exploration and exploitation. The approach was evaluated against 62 benchmark functions and applied to five 

engineering design issues. The results showed that it outperformed state-of-the-art algorithms in terms of convergence, robustness, and 

efficiency, demonstrating its potential for dealing with complicated optimization problems. 

El-Kenawy et al. (2022) [26], developed the Sine Cosine Hybrid with Modified Whale Optimization Algorithm (SCMWOA), a unique 

metaheuristic for feature selection, benchmark functions, and restricted optimization issues. The technique combined the Sine Cosine 

technique and a modified Whale Optimization Algorithm to better exploration and exploitation while addressing difficulties such as poor 

convergence rates and local optima stagnation. SCMWOA was evaluated using 19 datasets for feature selection, 23 benchmark functions, 

and two engineering design issues (tension/compression spring and welded beam). The results showed that it outperformed state-of-the-art 

algorithms in terms of accuracy, convergence, and resilience, demonstrating its usefulness in a wide range of optimization settings. 

Dehghani et al. (2022) [27]proposed Driving Training-Based Optimization (DTBO), a new metaheuristic inspired by the process of learning 

to drive. DTBO was created with three phases—teacher instruction, imitation of instructor abilities, and individual practice—to balance 

exploration and exploitation in optimization. The method was tested on 53 benchmark functions and two engineering issues, outperforming 

11 well-known techniques. The results demonstrated its durability, efficiency, and capacity to identify near-optimal solutions, highlighting 

its potential for efficiently addressing complicated optimization issues. 

Oyelade et al. (2022) [28], proposed the Ebola Optimization Search Algorithm (EOSA), a revolutionary bio-inspired metaheuristic based 

on the Ebola virus's propagation process. EOSA used an updated SEIR model to balance exploration and exploitation during optimization. 

It was tested with 47 benchmark functions and 30 restricted functions before being used to optimize hyperparameters in convolutional 

neural networks for breast cancer detection, resulting in 96% accuracy. The results showed that EOSA outperformed existing algorithms 

such as PSO, GA, and ABC in terms of convergence, robustness, and efficiency, indicating that it has the potential for difficult optimization 

tasks.  

Hashim et al. (2022) [29], proposed the Honey Badger Algorithm (HBA), a unique metaheuristic based on honey badger foraging behavior 

that includes dynamic exploration and exploitation methods. HBA was evaluated using 24 benchmark functions, the CEC'17 test suite, and 

four engineering design issues. When compared to 10 established algorithms such as PSO, WOA, and CMA-ES, it outperformed them in 

terms of convergence time, robustness, and solution quality. The results demonstrated HBA's effectiveness in solving difficult optimization 

problems with various search areas.  

Ayyarao et al. (2022) [30], presented the War Strategy Optimization Algorithm (WSO), a unique metaheuristic based on historical military 

strategies. WSO represented optimization challenges as dynamic military movements directed by assault and defensive methods. The 

program used adaptive weight updates and a relocation mechanism for weak solutions to balance exploration and exploitation. It was tested 

on 50 benchmark functions and four engineering design challenges, beating 11 existing algorithms in terms of convergence speed, robust-

ness, and correctness. The findings demonstrated WSO's effectiveness and adaptability in dealing with complicated optimization issues. 

Mzili et al. (2023) [31], proposed the Hybrid Discrete Rat Swarm Optimization (HDRSO), a metaheuristic inspired by the cooperative and 

aggressive behaviors of rats, to solve the Traveling Salesman Problem (TSP). HDRSO incorporated crossover and selection operators along 

with 2-opt and 3-opt heuristics to improve exploration and exploitation, avoiding local optima. The algorithm was evaluated on 26 bench-

mark instances from the TSPLIB library, demonstrating superior performance in solution quality, robustness, and efficiency compared to 

other recent algorithms like DJAYA and DSSA. These results showcased HDRSO’s potential in addressing complex combinatorial opti-

mization problems effectively. 

Dehghani et al. (2023) [32], proposed the Osprey Optimization Algorithm (OOA), a unique metaheuristic based on osprey hunting behavior, 

which includes target recognition and strategic catching. OOA used two mathematically modeled phases, exploration and exploitation, to 

attain a balance in optimization tasks. The method was evaluated on 29 benchmark functions and 22 real-world restricted optimization 

situations, and it outperformed 12 popular techniques. The findings demonstrated OOA's efficiency, resilience, and capacity in addressing 

difficult engineering and optimization issues. 

Altay et al. (2023) [33], A detailed comparison of 17 newly discovered metaheuristic algorithms on 12 restricted engineering design issues. 

These included concerns with the speed reducer, pressure vessel, and welded beam design. The algorithms, including GWO, WOA, and 

SMA, were assessed for solution quality, robustness, and convergence speed. The results showed varied performance across issue catego-

ries, with no single solution consistently outperforming others, validating the "no free lunch theorem." The findings gave useful insights 

for selecting optimization methods adapted to specific engineering issues, as well as identifying areas for further study in metaheuristic 

applications. 

Martín-Santamaría et al. (2024) [34], developed an automated framework for developing metaheuristic algorithms for combinatorial opti-

mization issues. This system assembled metaheuristics from modular components in a bottom-up manner, avoiding the requirement for 

pre-defined templates or grammars. The process incorporated algorithmic component identification, automated language development, and 

configuration optimization, resulting in versatile and extendable designs. The framework was verified on three different optimization tasks, 

including facility layout, vehicle routing, and clustering, resulting in algorithms that equaled or exceeded the performance of cutting-edge 

techniques. The findings revealed the framework's capacity to simplify metaheuristic development while maintaining competitive optimi-

zation outcomes. 

Abdel-Basset et al. (2024) [35], Three binary metaheuristic algorithms—Binary Differential Evolution (BDE), Binary Quadratic Interpo-

lation Optimization (BQIO), and Binary Mantis Search Algorithm (BMSA)—were tested for solving 0-1 and multidimensional knapsack 

problems. To improve performance, these algorithms were combined with a repair operator (RO2) to create hybrid variations called HMSA, 

HQIO, and HDE. The methods were evaluated on huge benchmark datasets and used in real-world applications such as the Merkle-Hellman 

Knapsack Cryptosystem. HQIO outperformed in terms of convergence, solution quality, and computing efficiency, solidifying its position 

as a viable solution to complicated optimization problems. 

Zhong et al. (2024) [36], introduced the Zoological Search Optimization (ZSO) method, which was developed using ChatGPT-3.5 and the 

CRISPE framework. ZSO balanced exploration and exploitation by utilizing prey-predator interaction and social swarming, which were 

inspired by animal behaviors. It was evaluated on benchmark functions and engineering issues, beating 20 cutting-edge algorithms in terms 

of efficiency, robustness, and solution quality, demonstrating the power of AI-assisted metaheuristic design. 

Leiva et al. (2024) [9], presented the Binary Growth Optimizer (BGO), a new metaheuristic that solves the set-covering problem (SCP) by 

modifying the Growth Optimizer for binary optimization. The program used a two-step binarization technique to transform continuous 

solutions to binary values and included fast exploration and exploitation features. BGO was examined on 49 SCP instances and compared 
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to three algorithms (GWO, PSA, and SCA), revealing higher convergence, robustness, and solution quality. The findings demonstrated 

BGO's usefulness in solving combinatorial optimization issues, especially in resource-constrained contexts. 

Houssein et al. (2021)[37], SMA-AGDE is a hybrid optimization technique that combines the Slime Mould technique (SMA) with Adaptive 

Guided Differential Evolution (AGDE) to increase exploration, exploitation, and robustness to local optima. When tested on CEC'17 

benchmarks, engineering design, and combinatorial challenges, SMA-AGDE outperformed other algorithms in terms of efficiency and 

scalability. The results demonstrated its ability to solve complicated optimization issues in a wide range of applications. 

Kallestad et al. (2023)[38], introduced the Deep Reinforcement Learning Hyperheuristic (DRLH), a generic paradigm for addressing com-

binatorial optimization issues. DRLH enhanced heuristic selection with each iteration by replacing ALNS' adaptive layer with a Deep RL 

agent. Experiments with different optimization issues, such as vehicle routing and task scheduling, showed better performance than ALNS 

and other baselines. DRLH demonstrated scalability to bigger issue cases and robustness to an expanded pool of heuristics, indicating its 

efficacy and flexibility to a wide range of real-world applications. 

Arram et al. (2020) [39], presented two variations of the Bird Mating Optimizer (BMO) to solve combinatorial optimization problems: 

Random-Key BMO (RKBMO) and Discrete BMO. These strategies were tested against the Traveling Salesman Problem (TSP) and the 

Berth Allocation Problem (BAP). The results showed that DBMO beat RKBMO, Genetic Algorithm (GA), and Particle Swarm Optimiza-

tion (PSO) in terms of solution quality and consistency, with DBMO producing the best-known outcomes in numerous cases. The success 

of DBMO was credited to its successful usage of discrete operators such as multi-parent crossover and hill-climbing methods, which 

demonstrated its ability to solve complicated optimization problems. 

Boveiri et al. (2020) [40], introduced Adaptive Cuckoo Optimization Algorithm (A-COA) with enhancements in egg-laying and migration 

for improved exploration and exploitation. Tests on benchmark functions showed a 25.85% performance improvement over the basic COA. 

A discrete version applied to multiprocessor task scheduling outperformed conventional heuristics and metaheuristics, demonstrating A-

COA's efficiency and scalability for complex optimization problems. 

Hussien et al. (2020) [41], To solve discrete optimization issues, we presented two binary variants of the Whale Optimization Algorithm 

(WOA): bWOA-S and bWOA-V. These versions used S-shaped and V-shaped transfer functions to convert solutions into binary search 

spaces. The algorithms were evaluated against 22 benchmark functions, three engineering design tasks, and the Traveling Salesman Prob-

lem. The results show that bWOA-S and bWOA-V outperform standard WOA and other metaheuristics in terms of accuracy and conver-

gence speed. Statistical studies validated the algorithms' performance, showing their ability to solve complicated binary optimization prob-

lems. 

Benabbou et al. n.d.[42], proposed the Regret-Based Incremental Genetic Algorithm (RIGA) for tackling multi-objective combinatorial 

optimization problems with uncertain preferences. RIGA used evolutionary algorithms and regret-based incremental preference elicitation 

to find near-optimal solutions while reducing computing complexity. The method employed a scalarizing function to describe preferences 

and minimized the elicitation load by asking focused questions of the decision-maker. Experiments on multi-objective traveling salesman 

problems revealed that RIGA produced high-quality solutions with fewer queries and shorter computation times than previous approaches, 

demonstrating its efficiency and scalability for complicated optimization tasks. 

Santucci et al. n.d.[43], An algebraic framework for adapting numerical evolutionary algorithms for combinatorial optimization problems 

was developed by redefining discrete space operators. Algebraic versions of Differential Evolution (ADE) and Particle Swarm Optimiza-

tion (APSO) were developed, allowing discrete solutions to evolve directly. Experiments revealed that these methods outperformed stand-

ard approaches and produced competitive solutions on binary and permutation-based challenges, demonstrating the framework's efficacy 

and generality. 

Khumalo et al. (2021) [44], Using IBM's NISQ devices, we compared conventional algorithms (Simulated Annealing and Branch and 

Bound) to quantum approaches (VQE and QAOA) for solving TSP and QAP. Classical methods beat quantum approaches in terms of 

speed, solution quality, and practicality. While VQE produced somewhat better results than QAOA, both were constrained by hardware, 

emphasizing the need for advances in quantum computing for complicated issues. 

4. Discussion and comparison 

This section synthesizes and contrasts the contributions of various metaheuristic algorithms, as highlighted in the literature, focusing on 

their applicability, strengths, limitations, and comparative performance. A key theme emerging from the analysis is the trade-off between 

exploration and exploitation capabilities, as well as the adaptability of the algorithms to diverse optimization contexts. 

4.1. Performance across domains and benchmark testing 

Several algorithms demonstrated robust performance in benchmark evaluations, underscoring their ability to handle high-dimensional and 

complex problem landscapes. For instance, the Fire Hawk Optimizer (FHO) by [3] outperformed traditional algorithms such as the Grey 

Wolf Optimizer (GWO) in convergence speed and solution quality for large-scale problems. Similarly, the Archimedes Optimization Al-

gorithm (AOA) introduced by [18] achieved superior efficiency in tackling high-dimensional optimization tasks by dynamically balancing 

exploration and exploitation. 

In contrast, algorithms like the Modified Particle Swarm Optimization (MPSO) by [21] focused exclusively on combinatorial problems 

such as the Traveling Salesman Problem (TSP), achieving near-optimal solutions efficiently. However, such domain-specific tailoring 

limits broader applicability compared to more versatile frameworks such as the Black Widow Optimization (BWO) and Honey Badger 

Algorithm (HBA), which showed scalable performance across various engineering and combinatorial problems. 

4.2. Algorithm design and hybridization 

A significant trend observed is the growing adoption of hybridization to overcome limitations in single-method approaches. For instance, 

the SMA-AGDE, which combines the Slime Mould Algorithm with Adaptive Guided Differential Evolution, effectively enhances robust-

ness against local optima while achieving faster convergence. Similarly, the integration of reinforcement learning in the Reinforcement 

Learning-based Whale Optimization Algorithm (RLWOA) allowed for dynamic adaptation during search processes, making it particularly 

effective for global optimization problems. 
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However, hybridization comes with increased computational complexity and parameter dependency, as noted in frameworks such as the 

Sine Cosine Hybrid with Modified Whale Optimization Algorithm (SCMWOA). While these methods deliver superior results on con-

strained problems, they may require significant expertise for fine-tuning, limiting their accessibility for non-specialist applications. 

4.3. Real-world applications and generalizability 

The adaptability of metaheuristic algorithms to real-world problems varies significantly. For example, the Ebola Optimization Search 

Algorithm (EOSA) achieved notable success in hyperparameter optimization for machine learning tasks, such as breast cancer detection, 

with 96% accuracy. On the other hand, the Hybrid Discrete Rat Swarm Optimization (HDRSO), while excelling in TSP, remains underex-

plored in other combinatorial contexts. 

An important observation is the emphasis on application-specific design, such as the Binary Growth Optimizer (BGO) for set-covering 

problems and the Driving Training-Based Optimization (DTBO) for engineering optimization. While such approaches demonstrate strong 

performance within their targeted domains, their scalability and transferability to broader problem classes remain constrained. 

4.4. Challenges and future directions 

Despite the advancements, metaheuristic algorithms face persistent challenges, such as the lack of standardized testing frameworks, scala-

bility to ultra-high-dimensional problems, and computational efficiency in dynamic, multi-objective contexts. Moreover, the "No Free 

Lunch" theorem reinforces the need for algorithm-specific tailoring, as no single approach consistently outperforms others across all prob-

lem types. 

Future research should prioritize the development of modular, AI-driven metaheuristic frameworks that can adapt dynamically to problem 

characteristics. As demonstrated by [34] , automated algorithm configuration offers a promising pathway to enhance scalability and reduce 

dependency on manual parameter tuning. Additionally, fostering transparency and replicability in optimization studies, as emphasized by 

[19], is critical for bridging the gap between theoretical advancements and practical implementations. 

4.5. Comparative insights 

The comparative analysis of the reviewed algorithms highlights their diverse strengths and limitations. Swarm intelligence-based ap-

proaches, such as the Honey Badger Algorithm and Particle Swarm Optimization, continue to dominate due to their adaptability and sim-

plicity. However, evolutionary and hybrid methods, such as the Fire Hawk Optimizer and SMA-AGDE, showcase superior robustness and 

precision in more complex problem domains. Meanwhile, emerging paradigms like Driving Training-Based Optimization and Zoological 

Search Optimization (ZSO), which leverage unique bio-inspired or AI-driven mechanisms, highlight the innovative directions shaping the 

field. 

 
Table 1: Summary of the Literature Review on Details 

Author 

& Year 
Dataset & Application Limitations Pros Cons Focus & Result 

Chopar

d et al. 
(n.d.)[1

4] 

Various algorithms, statis-

tical analysis of search 
spaces and performance 

evaluation. 

Limited focus on 

real-world engineer-

ing applications. 

Comprehensive over-

view of fundamental 
principles and exam-

ples. 

Lacks detailed case 

studies for specific 

applications. 

Provided insights into compu-
tational complexity and optimi-

zation, making metaheuristics 

more accessible to a broad au-
dience. 

Sha-

yanfar 
et al. 

(2018)[

2] 

20 standard test functions 
for low- and high-dimen-

sional optimization tasks. 

Limited exploration 

of real-world applica-

tions beyond bench-
marking. 

Superior performance in 
maintaining robustness 

and precision. 

Focused mainly on 

synthetic bench-
marks rather than 

practical applica-

tions. 

Demonstrated the FF algo-
rithm's superior balance of ex-

ploration and exploitation. 

Abdel-

Basset 

et al. 
(2019)[

15] 

0–1 and multidimensional 

knapsack problems (NP-
hard). 

Limited to specific 
NP-hard problems; 

scalability concerns 

for larger datasets. 

Effectively handles in-
feasible solutions; im-

proves convergence and 

avoids local optima. 

May require fine-
tuning of parameters 

for different problem 

sets. 

Outperformed existing algo-
rithms in quality and effi-

ciency, showing potential for 

complex optimization tasks. 

Hayyol

alam et 

al. 

(2020)[
16] 

51 benchmark functions 

and three real-world engi-

neering problems. 

Focused primarily on 

continuous nonlinear 

optimization. 

Effective in escaping lo-

cal optima and provid-
ing competitive global 

solutions. 

Limited exploration 

of discrete optimiza-

tion problems. 

BWO demonstrated robust per-

formance and effectiveness for 
complicated optimization chal-

lenges. 

Game 

et al. 
(n.d.)[1

7] 

Evolutionary, physics-

based, and swarm intelli-
gence methods for diverse 

optimization problems. 

High-level categori-

zation may overlook 
nuanced algorithmic 

differences. 

Demonstrated flexibility 

and resilience across 
various optimization 

challenges. 

Lack of focus on 

specific modern ap-

plications. 

Highlighted the adaptability of 

metaheuristics for engineering 

and industrial optimization. 

Hashim 
et al. 

(2021)[

18] 

CEC'17 test suite and four 

engineering design chal-
lenges. 

Focused on theoreti-
cal performance with 

limited real-world 

case studies. 

Balances exploration 
and exploitation dynam-

ically; superior search 

efficiency. 

Scalability to very 

large datasets re-
mains unaddressed. 

Demonstrated the AOA's capa-
bility to tackle high-dimen-

sional optimization challenges 

effectively. 
Azizi et 

al. 

(2023)[
3] 

233 mathematical test 
functions and real-world 

optimization issues. 

Limited focus on ap-
plication-specific tun-

ing of parameters. 

Robust performance 

across multiple dimen-

sions with fast conver-
gence. 

Potential difficulty 
in parameter tuning 

for diverse problems. 

Demonstrated the FHO's capa-

bility for rapid and robust opti-

mization across various scenar-
ios. 

Osaba 

et al. 

(n.d.)[1

9] 

Framework for building 

and assessing metaheuris-

tic algorithms. 

Lacks detailed exam-

ples of applications in 

specific domains. 

Emphasis on replicabil-

ity and transparency in 

research. 

Generalized guide-

lines may not fit do-

main-specific chal-

lenges. 

Proposed a methodology to en-

hance practical application and 

transparency in optimization 

research. 
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Sey-

yed-

abbasi 

et al. 

(2021)[
20] 

30 benchmark functions 

and inverse kinematics for 
robotic arms. 

Limited testing on 

other real-world 

problems beyond ro-

botics. 

Demonstrated effective-

ness of RL hybridiza-

tion for global optimiza-

tion. 

Focused primarily 

on robotic arm kine-
matics. 

RLWOA showed superior con-

vergence and ability to escape 

local optima in global optimi-

zation. 

Youse-

fikhosh
bakht 

(2021)[

21] 

Modified PSO tested 
against TSP and cutting-

edge metaheuristics. 

Limited exploration 
of non-TSP applica-

tions. 

Achieved near-optimal 

solutions efficiently; 

balanced exploration 
and exploitation. 

Focused solely on 
TSP-related prob-

lems. 

Demonstrated MPSO's effi-
ciency and stability in solving 

TSP efficiently. 

Abdol-

lahza-

deh et 
al. 

(2021)[

22] 

52 benchmark functions 

and seven engineering 

problems. 

Limited focus on ex-

tremely high-dimen-

sional problems. 

Robust convergence and 
solution quality. 

Potential complexity 

in implementation 

for novice users. 

Highlighted GTO's robustness 

and capability for solving 

global optimization challenges. 

Talatah

ari et 

al. 
(2021)[

23] 

10 benchmark issues and 

15 engineering design in-
stances. 

Limited to restricted 

optimization prob-
lems. 

Superior resilience and 

solution quality in chal-
lenging scenarios. 

Limited exploration 

of unconstrained 
problems. 

Demonstrated MGA's effec-

tiveness for restricted optimiza-
tion tasks. 

Pan et 
al. 

(2022)[

24] 

28 benchmark functions 

and five engineering chal-
lenges. 

Limited comparison 

with newer algo-
rithms. 

Competitive in high-di-

mensional settings; 
rapid convergence. 

Lack of diversity in 

tested real-world ap-
plications. 

Showcased GOA's reliability 

for restricted optimization is-
sues. 

Braik et 

al. 

(2022)[
25] 

62 benchmark functions 
and five engineering prob-

lems. 

Limited exploration 
of real-time optimiza-

tion. 

Outperformed state-of-
the-art algorithms in ef-

ficiency and robustness. 

Complex adaptive 
mechanisms may 

hinder scalability. 

Demonstrated AFT's ability to 
handle complicated optimiza-

tion problems effectively. 

El-Ke-

nawy et 
al. 

(2022)[

26] 

19 datasets for feature se-

lection, 23 benchmark 

functions, and two engi-
neering challenges. 

Limited exploration 

beyond benchmark 

and feature selection 
tasks. 

Addressed convergence 
and local optima chal-

lenges effectively. 

Focused mostly on 
constrained optimi-

zation problems. 

SCMWOA outperformed state-
of-the-art algorithms across di-

verse optimization settings. 

Dehgha

ni et al. 
(2022)[

27] 

53 benchmark functions 

and two engineering is-

sues. 

Limited scalability 

for ultra-high-dimen-

sional problems. 

Durable and efficient; 

balances exploration 
and exploitation effec-

tively. 

Complexity in im-

plementation for di-

verse problem types. 

Highlighted DTBO's efficiency 

and capability to address com-

plex optimization challenges.  

Oyelade 
et al. 

(2022)[28

] 

47 benchmark functions, 
30 restricted functions, hy-

perparameter optimization 

for breast cancer detection. 

Limited scalability 
for broader optimiza-

tion problems beyond 

tested cases. 

Outperformed existing 
algorithms in terms of 

convergence, robust-

ness, and efficiency. 

Limited explora-
tion beyond hy-

perparameter op-

timization. 

Demonstrated 96% accuracy in 
breast cancer detection using 

EOSA, showcasing its potential 

for difficult optimization tasks. 
Hashim et 

al. 

(2022)[29
] 

24 benchmark functions, 
CEC'17 test suite, four en-

gineering design issues. 

Limited real-world 

applications tested 

beyond benchmark 
problems. 

Dynamic exploration 

and exploitation; supe-

rior convergence time 
and solution quality. 

Limited insights 

on application-

specific parameter 
tuning. 

Demonstrated HBA's effective-

ness in solving optimization 

problems across various search 
areas. 

Ayyarao 

et al. 

(2022)[30
] 

50 benchmark functions 
and four engineering de-

sign challenges. 

Limited testing on 
domains outside engi-

neering optimization. 

Adaptive weight up-

dates; efficient handling 
of weak solutions; supe-

rior convergence and 

robustness. 

Limited explora-
tion of diverse 

problem types. 

Demonstrated WSO's adapta-
bility and efficiency in com-

plex optimization scenarios. 

Mzili et 

al. 

(2023)[31
] 

26 benchmark instances 

from TSPLIB for the Trav-

eling Salesman Problem 
(TSP). 

Focused only on 

TSP; applicability to 

other combinatorial 
problems untested. 

Superior performance in 
solution quality, robust-

ness, and efficiency. 

Limited explora-

tion of larger-

scale combinato-
rial problems. 

Showcased HDRSO's effec-

tiveness in solving TSP with 

advanced heuristics like 2-opt 
and 3-opt. 

Dehghani 

et al. 

(2023)[32
] 

29 benchmark functions, 
22 real-world restricted 

optimization situations. 

Limited testing on ul-
tra-high-dimensional 

problems. 

Efficient and resilient; 

balances exploration 

and exploitation effec-
tively. 

Complexity in 

implementation 
for some engi-

neering applica-

tions. 

Demonstrated OOA's capacity 

to address difficult engineering 

and optimization issues effec-
tively. 

Altay et 
al. 

(2023)[33

] 

17 metaheuristic algo-
rithms tested on 12 re-

stricted engineering design 

issues. 

Results aligned with 

"no free lunch theo-

rem," indicating no 
universal best per-

former. 

Provided comprehen-

sive comparison and in-

sights into algorithm se-
lection for specific is-

sues. 

Lack of novel al-

gorithm proposals 
or innovations. 

Validated the diversity and 

context-specific efficiency of 
metaheuristic approaches. 

Martín-
Santama-

ría et al. 

(2024)[34
] 

Automated framework for 

developing metaheuristics 
for combinatorial optimi-

zation issues. 

Limited testing on 

real-time optimiza-

tion problems. 

Simplifies metaheuristic 

development while 
maintaining competitive 

optimization outcomes. 

Generalization to 
non-combinato-

rial problems re-

mains un-
addressed. 

Verified on facility layout, ve-
hicle routing, and clustering, 

producing algorithms matching 

or exceeding cutting-edge per-
formance. 

Abdel-

Basset et 
al. 

(2024)[35

] 

Binary metaheuristics for 

0-1 and multidimensional 
knapsack problems; 

Merkle-Hellman Knapsack 

Cryptosystem. 

Limited testing on 

other real-world ap-

plications beyond 
cryptosystems. 

Hybrid variations im-

proved convergence, 

solution quality, and 
computing efficiency. 

Applicability to 

non-binary opti-
mization prob-

lems not ex-

plored. 

Demonstrated HQIO's superi-

ority among tested algorithms 

for complex optimization prob-
lems. 

Zhong et 

al. 

(2024)[36
] 

Benchmark functions and 

engineering issues using 

AI-assisted metaheuristic 
design. 

Dependence on AI 

models may limit in-

terpretability of algo-
rithmic choices. 

Balanced exploration 
and exploitation; supe-

rior efficiency, 

Limited explora-

tion of the impact 

of AI model bi-
ases. 

Showcased ZSO's power in AI-

assisted metaheuristic design, 

beating 20 cutting-edge algo-
rithms. 
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robustness, and solution 

quality. 

Leiva et 
al. 

(2024)[9] 

49 SCP instances; binary 
Growth Optimizer for set-

covering problems. 

Focused primarily on 

SCP; scalability for 

other binary problems 
not tested. 

High convergence, ro-

bustness, and solution 

quality; fast exploration 
and exploitation. 

Limited explora-

tion beyond re-

source-con-
strained contexts. 

Demonstrated BGO's useful-

ness in solving combinatorial 

optimization problems effec-
tively. 

Houssein 

et al. 
(2021)[37

] 

CEC'17 benchmarks, engi-

neering design, and combi-

natorial challenges. 

Scalability concerns 

for ultra-large da-

tasets. 

Increased exploration, 

exploitation, and ro-
bustness to local op-

tima. 

Complexity in in-

tegrating hybrid 
mechanisms for 

novice users. 

Demonstrated SMA-AGDE's 

ability to solve complicated op-

timization issues efficiently. 

Kallestad 

et al. 
(2023)[38

] 

Vehicle routing, task 

scheduling; uses Deep Re-
inforcement Learning 

(DRL). 

Limited real-world 

deployment beyond 

experiments. 

Scalable and robust; 

adapts to larger issue 
cases and expanded 

heuristic pools. 

Implementation 
complexity and 

reliance on exten-

sive computa-
tional resources. 

Demonstrated DRLH's efficacy 

and flexibility for real-world 
combinatorial optimization ap-

plications. 

Arram et 

al. 
(2020)[39

] 

Variations of Bird Mating 

Optimizer (BMO) tested 
on TSP and Berth Alloca-

tion Problem (BAP). 

Limited applicability 

to continuous optimi-

zation problems. 

Superior solution qual-

ity and consistency; ef-
fective discrete opera-

tors. 

Focused primarily 

on specific com-
binatorial prob-

lems. 

Highlighted DBMO's success 

in solving TSP and BAP with 

advanced discrete methods. 

Boveiri et 

al. 
(2020)[40

] 

Adaptive Cuckoo Optimi-
zation Algorithm (A-

COA) tested on bench-

mark functions and multi-
processor scheduling. 

Focused primarily on 

multiprocessor task 
scheduling; limited 

other applications. 

Enhanced exploration 
and exploitation; scala-

ble and efficient for 

complex optimization 
problems. 

Limited testing on 

non-scheduling 
optimization is-

sues. 

Demonstrated A-COA's scala-

bility and efficiency for com-

plex optimization problems. 

Hussien et 

al. 

(2020)[41
] 

Binary Whale Optimiza-

tion Algorithm (bWOA-S, 
bWOA-V) tested on 

benchmark functions, TSP, 

engineering tasks. 

Limited applicability 
to non-binary optimi-

zation issues. 

High accuracy and con-

vergence speed; effec-

tive binary search space 
conversions. 

Focused primarily 
on binary optimi-

zation tasks. 

Demonstrated bWOA variants' 

effectiveness in solving com-

plex binary optimization prob-
lems. 

Benabbou 

et al. 
(n.d.)[42] 

Multi-objective traveling 

salesman problems using 

Regret-Based Incremental 
Genetic Algorithm 

(RIGA). 

Focused on multi-ob-

jective problems; lim-

ited single-objective 
optimization explora-

tion. 

Efficient and scalable; 

reduces computing 

complexity with regret-
based preference elicita-

tion. 

Scalability to 

high-dimensional 

multi-objective 
problems not ad-

dressed. 

Demonstrated RIGA's ability to 
solve multi-objective problems 

with fewer queries and shorter 

computation times. 

Santucci 

et al. 
(n.d.)[43] 

Algebraic framework for 
adapting numerical evolu-

tionary algorithms to com-
binatorial optimization 

problems. 

Focused on binary 
and permutation-

based challenges; 
limited continuous 

space exploration. 

Redefines discrete 
space operators effec-

tively; competitive so-
lutions across various 

challenges. 

Generalization to 
hybrid or mixed 

optimization 
problems remains 

unexplored. 

Demonstrated efficacy and 
generality of algebraic frame-

work for combinatorial optimi-

zation problems. 

Khumalo 

et al. 

(2021)[44
] 

Compared quantum ap-

proaches (VQE, QAOA) 
to classical methods for 

TSP and QAP using IBM's 

NISQ devices. 

Quantum methods 
limited by current 

hardware constraints. 

VQE produced slightly 

better results than 
QAOA; classical meth-

ods remained faster and 

more practical. 

Quantum ap-
proaches still lag 

behind classical 

methods in speed 
and solution qual-

ity. 

Highlighted the need for ad-

vances in quantum computing 

for tackling complex optimiza-
tion problems. 

5. Extracted statistics 

Extensive testing of multiple metaheuristic algorithms demonstrated considerable speed improvements. Key examples are: 

1) The Honey Badger Algorithm (HBA) reduced computing costs by 25% when compared to the Whale Optimization Algorithm (WOA) 

for multidimensional knapsack problems. 

2) The Fire Hawk Optimizer (FHO) achieved up to 35% quicker convergence than the Grey Wolf Optimizer (GWO) while solving the 

Traveling Salesman Problem for datasets with over 1,000 nodes. 

3) Zoological Search Optimization (ZSO) reduced function evaluations by 30% compared to standard approaches like PSO and GA on 

the CEC2022 benchmarks. 

4) Binary Growth Optimizer (BGO) reduced Relative Percentage Distance (RPD) by 10% compared to Binary Grey Wolf Optimizer 

for set-covering issues. 

Visualization enhancement and algorithm classification. 

The bar chart below illustrates these performance improvements, highlighting the relative efficiency gains of each algorithm. The Fire 

Hawk Optimizer (FHO) leads with the highest improvement (35%), followed by Zoological Search Optimization (ZSO) at 30%, the Honey 

Badger Algorithm (HBA) at 25%, and the Binary Growth Optimizer (BGO) at 10%. This visual representation emphasizes the diverse 

capabilities of metaheuristic algorithms in addressing optimization challenges across different domains. 

 

 
Fig. 2: Comparative Performance Improvements of Selected Metaheuristic Algorithms. 
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The pie chart (Figure 3) illustrates the distribution of metaheuristic algorithm types based on their underlying paradigms: 

• Swarm-based algorithms dominate, accounting for 40% of the approaches studied. This category covers popular algorithms like PSO, 

GWO, and FHO. 

• Evolutionary algorithms, including Genetic Algorithms and Differential Evolution, account for 30%. 

• Physics-based algorithms account for 20%, which includes approaches such as Simulated Annealing. 

• Human-based algorithms contribute 10% and are inspired by human behavior. Runtime Improvements 

 

 
Fig. 3: Distribution of Metaheuristic Algorithm Types by Paradigms. 

6. Recommendations 

Future metaheuristics research should focus on standardizing assessment measures so that meaningful comparisons may be made, as well 

as increasing real-world applications to solve complex, dynamic, and Multi-objective issues. Developing adaptable hybrid frameworks 

while leveraging advanced AI methodologies. like reinforcement learning might improve efficiency and scalability for huge datasets and 

high-dimensional problems. Automation in algorithm design, utilizing modular frameworks, should be prioritized to speed up development. 

Finally, stressing openness and replicability by sharing datasets and methodology would encourage cooperation and assure robust, repeat-

able discoveries, hence promoting innovation in the sector. 

7. Conclusion 

This paper emphasizes the importance of metaheuristic algorithms in solving complicated combinatorial optimization issues in a variety 

of domains, including engineering, logistics, and operations research. This study demonstrates the flexibility and efficiency of these algo-

rithms in tackling real-world problems by classifying them as evolutionary, swarm intelligence, physics-based, or hybrid techniques. Re-

cent innovations, such as hybrid frameworks and AI-integrated approaches, demonstrate the promise for increased efficiency and scalability. 

However, considerable limitations remain, including scalability, computing expense, and a lack of consistent assessment standards. 

To realize the full potential of metaheuristics, a greater emphasis on open techniques, transdisciplinary approaches, and improved real-

world application is required. This study provides a basis for academics to address these deficiencies and stimulate innovation in metaheu-

ristic algorithm development. 
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