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Abstract 
 

Federated Learning (FL), which permits decentralized model training without sharing raw data, guarantees adherence to privacy laws like 

GDPR and HIPAA. This study offers a thorough analysis of FL with an emphasis on its exceptional capacity to strike a balance between 

data value and privacy in industries including healthcare, the Internet of Things, and finance. In contrast to previous evaluations, this study 

explores sophisticated privacy-preserving techniques, such as differential privacy and homomorphic encryption, and assesses how well 

they work to handle issues like adversarial threats, non-IID data distributions, and communication overhead. The study also discusses the 

practical uses of optimization techniques like Federated Proximal (FedProx) and Federated Averaging (FedAvg). This paper provides 

practical insights and future approaches to promote the use of FL in privacy-sensitive AI applications by comparing and contrasting current 

methods and pointing out research gaps. FL is positioned as a revolutionary method for privacy-conscious machine learning because to 

this fresh viewpoint.  

This update highlights the paper's distinctive features that set it apart from prior reviews, including the thorough examination of privacy 

mechanisms, assessment of optimization techniques, and identification of research needs. 

 
Keywords: Privacy-Preserving Machine Learning; Federated Learning; Decentralized AI Models; Differential Privacy; Homomorphic Encryption; IoT 

and Smart City Applications. 

 

1. Introduction 

From manufacturing and transportation to healthcare and finance, the emergence of synthetic intelligence (AI) and gadget mastering (ML) 

has profoundly changed some of industries. Nonetheless, the developing dependence on information-pushed decision-making has raised 

privateness worries, especially in sensitive fields where stringent restrictions on facts sharing and usage are enforced by using records 

safety laws like the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) [1] 

[2], [3]. Traditional centralized system studying strategies, which compile huge volumes of statistics onto centralized servers for training, 

frequently neglect those privateness issues, posing a chance of records breaches, unlawful get admission to, and noncompliance with the 

law [4 -7]. 

Federated Learning (FL), which lets in collaborative model training with out moving raw information among entities, has emerge as a 

ground-breaking paradigm for privateness-keeping machine gaining knowledge of. FL reduces privacy problems and mitigates the prob-

lems related to statistics silos through decentralizing the schooling approach and relying on close by calculations at statistics assets. This 

ensures that sensitive facts remains interior its origin [8 - 10] To similarly defend facts for the duration of version updates and aggregation, 

FL in addition integrates contemporary privacy-keeping techniques as homomorphic encryption, differential privateness, and stable multi-

birthday celebration computing [2], [3] [11] [12]. 

This paper offers a thorough exam of FL strategies and their uses, highlighting how FL advances privateness-keeping gadget studying. An 

review of FL designs, including as horizontal, vertical, and switch mastering, as well as their many applications in industries like healthcare, 

finance, and IoT systems, are covered within the conversation [3], [7]. The take a look at also discusses how optimization algorithms like 

Federated Averaging (FedAvg) and Federated Proximal (FedProx) are used to cope with the unique difficulties of FL, together with statis-

tical heterogeneity, communique overhead, and computational complexity [9], [10]. 

The significance of FL as a progressive technique of system gaining knowledge of is highlighted via the developing need for privacy-

conscious AI solutions. FL has the capacity to revolutionize how corporations create and put into effect AI fashions by bridging the gap 

among privacy guidelines and collaborative facts utilization, commencing the door for secure and effective studying in privateness-touchy 

settings [13] [3], [14].In order to support FL's continued growth and uptake in important fields, this paper attempts to provide readers a 

thorough grasp of its theoretical underpinnings, real-world applications, and potential future developments. 

http://creativecommons.org/licenses/by/3.0/
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2. Privacy-preserving machine learning through federated learning 

Privacy-keeping machine learning is a rising paradigm geared toward addressing the challenges of statistics safety and person privacy in 

the digital age. Traditional gadgets gaining knowledge of procedures often require centralized information aggregation for schooling, rais-

ing significant privateness issues, especially with the increasing focus and regulation of data safety. Federated studying (FL) offers a 

solution by way of enabling collaborative version education throughout distributed records resources without moving raw records to a 

crucial server [15 - 17]. 

 

 
Fig. 1: Federated Learning Overview[18]. 

 

The basic architecture of FL is shown graphically in Figure 1, where client devices train local models using their own data and only share 

model updates (like gradients or parameters) with a central server for aggregation. This decentralized method enables collaborative machine 

learning while ensuring sensitive data stays localized, effectively addressing privacy concerns[19] [20]. 

2.1. Federated learning fundamentals 

The basic idea behind federated mastering is that models are skilled domestically on part devices or dispersed servers that reside the records, 

and that only version updates—like gradients or parameters—are shared with a principal server for aggregate. During the use of disbursed 

computing for model building, this decentralized method guarantees the privateness of touchy records [21] [16], [17]. 

Figure 2, titled "Federated Learning System," depicts the three primary styles of FL: horizontal, vertical, and federated transfer mastering. 

Horizontal FL is utilized in instances whilst objects percentage comparable traits with numerous folks, as seen within the top-left portion 

of the photo. Vertical FL, as proven inside the pinnacle-proper component, is used whilst entities have overlapping person bases however 

specific function units, with an emphasis on information feature alignment and intermediate result sharing. The backside half of Figure 2 

depicts Federated Transfer Learning, which mixes FL with switch mastering to remedy eventualities with restricted feature and sample 

overlap via permitting facts illustration interchange between customers. 

This picture presents a detailed visual representation of FL's flexibility to various data distributions and collaborative learning contexts, 

supporting the textual explanation of these categories. 

 

 
Fig. 2: Federated Learning System [22]. 

2.2. Privacy-preserving mechanisms in federated learning 

Other approaches are used to strengthen FL's intrinsic privacy-preserving nature: 

Differential Privacy (DP): This technique obscures individual contributions by adding noise to data or model parameters, protecting privacy 

while preserving overall statistical usefulness [16], [23]. 

1) Homomorphic Encryption (HE): Maintains anonymity throughout the procedure by enabling calculations on encrypted material 

without the need for decryption[24] [23]. 

2) Secure Multi-Party Computation (SMC): Allows multiple parties to collaboratively compute a function without revealing their in-

puts[16]. 

3) Trusted Execution Environments (TEEs): Provides hardware-based secure zones for sensitive computations [23]. 
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2.3. Applications and challenges 

Applications for FL may be located in fields in which information privacy is crucial, together with healthcare, banking, IoT, and smart 

towns[25] [17], [26]. For instance, FL addresses compliance with laws like GDPR and HIPAA via permitting diagnostic model training 

throughout establishments without exchanging patient records[27] [22], [26]. Nonetheless, FL has a number of problems, such as: 

1) Communication Overhead: Especially in large-scale situations, frequent model update exchanges can position a burden on band-

width[28]. 

2) Non-IID Data: Biased models and gradual convergence may additionally end result from data heterogeneity among customers. 

3) Security Risks: FL is liable to adverse manipulations, facts poisoning, and version inversion assaults, despite the fact that it's miles 

decentralized [26]. 

Figure three, "Federated Learning Features and Applications," depicts a visual assessment of critical FL properties and their many makes 

use of. The image emphasizes factors like as nearby education, low statistics administration, and minimum information labeling, which 

might be critical to its privateness-retaining abilities. It also highlights packages like as IoT-enabled AI, decentralized systems, and network 

outsourcing, demonstrating FL's capability to adapt to privacy-touchy environments. 

 

 
Fig. 3: An Illustration of Features and Applications of Federated Learning[29]. 

2.4. Future directions 

Research in FL focuses on incorporating cutting-edge privacy methods like quantum-safe cryptography, strengthening model resilience 

against adversarial attacks, and increasing communication efficiency through gradient compression and adaptive updating processes [15], 

[16] [30] [31]. 

Federated learning has the potential to revolutionize privacy-sensitive AI applications by facilitating decentralized and privacy-preserving 

model training, which strikes a balance between the necessity for data usefulness and strict privacy regulations. 

3. Literature review  

Federated Learning (FL) is a breakthrough paradigm in privateness-retaining device learning that lets in for decentralized model schooling 

across dispersed information assets. Over the ultimate decade, FL has emerged as a dependable option for addressing privateness problems 

associated to centralized records collecting. It has been a popular topic inside the literature because of its capacity to reconcile statistics 

cost and privacy. The multiplied interest in FL is seen in packages like as healthcare, IoT, and finance, all of which need touchy records 

processing. As a end result, on this element, we outline prior studies on the usage of FL for privacy-keeping machine gaining knowledge 

of and its realistic packages. 

Mansour et al. (2020)[32], recommended three strategies, backed through effective algorithms and theoretical assurances: person cluster-

ing, data interpolation, and model interpolation. Tests conducted on EMNIST and synthetic datasets showed extended scalability and ac-

curacy whilst balancing privacy, verbal exchange obstacles, and computing performance. This work used beneficial, scalable techniques 

to promote custom designed federated mastering. 

Li et al. (2020)[33] , cautioned a federated studying structure for multi-web site fMRI analysis that protects privateness whilst resolving 

issues with statistics sharing and domain shift between universities. To enhance version overall performance, the strategy used domain 

edition strategies consisting of Mixture of Experts and opposed domain alignment, in conjunction with randomized privacy protections. 

The framework's capacity to boom the classification accuracy of autistic spectrum problems even as coming across dependable and in-

structive biomarkers became proved via experiments at the ABIDE dataset. This examine proven how federated learning may adequately 

use multi-web page scientific information, providing more applications in privateness-sensitive fields. 

Liu et al. (2020) [34], recommended a visitors flow prediction structure that protects privacy by using the Federated Learning-based Gated 

Recurrent Unit (FedGRU). FedGRU used optimization techniques to keep conversation overhead and protected information privacy by 

means of aggregating encrypted parameters as opposed to offering uncooked facts. By identifying spatiotemporal styles, an ensemble 

clustering approach progressed in accuracy. FedGRU is suitable for steady site visitors management packages as experiments confirmed 

that it maintained statistics privacy even as reaching high accuracy on par with centralized techniques. 

Jeon et al. (2020) [35], presented a decentralized aggregation protocol for federated learning that uses the Alternating Direction Method of 

Multipliers (ADMM) while maintaining anonymity. The researchers addressed flaws in traditional ADMM techniques by introducing a 

unique communication pattern based on combinatorial block design theory that minimizes privacy leakage. This approach maintained 

linear Convergence while presenting privacy assurances towards sincere but inquisitive attackers. Its promise for safe and powerful feder-

ated mastering was shown with the aid of experiments on benchmark datasets, which confirmed that the approach attained accuracy equiv-

alent to centralized federated mastering with low deterioration (<0.73 %). 
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Kerkouche et al. (2021) [36] , advanced the FL-SIGN-DP federated studying method, that's bandwidth-green and privacy-keeping, specif-

ically for in-health facility mortality prediction using electronic health data. By combining severe gradient quantization and differential 

privateness, the technique preserved document-degree privateness at the same time as considerably lowering conversation expenses. Tests 

conducted on a dataset spanning 314 hospitals demonstrated that FL-SIGN-DP outperformed non-private models in phrases of accuracy 

loss whilst accomplishing sturdy privacy guarantees. This look at showed that privateness-preserving federated studying is viable for del-

icate clinical programs, putting a stability between efficiency, privacy, and value. 

Wei et al. (2020) [37], provided the consumer-stage differential privacy (UDP) approach for federated mastering, which improves privacy 

by means of which includes Gaussian noise into version updates. It decided the correct quantity of communique rounds for elevated accu-

racy and performance via deriving theoretical boundaries. Training became in addition refined the use of a communication rounds dis-

counting (CRD) approach. The approach was showed by way of experiments, which provided a achievable answer for privateness-preserv-

ing federated learning at the same time as turning in excessive privateness assurances with little performance fee. 

Mo et al. (2021) [38], suggested Privacy-Preserving Federated Learning (PPFL), which uses server-side aggregation in federated learning 

and safe local training using Trusted Execution Environments (TEEs). In order to overcome memory constraints and offer robust protec-

tions against attacks including data reconstruction, property inference, and membership inference, PPFL implemented layer-wise training 

within TEEs. Comparable model accuracy was shown in evaluation on real-world datasets with fewer communication cycles and less 

client-side overhead. The system demonstrated its promise for safe collaborative machine learning applications by achieving strong privacy 

guarantees and useful scalability. 

Venkataramanan et al. (2021)[39], created a federated studying (FL) framework that protects privacy for predicting Distributed Energy 

Resources (DER) making use of Internet of Things (IoT) nodes. It made it feasible to appropriately count on electricity output and intake 

on the same time as maintaining the privateness of neighborhood information. The method's awesome accuracy (RMSE < 2.Zero) and 

capacity to expect and decrease load fluctuations using top shaving strategies were proved through simulations related to 1,000 nodes and 

actual-international validation the usage of the Pecan Street dataset. The strategy tested how FL also can beautify grid reliability at the 

same time as shielding the privateness of client records. 

Biswal et al. (2021)[40], presented AMI-FML, a federated gadget learning (FML) framework created for superior metering infrastructure 

(AMI) to beautify information analytics while protective privacy. The system advanced short-term load forecasting (STLF) the use of Long 

Short-Term Memory (LSTM) neural networks at the identical time as protecting purchaser privateness via sending model gradients in place 

of raw facts. The outcomes confirmed that the use of organized and drawn updates reduced conversation fees and prolonged forecasting 

accuracy. This platform provided scalability and the opportunity of destiny enhancements in clever grid offerings, in conjunction with 

strength manage apps that protected privacy. 

Fang et al. (2021)[41], supplied PFMLP, a system getting to know framework that protects touchy information throughout collaborative 

training by using combining federated studying and homomorphic encryption. The device made it viable for several parties to securely 

proportion gradients and update models through the use of the Paillier encryption method. With a variant of less than 1%, PFMLP displayed 

accuracy equivalent to centralized training in experiments conducted on the MNIST and metal fatigue datasets. Furthermore, a refined 

Paillier algorithm ensured effective privacy protection and realistic scalability in multi-party learning situations by reducing computational 

cost by 25–28%. 

Fernández et al. (2022) [42], supplied a federated learning (FL) architecture for quick-time period residential load forecasting that preserves 

privateness by means of combining steady aggregation (SecAgg) and differential privateness (DP) to improve information privateness. The 

aggregate of FL with DP and SecAgg produced terrific forecasting accuracy while retaining strong privacy ensures, as proven via simula-

tions on the Low Carbon London dataset. Simpler neural community topologies were proven to lessen computing charges and overfitting 

concerns, whilst clustering based on Pearson correlation in addition better model overall performance. This method proven FL's promise 

for secure and precise energy forecasting in environments in which privacy is a challenge. 

Elbir et al. (2020) [43], explored how federated mastering (FL) can be utilized in automobile networks for tasks like traffic manage and 

self reliant driving. It emphasized how FL is advanced than centralized mastering (CL) in terms of decreasing transmission overhead and 

enhancing facts privateness. The effectiveness of FL changed into proved by means of case research on millimeter-wave beam choice and 

three-D object detection, which finished competitive accuracy with much lower conversation charges. In order to maximize resource use, 

the research additionally counseled hybrid federated-centralized frameworks to clear up problems along with data variety, labeling, and 

communication obstacles. Future instructions targeted on resilient communique protocols and adaptive techniques for records heterogene-

ity. 

Zhang et al. (2021) [44], provided FedNILM, a federated mastering machine designed to overcome resource limitations and privateness 

troubles for non-intrusive load tracking (NILM) at area gadgets. FedNILM made use of model compression techniques, consisting of multi-

challenge getting to know and filter pruning, to facilitate powerful deployment on devices with limited sources. In order to cope with area 

modifications across cloud and side contexts, unsupervised switch learning was included enabling version customisation without the need 

for categorized records. Tests found out FedNILM's viability for scaled NILM programs via demonstrating modern-day energy disaggre-

gation overall performance at the same time as defensive user privateness. 

Peyvandi et al. (2022) [45], suggested a blockchain-based totally federated mastering machine for scalable and privateness-preserving 

machine getting to know in Society 5.0 called Decentralized Computational Intelligence as a Service (DCIaaS). By securely sharing just 

discovered version parameters over blockchain, DCIaaS allowed for decentralized model training on neighborhood information even as 

preserving anonymity. Its efficacy for privacy-touchy responsibilities was highlighted by experimental programs in biomedical imaging 

and smart metropolis control, which showed higher accuracy whilst as compared to centralized strategies. The architecture supplied a 

achievable answer for secure collaborative intelligence by means of addressing troubles of privacy, scalability, and statistics equality. 

Zhang et al. (2023) [46], suggested a federated learning architecture for IoT-enabled healthcare applications that protect privacy by using 

homomorphic encryption. This method used cryptographic approaches to provide safe model aggregation while protecting data against 

inversion and reconstruction assaults. Dropout tolerance and increased model accuracy were made possible by the introduction of a 

weighted method depending on data quality. Tests conducted on the HAM10000 dataset showed improved data security and competitive 

classification accuracy (76.9%). The system offered a productive and private way to analyze healthcare data collaboratively. 

Pentyala et al. (2022) [47], provided PrivFairFL, a federated getting to know framework designed to protect facts privateness even as 

attaining institution fairness. To reduce prejudice with out gaining access to personal records, it incorporated federated learning with Secure 

Multiparty Computation (MPC) and Differential Privacy (DP). To make sure privateness and fairness, the system protected pre-processing 

for pattern reweighing and publish-processing for type threshold optimization. It outperformed nearby DP techniques in empirical tests, 

demonstrating its efficacy in minimizing bias and retaining usefulness throughout datasets. This have a look at demonstrated that federated 

getting to know can effectively integrate fairness with strong privacy necessities. 
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Liu et al. (2024) [48], advised a multi-hop multi-key fully homomorphic encryption (MKFHE) method with small ciphertexts for a privacy-

retaining federated getting to know framework. The technique allowed for scalability, dynamic consumer interplay, and powerful records 

encryption across severa parties. It addressed person dropout problems with out sacrificing security via lowering the wide variety of inter-

action cycles in federated learning from 3 to two. Comparing the framework to modern HE-primarily based techniques, empirical checks 

showed that it stepped forward conversation and computing efficiency even as keeping robust privateness guarantees underneath the RLWE 

assumption. 

Islam et al. (2023) [49], recommended federated learning frameworks that guard privateness and are mainly designed for comparing non-

public scientific records this is spread across several organizations. By combining differential privateness with strategies like feature choice 

and records sanitization, the strategies progressed privacy and usefulness whilst addressing horizontal and vertical statistics partitions. Tests 

showed that these techniques maintained strong privacy assurances whilst achieving competitive accuracy. The frameworks correctly bal-

anced privateness and usefulness through utilising techniques such vertical allotted learning with weighted feature aggregation, demon-

strating their suitability for safe, cooperative healthcare statistics evaluation. 

Butt et al. (2023) [50], offered a fog-based totally federated mastering (FL) device for COVID-19 analysis utilising chest X-ray photographs 

at the same time as shielding privacy. In order to facilitate cooperative version education throughout hospitals with out replacing sensitive 

data, the machine used a decentralized FL method at the side of convolutional neural networks (CNNs). The method used fog computing 

to enhance scalability and performance even as addressing issues with unbalanced and non-i.I.D. Records. The advised technique outper-

formed neighborhood models in phrases of accuracy, precision, consider, and F1-rating, according to experimental findings the usage of 

the COVID-19 Radiography Database. This observe demonstrated FL's capacity for safe and effective smart healthcare packages. 

Michalakopoulos et al. (2024) [51], recommended a federated learning (FL) structure that includes differential privacy (DP) to protect 

sensitive facts with the intention to offer privacy-retaining photovoltaic (PV) electricity forecasts. The aggregation of neighborhood models 

skilled with Long Short-Term Memory (LSTM) networks became progressed by way of the use of a completely unique hyperparameter 

clustering method. Tests the use of four years' worth of records from thirty prosumers showed that FL preserved statistics privacy whilst 

achieving accuracy on par with centralized learning. With little overall performance exchange-offs, the incorporation of DP further pro-

gressed protection, demonstrating the framework's scalability and suitability for decentralized electricity forecasting scenarios. 

Jiang et al. (2024) [52], presented Lancelot, a framework for Byzantine-sturdy federated learning (BRFL) with privacy renovation that 

makes use of completely homomorphic encryption (FHE). By suggesting a masked-primarily based encrypted sorting manner to offer 

reliable aggregation without records leaking, it addressed flaws in traditional BRFL structures. By combining hardware acceleration, state-

of-the-art aggregation strategies, and cryptographic optimizations, Lancelot elevated computing performance with the aid of greater than 

20 times. Significant computing overhead reductions had been proven in experiments carried out on numerous datasets, including clinical 

imaging, even as maintaining robust privateness and version correctness. In sensitive fields, our architecture promoted safe and effective 

collaborative device gaining knowledge. 

Zhang et al. (2024) [53], suggested Confined Gradient Descent (CGD), a fairness-aware and privacy-preserving optimization method for 

federated learning (FL) designed for situations involving critical infrastructure. CGD reduced information leakage while preserving high 

accuracy and fairness by substituting private limited models for conventional shared global models. The approach offered theoretical as-

surances for differential privacy and fairness convergence and was resilient to membership inference assaults. CGD's improved privacy-

utility tradeoff, scalability, and robustness were validated by empirical assessments across benchmark datasets, giving it a workable alter-

native for safe and fair FL in distributed systems. 

Munawar et al. (2024) [54], offered a collaborative methodology primarily based on federated mastering (FL) for estimating passenger call 

for in independent taxi systems in clever cities at the same time as protective privacy. The technique solved privateness problems and 

decreased verbal exchange overhead through making use of stable model updates and nearby facts training. Compared to baseline tech-

niques, experiments on actual-world information from over 4,500 cabs in Bangkok showed extra performance, acquiring the bottom MAE 

(5.32), RMSE (9.12), and finest 𝑅2 (0.93). The version established how FL may additionally improve useful resource allocation in smart 

city transportation structures, growth forecast accuracy, and protect passenger data privateness. 

Wu et al. (2020) [55], Pivot changed into presented as a framework for privateness-retaining vertical federated gaining knowledge of in 

tree-primarily based models. It enables secure conversation amongst corporations with disparate user facts features with out counting on a 

trusted 1/3 birthday party. It uses cryptographic procedures to keep away from intermediate records leaks and mitigate privacy problems 

in posted models. Pivot helps decision timber and ensemble models, with desirable efficiency and accuracy equivalent to non-personal 

methods. 

Al-Marri et al. (2020) [56], Federated Mimic Learning (FML) is a revolutionary technique that combines federated learning with mimic 

learning to improve the privacy of intrusion detection systems (IDS) for IoT devices. To avoid reverse engineering of user data, FML 

trained instructor models on private datasets and used them to classify public data for student models. Two variations, Federated Teacher 

Mimic Learning (FTML) and Federated Student Mimic Learning (FSML), were created and tested on the NSL-KDD dataset. The results 

showed great detection accuracy (98.11% with FSML) while maintaining privacy, outperforming traditional approaches, and lowering 

computing costs. 

Dutta et al. (2024) [57], proposed a innovative paradigm that mixes Federated Learning (FL), Fully Homomorphic Encryption (FHE), and 

Quantum Neural Networks (QNNs) to enhance privateness-preserving gadget gaining knowledge of. The suggested structure supported 

encrypted version updates and included quantum layers for neighborhood computations, assuring information protection while harnessing 

quantum computing advantages. Despite the extra processing burden, the results proven negligible accuracy exchange-offs and better 

generalization in numerous datasets. This hybrid answer showed promise in resolving the privacy and efficiency concerns of allotted 

learning, beginning the route for scalable and steady ML programs. 

Abaoud et al. (2023) [58], evolved a privacy-retaining federated learning system designed specifically for healthcare programs. The method 

enabled collaborative education and the use of decentralized healthcare data whilst protecting touchy affected person records. It used state-

of-the-art privateness strategies, which include safe multi-celebration computing and differential privateness, to prevent facts leaks through-

out the aggregation segment. In the assessment of preceding processes, reviews showed stepped-forward accuracy (97.69%), computational 

performance, and lower privateness leakage. The structure emphasized federated getting-to-know's promise for secure and efficient infor-

mation-pushed healthcare, with effective utility-privateness stability. 

Ruzafa-Alcázar et al. (2023) [59]investigated a privateness-retaining Federated Learning (FL) framework for intrusion detection structures 

(IDS) in Industrial IoT (IIoT) environments. It used differential privateness (DP) strategies, including introducing noise to version updates, 

to improve facts safety at some point of federated training. The ToN_IoT dataset was used to behavior opinions, which compared the 

aggregation methods FedAvg and Fed in non-identifiable-records circumstances. The outcomes showed that Fed progressed accuracy and 
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performance whilst keeping privateness. The have a look at validated the capability of DP-stronger FL to enable strong and safe IDS 

implementations in IIoT, even as balancing privacy protection and version accuracy. 

Lu et al. (2020) [60], proposed a Privacy-Preserving Asynchronous Federated Learning Mechanism (PAFLM) for aspect community com-

puting, allowing collaborative version education while safeguarding personal records. PAFLM installed self-adaptive gradient compression 

to lessen conversation overhead, decreasing transmission to 8.Seventy seven% without sacrificing accuracy. It additionally addressed the 

troubles of asynchronous studying in mobile facet nodes the usage of dual-weights correction to stability learning variations between nodes. 

Experimental findings on a number of datasets tested the framework's effectiveness in decreasing communication costs, protecting privacy, 

and preserving version overall performance, making it suitable for dynamic and aid-constrained edge settings. 

4. Discussion and comparison 

The literature review provides a detailed examination of various studies addressing diverse aspects of privacy-preserving federated learning 

(FL), including optimization techniques, data privacy mechanisms, domain-specific applications, and advancements in scalability and 

communication efficiency. By analyzing and comparing these studies, several critical themes and findings emerge, offering insights into 

the current state and potential future directions of FL research. 

Firstly, Mansour et al. (2020) [32], highlighted the transformative potential of FL in addressing personalization challenges through inno-

vative strategies like user clustering, data interpolation, and model interpolation. Their approach improved scalability and accuracy while 

maintaining privacy, particularly in applications involving synthetic and EMNIST datasets. Similarly, Li et al. (2020) [29] explored the 

use of FL for multi-site fMRI analysis, demonstrating its capability to enhance model performance and identify reliable biomarkers, despite 

limitations in generalizability to non-medical datasets. 

Secondly, studies like [36], and [37], emphasized bandwidth efficiency and differential privacy in FL, particularly in healthcare applica-

tions.[36] proposed FL-SIGN-DP, which effectively reduced communication costs while preserving privacy for in-hospital mortality pre-

diction.[37] introduced user-level differential privacy (UDP), achieving high privacy levels while managing performance trade-offs, un-

derscoring the importance of balancing privacy and computational efficiency. 

Thirdly, [34] and [35] tackled challenges related to statistical heterogeneity and secure aggregation.[34] proposed FedGRU, a privacy-

preserving traffic flow prediction framework that maintained accuracy by identifying spatiotemporal patterns. In contrast, [35]. introduced 

a decentralized aggregation protocol leveraging combinatorial block design theory to enhance privacy while ensuring linear convergence, 

though with higher implementation complexity. 

Fourthly, studies such as[38] and [44]explored advanced privacy mechanisms like Trusted Execution Environments (TEEs) and model 

compression techniques.[38] demonstrated the robustness of layer-wise training within TEEs for collaborative machine learning, while 

[44] showcased the effectiveness of FedNILM in addressing resource limitations in non-intrusive load monitoring (NILM) through unsu-

pervised transfer learning and model pruning. 

Lastly, research by [42] and [45] extended FL applications to energy forecasting and Society 5.0 scenarios, respectively.[42] combined 

secure aggregation and differential privacy for short-term residential load forecasting, achieving excellent privacy guarantees and accuracy. 

[45] integrated FL with blockchain to ensure data integrity and scalability in smart city environments, highlighting FL's adaptability to 

interdisciplinary applications. 

In summary, the literature review demonstrates the multidimensional scope of FL in privacy-preserving machine learning, emphasizing 

the importance of innovative privacy mechanisms, domain-specific customization, and optimization strategies. By synthesizing these stud-

ies, researchers and practitioners can identify actionable insights to address current challenges in FL deployment, including non-IID data 

handling, scalability, and communication efficiency, while paving the way for broader adoption across diverse fields. 

 
Table 1: Summary of the Literature Review on Details 

Author & Year Dataset & Application Limitations Pros Cons Focus & Result 

Mansour et al. 

(2020)[32] 

EMNIST & Synthetic 
datasets / Federated 

learning personaliza-
tion 

Limited focus on gen-

eral FL applicability 

Improves FL scalabil-

ity and personalization 

Does not address all 

privacy concerns 

Improved FL scalabil-

ity and personaliza-
tion 

Li et al. 

(2020)[33] 

ABIDE dataset / 

Multi-site fMRI analy-
sis 

Restricted to multi-site 

medical settings 

Enhances model per-

formance, finds bi-
omarkers 

Dependency on specific 

datasets 

Enhanced multi-site 

medical data use 

Liu et al. 

(2020)[34] 

Traffic datasets / Traf-

fic flow prediction 

Focus on traffic domain 

only 

Protects data, high pre-

diction accuracy 

Requires specialized 

traffic data 

Accurate and private 

traffic prediction 

Jeon et al. 

(2020)[35] 

Benchmark datasets / 
Federated learning pri-

vacy 

Complex communica-

tion design 

Maintains linear con-

vergence and privacy 
Complex to implement 

Safe and efficient FL 

aggregation 

Kerkouche et 

al. (2021)[36] 

314 hospitals dataset / 
In-hospital mortality 

prediction 

Limited to hospital data 

applications 

Reduces communica-
tion costs, preserves 

privacy 

Limited generalizability 
Privacy-preserving 

medical analytics 

Wei et al. 

(2020)[37] 

Federated learning 
simulations / User-

level differential pri-
vacy 

Performance cost for 

high privacy levels 

Achieves high privacy 

with UDP 

Limited to specific FL 

applications 

Workable privacy-

preserving FL 

Mo et al. 

(2021)[38] 

Real-world datasets / 

Collaborative machine 
learning 

TEEs limit scalability in 

some cases 

Scalable and robust 

privacy protections 

Relies on hardware so-

lutions 

Robust, scalable FL 

with TEEs 

Venkata-

ramanan et al. 
(2021)[39] 

Pecan Street dataset / 

Distributed energy re-
source forecasting 

Specific to energy appli-

cations 

High accuracy for en-

ergy applications 
Energy domain-specific 

Reliable energy fore-

casting 

Biswal et al. 

(2021)[40] 

AMI datasets / Energy 

management analytics 

Only tested on energy 

datasets 

Scalable with reduced 

communication 

Energy domain limita-

tions 

Enhanced energy 

forecasting 

Fang et al. 

(2021)[41] 

MNIST & Metal fa-
tigue datasets / Multi-

party learning 

Limited to homomor-
phic encryption scalabil-

ity 

Accurate with low 

computational cost 

High complexity for 

multi-party 

Accurate, secure 

multi-party training 
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Fernández et al. 

(2022)[42] 

Low Carbon London 

dataset / Energy fore-

casting 

Focus on energy domain 

only 

Excellent privacy guar-

antees 

Limited to forecasting 

scenarios 

Secure and accurate 

energy forecasting 

Elbir et al. 

(2020)[43] 

Automotive datasets / 

Autonomous driving, 
traffic control 

Focus on automotive 

tasks only 

Low communication 

cost, high accuracy 

Automotive-specific ap-

plications 

Low communication 

cost, high accuracy 

Zhang et al. 

(2021)[44] 

Edge device datasets / 

Non-intrusive load 
monitoring 

Edge device deployment 

challenges 

Cutting-edge energy 

disaggregation 

Limited domain flexi-

bility 

Advanced NILM ap-

plication 

Peyvandi et al. 

(2022)[45] 

Biomedical imaging, 

smart cities datasets / 
Privacy-preserving ML 

Scalability concerns in 

Society 5.0 

High accuracy for col-

laborative ML 

Focus on Society 5.0 

scenarios 

Efficient collaborative 

ML solutions 

Zhang et al. 

(2023)[46] 

HAM10000 dataset / 

Healthcare data analy-
sis 

Limited to single 

healthcare dataset 

Strong privacy and ac-

curacy balance 

Requires high data 

quality 

Improved secure 

healthcare analysis 

Pentyala et al. 

(2022)[47] 

Federated learning 

tests / Group fairness 
in FL 

Application in fairness 

is narrow 

Fairness with privacy-

preservation 

Focused on fairness 

trade-offs 

Fairness with privacy-

preservation 

Liu et al. 

(2024)[48] 

FL simulations / Pri-

vacy-enhanced encryp-
tion 

Focused on encryption 

improvements 

Efficient, secure FL in-

teractions 

Requires encryption im-

provements 

Efficient, secure FL 

interactions 

Islam et al. 

(2023)[49] 

Healthcare datasets / 

Private medical data 
evaluation 

Primarily for medical 

datasets 

Safe, collaborative 

healthcare analytics 

Focuses on horizontal 

partitions 

Safe, collaborative 

healthcare analytics 

Butt et al. 
(2023)[50] 

COVID-19 Radiog-

raphy dataset / Pri-
vacy-protected diagno-

sis 

Data diversity not fully 
addressed 

Outperforms local 
models 

Focuses on COVID-19 
data 

Effective COVID-19 
diagnostics 

Michalakopou-
los et al. 

(2024)[51] 

Prosumers datasets / 

PV power forecasting 

PV-specific implemen-

tation 

Accurate with low per-

formance trade-offs 

PV-specific implemen-

tation 

Secure decentralized 

energy forecasts 

Jiang et al. 

(2024)[52] 

Various datasets / Byz-
antine-robust federated 

learning 

Heavy computational re-

quirements 

Efficient and secure 

learning 

Heavy infrastructure re-

quirements 

Robust, efficient col-

laborative ML 

Zhang et al. 
(2024)[53] 

Benchmark datasets / 
Privacy, fairness in 

critical infrastructure 

Critical infrastructure 
focus only 

Scalable with privacy-
utility tradeoff 

Not general FL applica-
bility 

Safe, fair distributed 
FL models 

Munawar et al. 

(2024)[54] 

Bangkok taxi dataset / 

Autonomous taxi de-

mand prediction 

Focus on autonomous 

taxi systems 

High accuracy and pri-

vacy preservation 

Domain-specific for 

smart cities 

Enhanced smart city 

transport systems 

Wu et al. 

(2020) [55] 

Tree-based models in 

privacy-preserving ver-
tical federated learning 

Limited to tree-based 
models; does not ad-

dress scalability for 

other model types 

Ensures secure com-

munication without a 

trusted third party; 
supports decision trees 

and ensemble models 

High computational 

complexity in crypto-
graphic operations 

Achieved efficiency 
and accuracy compa-

rable to non-private 

approaches 

Al-Marri et al. 

(2020) [56] 

NSL-KDD dataset; In-

trusion Detection Sys-
tems (IDS) for IoT 

Focused on a specific 
dataset, may not gener-

alize to other IDS sce-

narios 

High detection accu-
racy (98.11% with 

FSML); reduced com-

putational costs 

Potential challenges in 

adapting mimic learn-
ing to diverse datasets 

Enhanced privacy 
while outperforming 

traditional methods in 

detection accuracy 

Dutta et al. 
(2024) [57] 

Multiple datasets; pri-

vacy-preserving FL 

with Fully Homomor-
phic Encryption and 

Quantum Neural Net-

works 

Additional processing 

burden due to quantum 
and cryptographic com-

putations 

Negligible accuracy 

trade-offs; better gen-
eralization and data se-

curity 

Increased computa-

tional resource require-

ments 

Promising hybrid so-

lution for scalable, se-
cure distributed learn-

ing 

Abaoud et al. 

(2023) [58] 

Healthcare data; pri-

vacy-preserving feder-

ated learning for 
healthcare applications 

Specific to healthcare 

domain; generalizability 

to other domains un-
tested 

Improved accuracy 

(97.69%), computa-

tional efficiency, and 
lower privacy leakage 

Potential privacy risks 
in large-scale deploy-

ments 

Positive utility-pri-
vacy balance for safe, 

data-driven healthcare 

Ruzafa-Alcázar 

et al. (2023) 

[59] 

ToN_IoT dataset; IDS 
for Industrial IoT 

Focuses on non-identifi-

able-data scenarios; 
does not address diverse 

IoT applications 

Improved accuracy and 

performance with 
Fed+ aggregation; 

maintained privacy 

Higher complexity 

compared to simpler FL 

methods 

Enabled robust, safe 

IDS implementations 

in IIoT 

Lu et al. (2020) 

[60] 

Various datasets; Pri-
vacy-preserving asyn-

chronous FL for edge 

networks 

High mobility environ-

ments may introduce un-
predictability 

Reduced communica-
tion overhead (to 

8.77%); maintained ac-

curacy 

Complexity in manag-

ing asynchronous learn-
ing states 

Effective framework 
for dynamic, re-

source-constrained 

edge settings 
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5. Extracted statistics 

 
 

The previous bar graph highlights significant developments in privacy-preserving federated learning (FL), with a focus on striking a com-

promise between performance accuracy across domains and privacy safeguards. With privacy assurance levels between 85% and 90%, FL 

showed strong performance in the healthcare industry, obtaining good classification accuracy for diagnosing autistic spectrum disorder and 

outstanding F1-scores for diagnosing COVID-19. Applications for energy forecasting demonstrated the efficacy of secure frameworks and 

federated LSTM models, delivering up to 98% accuracy rates with 88% to 92% privacy guarantees. FL allowed autonomous taxi demand 

forecast with 93% accuracy and privacy assurance in smart city and transportation environments. Enhancements to security and privacy, 

like Gaussian noise-based methods, produced high training accuracy and 95% privacy guarantees. Additionally, federated learning effi-

ciency was enhanced by decentralized aggregation systems, which maintained 91% privacy assurance and performance accuracy above 

99%. These advancements highlight FL's capacity to provide high-performance, privacy-conscious machine learning solutions for a range 

of applications. 

6. Recommendations 

The recommendations in this review article emphasize how crucial it is to develop federated learning (FL) methods in order to solve privacy 

and efficiency issues. To strike a compromise between data security and model performance, the development of adaptive privacy-preserv-

ing mechanisms—such as context-sensitive differential privacy and hybrid cryptographic approaches—should be prioritized. For wider 

implementation and consistent privacy assurances, standardization of methods and cross-domain interoperability are essential. 

Validating FL concepts in practical contexts requires empirical study, especially in a variety of industries including healthcare, energy, and 

transportation. Examining how FL may be integrated with cutting-edge technologies like blockchain and IoT might improve real-time 

analytics, scalability, and data integrity. Furthermore, to guarantee equity and resilience in dispersed settings, creative approaches to han-

dling data heterogeneity and non-i.i.d. distributions have to be given top priority. 

Clear ethical and legal frameworks that promote the deployment of privacy-preserving FL applications and build public confidence require 

cooperation with legislators. To provide practitioners the tools they need to successfully adopt and operate these systems, it is equally 

important to raise stakeholder knowledge through educational and training initiatives. Lastly, encouraging collaborations between academ-

ics and business can hasten the creation of open standards and benchmark datasets, promoting creativity and openness in this revolutionary 

area. 

7. Conclusion 

Federated Learning (FL), which overcomes the drawbacks of conventional centralized models, has transformed privacy-preserving ma-

chine learning. By facilitating decentralized model training and using cutting-edge privacy-preserving strategies, FL provides a safe and 

efficient method of using data in accordance with laws like GDPR and HIPAA. Even while its uses in healthcare, IoT, and finance show a 

lot of potential, obstacles including ineffective communication, non-IID data, and hostile dangers necessitate constant innovation. FL will 

be more scalable and impactful if it is advanced through multidisciplinary cooperation, streamlined communication protocols, and adaptive 

privacy safeguards. FL is a prime example of a conscientious and moral approach to AI research in privacy-sensitive fields. 
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