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Abstract 
 

Swarm Intelligence (SI) is a dynamic subfield of artificial intelligence that draws inspiration from the collective behaviors of natural 

systems such as ant colonies, bird flocks, and fish schools. This paper provides a comprehensive review of SI algorithms, examining their 

foundational principles, recent modifications, and applications across diverse domains. Prominent algorithms such as Particle Swarm Op-

timization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Bat Algorithm (BA) are analyzed alongside emerg-

ing approaches like Grey Wolf Optimizer (GWO), Zebra Optimization Algorithm (ZOA), and hybrid frameworks. A key focus is placed 

on algorithmic advancements, in-cluding adaptive inertia weights in PSO, pheromone update mechanisms in ACO, and hybridization 

techniques such as GWO-PSO and WOA-BA, addressing challenges related to convergence speed, scalability, and robustness against local 

optima. 

This review explores the practical applications of SI algorithms in engineering design, healthcare, robotics, logistics, education, and social 

media. Detailed performance comparisons reveal the strengths and limitations of each algorithm, supported by empirical results from 

benchmark problems such as the Traveling Salesman Problem (TSP), pressure vessel design optimization, and radiotherapy planning. 

Addi-tionally, the study highlights novel algorithms developed between 2020 and 2023, shedding light on their contributions to the field. 

The paper concludes by identifying current challenges, such as computational overhead and parameter sensitivity, and suggests future 

directions, including the integration of machine learning, lightweight adaptations for resource-constrained environments, and bio-inspired 

enhance-ments. 
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1. Introduction 

Swarm Intelligence (SI) algorithms, a subset of artificial intelligence, have gained significant attention due to their ability to solve complex 

optimization problems by mimicking the collective behavior of social organisms. Inspired by natural systems such as ant colonies, bird 

flocks, and fish schools, SI algorithms are inherently decentralized and adaptive, allowing them to address high-dimensional, non-linear, 

and dynamic problems effectively. Over the past decades, SI has proven to be a robust tool for tackling challenges in engineering, 

healthcare, robotics, logistics, and emerging fields like social media and education [1]. 

Prominent SI algorithms such as Particle Swarm Optimization (PSO) [2] and Ant Colony Optimization (ACO) [3] have demonstrated 

remarkable success in real-world applications, including radiotherapy planning, feature selection in disease diagnosis, and autonomous 

robotics. Recent advancements in the field have introduced innovative algorithms like the Zebra Optimization Algorithm (ZOA) and Spider 

Wasp Optimizer (SWO), which bring unique mechanisms inspired by animal behaviors to address complex optimization problems. Hybrid 

approaches, such as GWO-PSO, further extend the capabilities of standalone algorithms by leveraging complementary strengths to achieve 

superior performance [1]. 

Despite their success, SI algorithms face several challenges, including premature convergence, parameter sensitivity, and computational 

inefficiencies in large-scale problems. Researchers have addressed these limitations through various modifications, such as adaptive pa-

rameter control, enhanced initialization techniques, and hybridization with other optimization frameworks[4]. These enhancements not 

only improve performance but also broaden applicability to diverse fields, including sustainable energy systems, personalized medicine, 

and intelligent urban planning [2].  

This paper provides a comprehensive review of SI algorithms, exploring their foundational principles, significant modifications, and di-

verse applications. Emphasis is placed on recent developments, particularly those emerging between 2020 and 2023, to highlight the current 

state of the art. Detailed performance comparisons across benchmark problems, including the Traveling Salesman Problem (TSP) and 

pressure vessel design optimization, are presented to provide practical insights into the strengths and limitations of various algorithms. By 

synthesizing these findings, this review aims to guide future research and practical implementations in the rapidly evolving field of swarm 

intelligence. 

http://creativecommons.org/licenses/by/3.0/
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2. Literature review 

Swarm Intelligence (SI) algorithms have evolved significantly over the years, driven by the need to solve complex optimization problems 

in diverse domains [6].  

In 1992, Marco Dorigo introduced the Ant Colony Optimization (ACO) algorithm [1], [6], inspired by the pheromone-based communica-

tion observed in ant colonies. ACO has proven effective in solving combinatorial optimization problems such as the Traveling Salesman 

Problem (TSP) and network routing. The algorithm utilizes a feedback loop where artificial ants deposit pheromones to guide subsequent 

ants, optimizing search paths over iterations. Applications extend to logistics, scheduling, and bioinformatics [1], [6]. 

In 1995 Kennedy and Eberhart developed Particle Swarm Optimization (PSO) [2], drawing inspiration from the social behaviors of bird 

flocking and fish schooling. PSO leverages a population of particles that adjust their positions in the search space based on individual and 

group experiences. The algorithm has been applied in feature selection, engineering design, and financial modeling, achieving notable 

success in dynamic and multi-modal environments [3], [5]. 

In 2005, Karaboga introduced the Artificial Bee Colony (ABC) algorithm [7], mimicking the foraging behavior of honeybees. The algo-

rithm divides bees into employed, onlooker, and scout categories to explore and exploit search spaces effectively. ABC excels in con-

strained optimization and has been applied to wireless sensor networks, image processing, and scheduling problems [5], [6]. 

In 2010 Yang introduced the Bat Algorithm (BA)[8, 9], inspired by the echolocation behavior of bats. BA integrates frequency-tuning and 

velocity adjustments to balance exploration and exploitation. The algorithm has demonstrated high efficiency in solving engineering design 

problems, feature selection, and energy optimization in smart grids [8]. 

In 2014 Mirjalili proposed the Grey Wolf Optimizer (GWO) [10], inspired by the hierarchical hunting strategies of grey wolves. GWO 

utilizes leadership hierarchy and pack dynamics to converge on optimal solutions. It has been widely applied in renewable energy optimi-

zation, image segmentation, and mechanical design. 

In 2008 Firefly Algorithm (FA) [11], developed by Yang, models the bioluminescent attraction of fireflies to guide search processes. FA 

has been applied to non-linear optimization, feature selection, and multi-objective problems, demonstrating robustness and scalability. 

In 2006 Cat Swarm Optimization (CSO) [13] algorithm was developed by Chu and Tsai, based on the social and solitary behaviors of cats. 

CSO alternates between seeking and tracing modes to simulate diverse search patterns. Applications include clustering, classification, and 

robotics path planning, with notable success in high-dimensional problems. 

In 2009 Cuckoo Search (CS) Proposed by Yang and Deb [1], inspired by the brood parasitism behavior of cuckoos. The algorithm leverages 

Lévy flight mechanisms to enhance exploration and convergence in global optimization problems. CS has been successfully applied in 

data clustering, structural design, and energy optimization . 

In 2014, Bansal et al. introduced Spider Monkey Optimization (SMO) [1], inspired by the social division and foraging behavior of spider 

monkeys. SMO balances exploration and exploitation through a dynamic hierarchical approach. It has been applied to supply chain opti-

mization, robotics, and network routing [17], [18]. 

In 2020 Slime Mould Algorithm (SMA) Developed Li et al., the Slime Mould Algorithm (SMA) models the oscillatory behavior of slime 

moulds. SMA demonstrates adaptability in dynamic environments and has been applied to image processing, multi-objective optimization, 

and environmental monitoring [19], [20]. 

In 2016 Whale Optimization Algorithm (WOA) Proposed by Mirjalili, Whale Optimization Algorithm (WOA) mimics the bubble-net 

hunting strategy of humpback whales. WOA has shown strong performance in constrained optimization tasks, including feature selection, 

engineering design, and machine learning [21], [22]. 

Recent advancements in swarm intelligence research have highlighted the potential of hybrid approaches that combine the strengths of 

multiple algorithms to address specific challenges in optimization tasks. 

PSO-GWO (Particle Swarm Optimization - Grey Wolf Optimizer) Developed to integrate the social dynamics of PSO with the hierarchical 

hunting strategies of GWO, this hybrid algorithm has been particularly effective in solving engineering design problems and renewable 

energy optimization. By leveraging PSO's fast convergence and GWO's exploration capabilities, PSO-GWO achieves a balance between 

local and global search efficiency [23], [24]. 

ACO-GDA (Ant Colony Optimization - Great Deluge Algorithm) by Saman M. Almufti [4] ACO-GDA combines the pheromone-based 

search strategies of ACO with the gradient-based adjustments of the Great Deluge Algorithm. This hybrid excels in solving NP-hard 

problems like the Traveling Salesman Problem (TSP) and has been widely applied in medical imaging and logistics planning [4]. 

ABC-PSO (Artificial Bee Colony - Particle Swarm Optimization) By merging the foraging behavior of ABC with the velocity-based 

adjustments of PSO, ABC-PSO achieves improved convergence rates in high-dimensional search spaces. This hybrid has shown significant 

success in wireless sensor network optimization and financial modeling [27], [28]. 

These hybrid approaches exemplify the power of combining complementary strategies from different algorithms, enhancing their ability 

to address diverse and complex optimization challenges. They represent the forefront of innovation in swarm intelligence, enabling solu-

tions for real-world problems across engineering, healthcare, logistics, and beyond. 

Table 1, shows a collections of well-known Swarm Intelligence algorithms details including the inspirations, strengths and limitations 

 
Table 1: Swarm Intelligence Algorithms 

Ref. Algorithm Biological Inspiration Strengths Limitations 

[2] 
Particle Swarm Optimization 

(PSO) 
Bird flocking and fish schooling Rapid convergence, simplicity Premature convergence 

[6] Ant Colony Optimization (ACO) Ant foraging Effective in discrete problems Scalability issues 
[7] Artificial Bee Colony (ABC) Bee foraging behavior Balances exploration/exploitation Parameter sensitivity 

[8] [9] Bat Algorithm (BA) Echolocation in bats Adaptive parameter handling Requires careful tuning 

[10] Grey Wolf Optimizer (GWO) Hunting strategies of wolves Simple yet effective 
Limited in multi-modal 
problems 

[11] Firefly Algorithm (FA) Bioluminescent attraction Effective in dynamic systems High computational cost 

[12] 
[13] 

Cat Swarm Optimization (CSO) Feline predatory behavior Maintains diversity well 
Sensitive to initial param-
eters 

[14] 
Mayfly Optimization Algorithm 

(MOA) 

Flight and mating behavior of 

mayflies 

Effective in discrete and continu-

ous optimization 

Complex parameter han-

dling 
[15] Bald Eagle Search (BES) Hunting strategies of eagles Robust and adaptive search High computational cost 

[16] 
Black Widow Optimization Algo-

rithm (BWOA) 

Mating and lifecycle behavior of 

black widows 

Suitable for combinatorial prob-

lems 
Prone to local optima 
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[17] 
Dingo Optimization Algorithm 

(DOA) 

Hunting and scavenging behavior 

of dingoes 

Good balance of exploration/ex-

ploitation 

Requires further valida-

tion 

[18] Wild Horse Optimizer (WHO) Group dynamics of wild horses High exploration capabilities 
Slow convergence in 

some cases 

[19] 
Chameleon Swarm Algorithm 
(CSA) 

Adaptive behavior of chameleons Effective for constrained problems Parameter sensitivity 

[20] 
Zebra Optimization Algorithm 

(ZOA) 

Foraging and defense mecha-

nisms of zebras 
Good at multi-modal optimization Limited scalability 

[21] 
Beluga Whale Optimization 

(BWO) 

Social and predatory behavior of 

beluga whales 

Effective for engineering prob-

lems 

High computational re-

sources 

[22] 
Artificial Hummingbird Algorithm 
(AHA) 

Foraging and flight dynamics of 
hummingbirds 

Precise global and local search 
Requires advanced pa-
rameter tuning 

[23] 
Dwarf Mongoose Optimization 

(DMO) 
Foraging strategies of mongooses High convergence speed Limited validation 

[24] Prairie Dog Optimization (PDO) 
Burrowing and foraging behavior 

of prairie dogs 
Robust for engineering design 

Prone to stagnation in lo-

cal optima 

[25] 
Nutcracker Optimizer Algorithm 
(NOA) 

Food storage behavior of nut-
crackers 

Effective for multi-objective prob-
lems 

Complex implementation 

[26] 

[27] 
Spider Wasp Optimizer (SWO) 

Hunting and nesting strategies of 

spider wasps 

Strong local optimization capabili-

ties 

High parameter sensitiv-

ity 

[28] Gold Rush Optimizer (GRO) Gold prospecting strategies 
Effective for constrained optimi-

zation 
Limited scalability 

[29] 
Crayfish Optimization Algorithm 
(COA) 

Social and competitive behavior 
of crayfish 

Good balance of exploration/ex-
ploitation 

High computational cost 

[30] 
Piranha Foraging Optimization Al-

gorithm (PFOA) 
Foraging dynamics of piranhas 

High accuracy in engineering de-

signs 

Prone to premature con-

vergence 

3. Fundamentals of swarm intelligence algorithms 

Swarm Intelligence (SI) algorithms operate on the principle of decentralized coordination among agents, inspired by the collective behav-

iors observed in natural systems. These agents interact locally to achieve global objectives, showcasing characteristics such as self-organ-

ization, adaptability, and robustness. The following subsections outline the key principles and biological inspirations underlying SI algo-

rithms [4]. 

3.1. Decentralized agent systems 

At the core of SI algorithms is the concept of decentralized agent systems, where simple agents interact with their environment and each 

other without central control. This decentralized approach mirrors natural phenomena, such as ants leaving pheromone trails to optimize 

foraging paths or birds coordinating flight patterns to avoid predators. These local interactions enable the system to adapt dynamically to 

changes in the environment, making SI algorithms particularly effective in dynamic and uncertain problem spaces [3], [4]. 

3.2. Key characteristics of SI algorithms 

Swarm Intelligence systems are defined by the following key characteristics [4]: 

• Self-Organization: Agents independently adjust their actions based on local interactions, leading to emergent global behavior. 

• Adaptability: The system responds to dynamic changes in the environment, making SI algorithms suitable for real-time optimization 

problems. 

• Robustness: The system maintains functionality even if individual agents fail, ensuring reliability in large-scale optimization tasks. 

• Scalability: SI algorithms efficiently handle high-dimensional search spaces due to their distributed nature. 

3.4. Algorithmic workflow 

The general workflow of SI algorithms involves the following steps [5]: 

1) Initialization: A population of agents (solutions) is randomly initialized within the search space. 

2) Fitness Evaluation: Each agent's performance is evaluated based on a predefined objective function. 

3) Interaction and Update: Agents interact with their neighbors or environment to update their positions or strategies. This step incor-

porates specific mechanisms, such as velocity updates in PSO or pheromone updates in ACO. 

4) Convergence: The algorithm iteratively refines the population until a termination criterion, such as a maximum number of iterations 

or convergence threshold, is met. 

3.3. Categories of SI algorithms 

Swarm intelligence algorithms can be broadly categorized based on their biological inspirations [5]. 

Figure 1. Shows the SI categories include algorithms inspired by animals, insects, and other natural phenomena: 

1) Inspired by Animals: This category includes algorithms such as Bird-inspired (e.g., PSO), Lion-inspired (e.g., Lion Optimization 

Algorithm), Monkey-inspired (e.g., Monkey Search), Bat-inspired (e.g., Bat Algorithm), and Wolf-inspired (e.g., Grey Wolf Opti-

mizer). Other animal-inspired algorithms include Fish, Frog, Cat, Chicken, and Buffalo-based approaches, each mimicking unique 

behaviors like hunting, foraging, or social interactions [6] 

2) Inspired by Insects: These algorithms draw from the behaviors of insects such as Ants (e.g., Ant Colony Optimization), Bees (e.g., 

Artificial Bee Colony), Fireflies (e.g., Firefly Algorithm), Termites, and Glow-worms (e.g., Glowworm Swarm Optimization). Ad-

ditional inspirations include Roach, Mosquito, Fruit Fly, Super Bug, Dragonfly, Antlion, and Grasshopper behaviors [5], [6]. 
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3) Other Inspirations: This group encompasses algorithms inspired by less conventional sources, such as Slime (Slime Mould Algo-

rithm), Cuckoo (Cuckoo Search), Dolphin, Beaver, Bacteria (e.g., Bacterial Foraging Optimization), Krill, Moth (e.g., Moth Flame 

Optimization), and Whale (e.g., Whale Optimization Algorithm) [5].  

These categories highlight the diversity and richness of swarm intelligence as a field, emphasizing its ability to adapt biological principles 

to computational optimization challenges. Table 1, shows the details of some well-known SI algorithms. 

 

 
Fig. 1: Swarm Intelligent Categories. 

4. Applications of swarm intelligence algorithms 

The versatility of Swarm Intelligence (SI) algorithms is evident through their wide-ranging applications across numerous domains. From 

engineering design and healthcare optimization to robotics and education, these algorithms have consistently demonstrated their ability to 

address complex, high-dimensional problems effectively [31]. This section highlights key domains where SI algorithms have been applied, 

detailing their representative applications and associated benefits. A comprehensive summary is provided in the following table: 

 
Table 2: Applications of Swarm Intelligence Algorithms 

Domain Key Algorithms Representative Applications Key Benefits References 

Structural De-

sign 
ABC, BA, GWO Truss and beam optimization Minimized material cost and weight [32, 33, 34]. 

Power Systems PSO, GWO Load balancing, energy distribution Cost reduction, improved efficiency [37, 38, 58] 

Healthcare 
PSO-GA, ACO-

GDA 

Feature selection, radiotherapy plan-

ning, Drug Discovery 

Improved diagnostic accuracy, mini-

mal tissue damage 

[39, 40,41, 42, 43, 44, 45, 

46,47, 48]. 

Robotics 
ACO, PSO, 
Dragonfly 

Multi-robot coordination, path planning Collision-free, energy-efficient paths [24,49, 50]. 

Transportation BA, GSO, WOA Fleet management, traffic scheduling Reduced delays, cost optimization  [50, 52, 53, 54] 

Renewable En-
ergy 

WOA, GWO 
Solar and wind farm layout optimiza-
tion 

Maximized energy capture efficiency [35, 36] 

Education 
ACO, ABC, 

PSO 

Curriculum optimization, student clus-

tering 
Enhanced learning outcomes [60], [61] 

Social Media PSO, FA 
Community detection, content recom-

mendation 
Improved user interaction [62], [63] 

E-commerce CS, PSO Recommendation systems Improved user engagement [55, 56, 57] 
Image Pro-

cessing 
FA, ACO, ABC Edge detection, segmentation Enhanced visual accuracy [11], [5], [8], [42] 

5. Algorithm modifications and enhancements 

Algorithmic modifications play a crucial role in adapting swarm intelligence algorithms to tackle real-world optimization challenges ef-

fectively. Researchers have developed numerous enhancements to improve convergence rates, scalability, and robustness against local 

optima. 
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Fig. 2: Enhancement Strategies. 

 

Figure 2 categorizes the various strategies used to improve the performance of algorithms in terms of initialization and search dynamics. 

It demonstrates the flexibility and adaptability of modern optimization techniques, allowing them to address diverse and complex problem 

spaces effectively. 

Below are significant modifications for key algorithms [5]: 

 
Table 3: Summary of Some SI Algorithm Modifications 

Original Algorithm Algorithm name Authors Ref 

Ant Colony Optimization (ACO) 

AC S-SMTTP Bauer et at 

[38] 
AntNet-FS Di Caro & Dorigo 

U-TACO Saman M. Almufti 

Ant-P-solver Solnon 

Artificial Bee Colony (ABC) 

Original ABC D. Karaboga 

[36] 
Hybrid ABC-GA A. Singh, P. Singh 

Multi-Objective ABC J. C. Bansal et al. 
Hybrid ABC-DE X. B. Zhang, Y. Wang 

Cat Swarm Optimization (CSO) 

PCSO Tsai et al. 

[13] 
CSO Clustering Santosa et al. 

AICSO Orouskhani et al. 

BBCSO Siqueira et al. 

Lion Algorithm (LA) 
MO-ADDOFL Satish Chander 

[64] ALF-TOHIP Ambekar Kolekar 

M-LionWhale Chintalapalli & Ananthula 

Vibrating particles system (VPS) 
VPS Kaveh et al. 

[65], [66] EVPS Patrick et al. 

MO- VBPSO Liang Ou et al. 

Grey Wolf Optimizer (GWO) 
IGWO Wen et al. 

[67] CEGWO Luo et al. 

BGWO Emary et al. 

 

This table illustrates modifications across several foundational SI algorithms, showcasing the diversity of enhancements aimed at address-

ing specific optimization challenges. Each modification incorporates novel features such as hybridization, adaptive control, or enhanced 

search mechanisms to meet the demands of complex problem spaces effectively. 

6. Discussion 

Swarm Intelligence (SI) algorithms have shown remarkable versatility in solving a variety of optimization problems, ranging from classical 

benchmarks like the Traveling Salesman Problem (TSP) to complex real-world applications in engineering, healthcare, and logistics. Al-

gorithms such as ACO and its hybrid variants (e.g., U-TACO) achieve near-optimal solutions for TSP, while PSO and BA excel in reducing 

material costs for pressure vessel design. Similarly, ABC and GWO provide accurate and computationally efficient solutions for high-

dimensional knapsack problems. Despite these strengths, challenges such as premature convergence in standalone algorithms and compu-

tational overhead in large-scale problems persist. However, advancements in hybridization, such as PSO-GWO and ACO-GDA, have 

enhanced adaptability and scalability, enabling these algorithms to address dynamic, multi-modal environments effectively. The practical 

implications span diverse domains, offering optimized designs in engineering, improved diagnostics in healthcare, and cost-effective solu-

tions in logistics, underscoring their transformative potential in modern problem-solving.  

7. Conclusion 

Swarm Intelligence (SI) algorithms have emerged as powerful tools for addressing a wide range of optimization problems, leveraging 

decentralized, nature-inspired mechanisms to achieve robust and scalable solutions. This comprehensive review highlights the foundational 

principles, recent modifications, and diverse applications of prominent algorithms such as PSO, ACO, ABC, and BA, alongside novel 

approaches like GWO and ZOA. Performance comparisons across benchmarks and real-world scenarios underline the effectiveness of SI 

in areas like engineering design, healthcare optimization, and logistics. While challenges such as parameter sensitivity and computational 

overhead persist, advancements in hybridization and adaptive strategies continue to expand their applicability and efficiency. Future 
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research directions include the integration of machine learning, exploration of lightweight adaptations, and development of bio-inspired 

enhancements to further strengthen the role of SI in solving complex, dynamic problems. This study provides a foundation for future 

investigations and practical implementations in this rapidly evolving field. 
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