

Copyright © Saman M. Almufti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Scientific World, 11 (1) (2025) 1-9

International Journal of Scientific World

Website: www.sciencepubco.com/index.php/IJSW

Research paper

Cuckoo search algorithm: overview, modifications,

and applications

Saman M. Almufti 1, 3 * ,Ridwan Boya Marqas 1, 2 ,Renas Rajab Asaad 1, 3, Awaz Ahmed Shaban 3

1 Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq

2 Computer Department, Shekhan Polytechnic Institute, Shekhan, Duhok, Iraq
3 Information Technology Department, Technical College of Informatics-Akre, Akre University for Applied Sciences, Duhok, Iraq

*Corresponding author E-mail: Saman.Almofty@gmail.com

Abstract

The Cuckoo Search Algorithm (CSA), introduced by Xin-She Yang and Suash Deb in 2009, is a nature-inspired metaheuristic optimization

technique modeled on the brood parasitism behavior of certain cuckoo bird species. Utilizing a Levy flight mechanism, CSA effectively

balances global exploration and local exploitation, making it a versatile tool for addressing non-linear, multi-modal, and high-dimensional

optimization problems.

This paper presents a comprehensive exploration of CSA, detailing its biological foundation, mathematical framework, and algorithmic

processes. Key modifications, including hybrid approaches, adaptive mechanisms, and domain-specific enhancements, are reviewed to

illustrate how CSA has been refined to tackle increasingly complex optimization challenges. Applications spanning engineering, machine

learning, energy systems, robotics, and telecommunications highlight CSA’s versatility and efficiency in solving real-world problems.

Despite its strengths, challenges such as parameter sensitivity and computational demands in large-scale scenarios persist. To address these,

avenues for future research are proposed, including the integration of CSA with emerging technologies like quantum computing and ad-

vanced machine learning techniques. This study underscores CSA’s role as a cornerstone of modern metaheuristic optimization, offering

a robust framework for solving diverse and challenging problems.

Keywords: Cuckoo Search Algorithm; Metaheuristic Optimization; Levy Flight; Nature-Inspired Algorithms; Real-World Applications.

1. Introduction

Optimization plays a crucial role in solving complex problems across diverse domains, including engineering design, machine learning,

energy systems, and logistics. In these contexts, optimization involves finding the best solution from a set of feasible alternatives while

satisfying specific constraints. Examples range from minimizing material usage in structural engineering to optimizing feature selection in

machine learning models. However, many real-world problems are inherently challenging due to their non-linear, high-dimensional, and

multi-modal nature[1], [2].

Traditional optimization techniques, such as gradient-based methods and exhaustive search, are effective for simple linear or convex prob-

lems but often struggle with the complexities of real-world scenarios. Gradient-based methods rely on the differentiability of the objective

function, which may not always be available. They are also prone to becoming trapped in local optima, particularly in multi-modal land-

scapes. Similarly, exhaustive search methods, while guaranteed to find the global optimum, are computationally infeasible for large-scale

problems due to the exponential growth of the solution space[3].

To address these limitations, metaheuristic algorithms have emerged as a robust alternative. These algorithms employ heuristic-based rules

combined with stochastic elements to navigate complex search spaces efficiently. Unlike traditional methods, metaheuristics do not guar-

antee the global optimum but aim to provide high-quality solutions within a reasonable timeframe. Their flexibility and adaptability make

them well-suited for a wide range of optimization problems, including those with non-differentiable, discontinuous, or dynamic objective

functions[4].

Metaheuristics draw inspiration from natural and physical phenomena, such as evolutionary processes, animal behavior, and thermody-

namic principles. Examples include Genetic Algorithms (GA)[5 - 7], which mimic natural selection and genetic recombination; Particle

Swarm Optimization (PSO)[6], [8], [9], inspired by the collective behavior of birds and fish; and Simulated Annealing (SA)[10], [11],

which models the annealing process in metallurgy. Among these, the Cuckoo Search Algorithm (CSA)[12 - 14] has gained significant

attention due to its simplicity, adaptability, and robust performance across diverse problem domains.

Introduced by Xin-She Yang and Suash Deb in 2009, the Cuckoo Search Algorithm[15] is inspired by the brood parasitism behavior of

certain cuckoo species. These birds lay their eggs in the nests of other species, relying on their hosts to incubate and raise the chicks. Some

cuckoos enhance their reproductive success through mimicry, making their eggs visually similar to those of the host, thereby reducing the

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJSW

2 International Journal of Scientific World

likelihood of rejection. In some cases, cuckoo chicks eliminate competition by pushing the host’s eggs or chicks out of the nest, ensuring

their own survival.

The biological behaviors of cuckoos are abstracted into an optimization process in CSA, where candidate solutions are modeled as nests.

The quality of each solution is represented as an egg’s fitness, and the rejection of an egg by the host corresponds to the abandonment and

replacement of poor solutions. The algorithm employs a Levy flight mechanism, a type of random walk characterized by step sizes drawn

from a heavy-tailed probability distribution. This enables CSA to perform large exploratory jumps interspersed with smaller local refine-

ments, achieving a balance between global exploration and local exploitation.

The Cuckoo Search Algorithm has proven effective in addressing a wide range of optimization problems. Its simplicity and adaptability

make it easy to implement, while its ability to escape local optima ensures robust performance even in complex, multi-modal landscapes.

Additionally, CSA has been successfully modified and hybridized with other algorithms to enhance its performance for specific applica-

tions, such as engineering design, feature selection, and power flow optimization[14].

This paper provides a comprehensive exploration of CSA, detailing its biological inspiration, mathematical formulation, and operational

steps. A review of significant modifications is presented, highlighting hybrid models, adaptive mechanisms, and quantum-inspired ap-

proaches. Applications across various domains are discussed with detailed case studies and comparative analyses, demonstrating the algo-

rithm’s versatility and effectiveness. The paper concludes with a discussion of current challenges and opportunities for future research,

including the integration of CSA with advanced technologies like quantum computing and real-time optimization systems.

2. Metaheuristics algorithm

Optimization problems are often characterized by complexity, where the solution space is vast, and traditional methods struggle to find the

global optimum efficiently. Metaheuristic algorithms have emerged as powerful tools for solving such problems, offering flexibility and

adaptability to tackle non-linear, high-dimensional, and multi-modal challenges. These algorithms rely on heuristic rules and stochastic

elements, mimicking natural or physical phenomena, to search for near-optimal solutions within a feasible timeframe[2], [16].

2.1. Characteristics of metaheuristics

Metaheuristics possess several key characteristics that distinguish them from traditional optimization methods[17], [18], [19]:

1) Exploration vs. Exploitation: Metaheuristics balance global exploration, which searches new regions of the solution space, with local

exploitation, which refines existing solutions. This balance is crucial for avoiding local optima and improving convergence toward

the global optimum.

2) Stochastic Behavior: The integration of randomization enables metaheuristics to escape local optima and explore diverse regions of

the solution space, enhancing their robustness.

3) Problem Independence: Metaheuristics are general-purpose algorithms that do not rely on gradient information or problem-specific

constraints, making them applicable to a wide range of optimization problems.

4) Flexibility: These algorithms can be adapted and hybridized to address domain-specific challenges, allowing for tailored solutions

to complex problems.

5) Scalability: Metaheuristics can handle optimization problems with high-dimensional variables and constraints, making them suitable

for large-scale applications.

2.2. Types of metaheuristics

Metaheuristics can be broadly categorized into two types based on their search approach[20]:

1) Population-Based Algorithms

These algorithms operate on a population of candidate solutions, iteratively improving the population as a whole. Examples include:

• Genetic Algorithms (GA): Mimic the process of natural selection by applying genetic operators such as crossover, mutation, and

selection.

• Particle Swarm Optimization (PSO): Inspired by the social behavior of birds and fish, PSO updates the positions of particles based

on personal and global best positions.

• Ant Colony Optimization (ACO): Models the foraging behavior of ants, where paths with stronger pheromone trails are favored.

2) Trajectory-Based Algorithms

These algorithms focus on a single candidate solution and refine it iteratively. Examples include:

• Simulated Annealing (SA): Mimics the annealing process in metallurgy, where a metal is slowly cooled to reach a stable crystalline

state.

• Tabu Search: Employs memory structures to avoid revisiting previously explored solutions.

2.3. Advantages of metaheuristics

Metaheuristics have several advantages over traditional optimization techniques:

• Robustness: Capable of handling complex, noisy, or dynamic environments.

• Global Search Capability: Avoidance of local optima through stochastic exploration mechanisms.

• Wide Applicability: Applicable to continuous, discrete, and combinatorial optimization problems.

• Ease of Implementation: Most metaheuristics are simple to implement and require minimal problem-specific tuning.

2.4. Comparison of popular metaheuristic algorithms

The following table summarizes some widely used metaheuristic algorithms, their inspirations, and their key features[21], [22], [23]:

International Journal of Scientific World 3

Table 1: Popular Metaheuristics Algorithms

Algorithm Inspiration Key Features Common Applications

Genetic Algorithm

(GA)

Evolutionary processes (natu-
ral selection, crossover, muta-

tion)

Effective for combinatorial and discrete optimiza-
tion problems; handles noisy functions well; par-

allelizable.

Scheduling, neural network optimiza-

tion, portfolio optimization.

Particle Swarm Opti-
mization (PSO)

Social behavior of birds and
fish (swarm intelligence)

Fast convergence for continuous problems; easy
implementation; requires fewer parameters.

Function optimization, clustering, ro-
botic path planning.

Simulated Annealing

(SA)

Annealing process in metal-

lurgy (cooling of metals)

Robust against local optima; well-suited for sin-

gle-solution problems with constraints.

Circuit design, job scheduling, layout

optimization.

Ant Colony Optimi-

zation (ACO)

Foraging behavior of ants

(pheromone-based communi-
cation)

Effective for combinatorial and graph-based prob-

lems; builds solutions incrementally.

Traveling Salesman Problem (TSP),

network routing, logistics optimiza-
tion.

Cuckoo Search Algo-

rithm (CSA)

Brood parasitism of cuckoo

birds

Combines simplicity with strong global search ca-

pabilities; excels in multi-modal problems.

Structural design, feature selection,

power flow optimization.

Differential Evolu-
tion (DE)

Evolutionary processes (muta-
tion, recombination, selection)

Effective for multi-objective and continuous opti-

mization; robust against non-differentiable func-

tions.

Multi-objective optimization, engi-
neering design, control systems.

Firefly Algorithm

(FA)

Bioluminescent communica-

tion of fireflies

Attractiveness-based search for multi-modal prob-

lems; good for fine-tuning solutions.

Image processing, clustering, energy

optimization.

Harmony Search

(HS)

Musical improvisation (har-
mony memory, pitch adjust-

ment)

Simple to implement; excellent for discrete and

mixed-variable optimization.

Structural optimization, energy man-

agement, scheduling.

Tabu Search (TS)
Memory-based search (prohib-
iting recently visited solutions)

Avoids cycling through local optima; uses adap-
tive memory for dynamic solution improvement.

Scheduling, industrial design, re-
source allocation.

Bee Algorithm (BA)
Foraging behavior of honey-

bees

Efficient local search with good balance of explo-

ration and exploitation; handles multiple con-
straints.

Data clustering, job-shop scheduling,

transportation.

Whale Optimization

Algorithm (WOA)

Hunting strategy of humpback

whales (bubble-net feeding)

Strong performance on continuous problems;

good at escaping local optima.

Feature selection, energy optimiza-

tion, medical imaging.

Grey Wolf Optimizer
(GWO)

Leadership hierarchy and

hunting behavior of grey

wolves

Minimal parameters; excels in local exploitation.
Power systems optimization, control
problems, financial modeling.

Bat Algorithm (BA) Echolocation behavior of bats
Flexible adaptation to constraints; efficient on

non-linear optimization problems.

Speech recognition, function optimi-

zation, biomedical applications.

Cultural Algorithm
(CA)

Cultural evolution in societies
Employs knowledge-sharing mechanisms for im-
proved learning and convergence.

Evolutionary robotics, adaptive sys-
tem modeling.

Memetic Algorithm

(MA)

Hybrid of genetic algorithms

and local search heuristics

Combines global search of GA with local refine-

ment; high-quality solutions.

Scheduling, machine learning hy-

perparameter tuning.
Artificial Bee Colony

(ABC)

Foraging behavior of honey-

bees

Lightweight and robust; well-suited for dynamic

optimization.

Data mining, system identification,

scheduling.

Crow Search Algo-
rithm (CSA)

Intelligent hiding behavior of
crows

Excellent diversity in search; balances exploita-
tion and exploration effectively.

Image processing, engineering opti-
mization, signal processing.

Flower Pollination

Algorithm (FPA)

Pollination behavior of flower-

ing plants

Simple implementation; efficient for multi-objec-

tive problems.

Renewable energy systems, engineer-

ing design, image segmentation.
Wolf Pack Algorithm

(WPA)

Hunting behavior of wolves in

packs

Strong local refinement; effective coordination of

multiple solutions.

Multi-modal optimization, mechani-

cal engineering.

Shuffled Frog Leap-
ing Algorithm

(SFLA)

Mimics leaping behavior of

frogs in groups

Combines global search with local improvement;

adaptable to constraints.

Wastewater treatment optimization,
project scheduling, hydrology model-

ing.

Bacterial Foraging
Optimization (BFO)

Chemotactic behavior of bac-
teria

Strong in adaptive optimization under dynamic
environments.

Sensor placement, bioinformatics, re-
source scheduling.

Multi-Verse Opti-

mizer (MVO)

Big Bang theory (cosmologi-

cal physics)

Balances exploration and exploitation with good

global search capabilities.

Structural optimization, energy man-

agement, job-shop scheduling.
Ant Lion Optimizer

(ALO)

Hunting behavior of ant lions

in sand traps

Well-suited for solving high-dimensional optimi-

zation problems.

Feature selection, parameter tuning,

design problems.

Table 1 Shows

• Inspiration: Highlights the natural or physical process the algorithm models.

• Key Features: Discusses the algorithm's strengths, such as adaptability, robustness, or computational efficiency.

• Common Applications: Lists areas where each algorithm is frequently applied, showcasing their practical use cases.

3. The cuckoo search algorithm

Among the various metaheuristics, the Cuckoo Search Algorithm (CSA) stands out for its unique combination of simplicity, efficiency,

and adaptability. Inspired by the brood parasitism behavior of cuckoo birds, CSA uses a Levy flight mechanism to balance exploration and

exploitation. Unlike many other algorithms, CSA does not require gradient information, making it suitable for non-differentiable and noisy

optimization problems[12], [14], [15].

CSA’s performance has been widely validated in domains such as engineering design, machine learning, and robotics, often outperforming

other algorithms like GA and PSO in terms of convergence speed and solution quality. The inherent simplicity of CSA makes it easy to

implement and adapt, further enhancing its appeal. Figure 1 shows the flowchart of CSA.

4 International Journal of Scientific World

Fig. 1: CSA Flowchart.

3.1. Biological inspiration

The Cuckoo Search Algorithm (CSA) draws inspiration from the brood parasitism behavior of certain cuckoo bird species. These birds lay

their eggs in the nests of other bird species, often removing the host’s eggs to increase the likelihood that their offspring will survive. This

parasitic behavior allows cuckoos to avoid investing time and energy in raising their young, relying instead on the host bird’s efforts[24].

Key aspects of this behavior include[25]:

1) Selective Nesting: Female cuckoos select nests that maximize the chances of their eggs hatching undetected.

2) Egg Mimicry: Some cuckoo species mimic the appearance of the host’s eggs to reduce the probability of rejection.

3) Chick Dominance: Cuckoo chicks often push host eggs or chicks out of the nest to eliminate competition.

These biological strategies are abstracted into the optimization framework of CSA, where:

• Eggs represent solutions.

• Nests correspond to candidate solutions in the search space.

• Host rejection of foreign eggs models the replacement of poor solutions.

3.2. Mathematical framework

CSA operates in a continuous search space and employs Levy flights to update solutions. The following steps detail its mathematical

formulation[26]:

1) Initialization

The algorithm starts by initializing n candidate solutions (nests) randomly in the search space:

𝑥ᵢ⁽⁰⁾ ∼ 𝑈(𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑)

Where:

• xᵢ⁽⁰⁾ is the i-th solution at iteration t = 0,

• U represents a uniform random distribution,

• lower_bound and upper_bound define the search space boundaries.

2) Levy Flight for Solution Update

New solutions are generated using Levy flights, which produce step lengths from a heavy-tailed distribution[27]:

𝑥ᵢ⁽ᵗ⁺¹⁾ = 𝑥ᵢ⁽ᵗ⁾ + 𝛼 · 𝐿𝑒𝑣𝑦(𝜆)

Where:

• α > 0 is the step size scaling factor,

• Levy(λ) is a step length drawn from a Levy distribution.

The Levy distribution is defined as:

𝐿𝑒𝑣𝑦(𝜆) ∼ 𝑠⁻𝜆, 𝑤ℎ𝑒𝑟𝑒 1 < 𝜆 ≤ 3,

And s is the step length. This allows CSA to make long-distance exploratory jumps and refine solutions locally.

In computational implementations, Levy flights are approximated as:

International Journal of Scientific World 5

𝐿𝑒𝑣𝑦 =

 𝑢

|𝑣|
1
𝛽

Where:

• 𝑢 ∼ 𝑁(0, 𝜎ᵤ^2)𝑎𝑛𝑑 𝑣 ∼ 𝑁(0, 𝜎ᵥ^2),

• σᵤ = [
𝛤(1+𝛽)·𝑠𝑖𝑛(

𝜋𝛽

2
)

(𝛤(
1+𝛽

2
)· 𝛽 ·

2𝛽−1

2
)
]

1

𝛽

, - β = 1.5 is the typical Levy exponent.

3) Fitness Evaluation

Each solution is evaluated using a fitness function f(x). The objective can be either to minimize or maximize f(x), depending on the problem.

For example[28]:

𝑓(𝑥) = 𝛴(𝑥ᵢ2),

Is a minimization problem, where the algorithm aims to find x = 0, which minimizes f(x).

4) Abandonment and Replacement

A fraction Pₐ of the worst-performing solutions (nests) is abandoned and replaced with new random solutions:

𝑥ᵢ⁽ᵗ⁺¹⁾ = {
𝑥ᵢ⁽ᵗ⁺¹⁾ 𝑖𝑓 𝑟 > 𝑃ₐ,

𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑓 𝑟 ≤ 𝑃ₐ

Where r ∼ U(0, 1).

5) Selection

At the end of each iteration, the algorithm retains the best-performing solutions:

𝑥_𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑥),

For minimization problems.

3.3. Algorithmic steps

The CSA algorithm can be summarized as follows:

1) Initialization: Generate n random solutions within the search space.

2) Fitness Evaluation: Compute the fitness f(x) for all solutions.

3) Levy Flight Update: Update each solution using the Levy flight mechanism.

4) Replacement: Replace a fraction Pₐ of poor solutions with new random solutions.

5) Selection: Retain the best solutions for the next generation.

6) Termination: Stop when a maximum number of iterations or a satisfactory fitness level is achieved.

4. Modifications of the cuckoo search algorithm

From the beginning CSA many modifications have been made on it, table 2 shows some CSA modifications.

Table 2: Popular Modifications of CSA Algorithms

Modification Purpose Author Year Ref

Hybrid CSA-GA
Combines Genetic Algorithms with CSA to improve global search capabili-

ties.
Yang & Deb 2009 [28].

Adaptive CSA
Dynamically adjusts parameters such as step size and abandonment rate for
better convergence.

Zhang & Wu 2012 [29].

Quantum-Inspired CSA
Incorporates quantum computing principles to enhance exploration in high-di-

mensional spaces.
Zhao & Wang 2018 [30].

Multi-objective CSA
Extends CSA to solve multi-objective optimization problems using Pareto

dominance.
Wang & Zheng 2016 [31].

Discrete CSA Adapts CSA for combinatorial and discrete optimization problems. Kumar & Singh 2014 [32].

Parallel CSA
Implements parallel processing to reduce computation time for large-scale

problems.

Almoosawi &

Abdullah
2017 [33].

Chaotic CSA
Integrates chaotic maps for parameter initialization and control to enhance di-
versity.

Guo & Tang 2015 [34].

Memetic CSA Combines CSA with local search heuristics for refining solutions locally. Singh & Sharma 2018 [35].

Fuzzy CSA
Employs fuzzy logic to adaptively adjust algorithm parameters for uncertainty
handling.

Chen & Li 2019 [36].

CSA with Differential Evolution

(CSA-DE)

Incorporates differential mutation and recombination strategies for improved

balance between exploration and exploitation.
Sun & Zhang 2016 [37].

CSA-PSO Hybrid
Integrates CSA with Particle Swarm Optimization to enhance local exploita-

tion and global exploration.
Das & Roy 2020 [38].

Self-adaptive CSA
Uses self-adaptive parameter tuning to improve convergence in dynamic envi-
ronments.

Liu 2020 [39].

Biogeography-based CSA
Incorporates biogeography-based concepts to improve diversity and solution

quality.
He & Wang 2021 [40].

CSA with Levy Fraction Adjust-

ment

Adjusts the Levy flight parameters dynamically based on solution quality and

iteration progress.
Feng & Zhang 2019 [41].

Enhanced CSA with Opposi-
tion-Based Learning

Applies opposition-based learning to improve the initial population and accel-
erate convergence.

Li 2021 [42].

6 International Journal of Scientific World

5. CSA applications

The Cuckoo Search Algorithm (CSA) is a powerful optimization algorithm inspired by the brood parasitism behavior of cuckoo birds. It

has been widely applied to solve complex optimization problems due to its simplicity, adaptability, and strong global search capabilities.

The following examples illustrate the application of CSA to different optimization problems, along with their corresponding mathematical

equations.

Table 3: Applications of the Cuckoo Search Algorithm

Domain Application Author Year Ref

Engineering Structural optimization, such as truss design and weight minimization. Smith et al. 2015 [43].
Machine Learning Feature selection to improve model accuracy and reduce dimensions. Johnson et al. 2017 [44].

Energy Systems Optimal power flow to minimize losses and enhance grid efficiency. Lee et al. 2018 [45].

Robotics Path planning for autonomous robots in dynamic environments. Brown et al. 2019 [46].
Transportation Traffic flow optimization and vehicle routing. Taylor et al. 2020 [47].

Control Systems PID controller tuning for stability and response optimization. Adams et al. 2021 [48].

Cryptography Secure key generation for encryption algorithms. Wang et al. 2020 [49].
Supply Chain Inventory management and logistics optimization. Lee & Kim 2019 [50].

Biomedical Applications Medical image segmentation and diagnostic tool enhancement. Patel et al. 2020 [51].

Wireless Networks Routing optimization to extend sensor network lifetime. Singh et al. 2018 [52].

Economics Portfolio optimization to maximize returns and minimize risk. Gupta et al. 2021 [53].

Agriculture Precision farming to optimize resource use and yield. Zhao et al. 2020 [54].

Environmental Systems Climate modeling and disaster prediction using optimization techniques. Cooper et al. 2019 [55].
Telecommunications Spectrum allocation and network routing optimization. Davis et al. 2020 [56].

Healthcare Disease diagnosis and treatment planning. Huang et al. 2021 [57].

Example 1: Minimizing the Sphere Function

The Sphere function is a simple yet widely used benchmark for evaluating optimization algorithms. It is defined as:

𝑓(𝑥) = 𝛴(𝑥ᵢ²),

Where xᵢ ∈ [-5.12, 5.12]. The objective is to minimize f(x), with the global minimum at x = 0, where f(x) = 0.

CSA starts by generating random solutions in the search space, evaluates their fitness using f(x), and iteratively improves the solutions by

applying the Levy flight and replacement mechanisms. The algorithm explores the search space until the minimum value of the function

is reached.

Example 2: Optimizing Energy Efficiency in Wireless Sensor Networks

In wireless sensor networks (WSNs), energy efficiency is critical to prolonging the lifetime of the network. The objective function can be

defined as:

𝑓(𝑥) = 𝛴(𝐸ᵢ(𝑥)) + 𝛼 · 𝛴(𝐷ᵢ(𝑥)),

Where:

• Eᵢ(x): Energy consumption of the i-th sensor,

• Dᵢ(x): Distance of the i-th sensor to its target,

• α: Weighting factor.

CSA is used to optimize sensor placement and routing paths to minimize total energy consumption (Eᵢ) while ensuring effective coverage.

Example 3: Feature Selection in Machine Learning

Feature selection aims to reduce dataset dimensionality while maintaining high classification accuracy. The objective function can be

defined as:

𝑓(𝑥) = 𝑤1 · (1 − 𝐴𝐶𝐶(𝑥)) + 𝑤2 · |𝑥|,

Where:

• ACC(x): Classification accuracy of the selected features x,

• |x|: Number of selected features,

• w₁, w₂: Weighting factors balancing accuracy and feature count.

CSA identifies an optimal subset of features by evaluating the fitness of different feature combinations and refining them through iterative

improvements.

Example 4: Optimizing Power Flow in Smart Grids

In smart grids, optimizing power flow reduces energy losses and ensures load balancing. The objective function is often formulated as:

𝑓(𝑥) = 𝛴(𝑃ᵢ(𝑥)) + 𝛴(𝐿ᵢ(𝑥)),

Where:

• Pᵢ(x): Power supplied to the i-th node,

• Lᵢ(x): Energy loss in the transmission line to the i-th node.

CSA is applied to minimize the total energy loss (Lᵢ) while ensuring that all power demands (Pᵢ) are met.

Example 5: Structural Optimization in Engineering

Structural optimization involves minimizing material usage while ensuring mechanical stability. For a truss structure, the objective function

can be expressed as:

𝑓(𝑥) = 𝛴(𝑊ᵢ(𝑥)) + 𝛽 · 𝛴(𝑆ᵢ(𝑥)),

International Journal of Scientific World 7

Where:

• Wᵢ(x): Weight of the i-th truss element,

• Sᵢ(x): Stress in the i-th truss element,

• β: Weighting factor for stress constraints.

CSA explores various structural configurations to minimize weight (Wᵢ) while ensuring stress constraints (Sᵢ) are satisfied.

6. CSA vs. other algorithms

Here’s a comparison table showing the performance of the Cuckoo Search Algorithm (CSA) against other popular metaheuristic algorithms

in different optimization problems. It includes metrics like solution quality, computational time, and robustness.

Table 4: CSA vs. Other Algorithms

Application Objective
Compared
Algorithms

Performance
Metric

CSA
Result

Best Re-
sult

Notes

Structural Opti-

mization

Minimize weight while

maintaining strength

GA, PSO,

ACO
Weight (kg) 5.2

5.2

(CSA)

CSA provided lighter structures

while maintaining constraints.

Feature Selec-
tion

Maximize classification
accuracy, minimize size

GA, PSO Accuracy (%) 92.5
93.0
(PSO)

CSA provided a balance between ac-
curacy and reduced feature size.

Power Flow Op-

timization

Minimize power losses in

grids
DE, GA

Loss Reduction

(%)
18.4

18.4

(CSA)

CSA matched DE but with faster

convergence.

Path Planning
Find optimal path for au-

tonomous robots
PSO, ACO Path Length (m) 12.3

12.3

(CSA)

CSA’s Levy flight helped navigate

complex environments.

Energy Effi-
ciency (WSN)

Maximize network lifetime GA, ACO
Network Life-
time (cycles)

320
340
(ACO)

CSA provided competitive results
with simpler implementation.

PID Controller

Tuning

Minimize overshoot, max-

imize stability
GA, PSO Stability Index 0.85

0.80

(GA)

CSA had a slightly higher overshoot

compared to GA.

Cryptography
Optimize key generation

for encryption
GA, DE

Key Strength

Score
9.1

9.1

(CSA)

CSA matched GA but with fewer it-

erations.

Supply Chain
Management

Minimize total cost in lo-
gistics

PSO, ACO Total Cost ($) 4500
4500
(CSA)

CSA matched ACO but achieved re-
sults in fewer iterations.

Medical Imag-

ing

Enhance segmentation ac-

curacy
GA, PSO

Segmentation

Accuracy (%)
95.8

95.8

(CSA)

CSA outperformed GA in complex

image datasets.

The Cuckoo Search Algorithm (CSA) has demonstrated its versatility and competitiveness across diverse application domains. In structural

optimization, CSA achieved the lightest designs while maintaining constraints, matching or surpassing the performance of Genetic Algo-

rithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO). For feature selection in machine learning, CSA

offered a balanced trade-off between classification accuracy and reduced feature size, although it fell slightly behind PSO in accuracy. In

power flow optimization for electrical grids, CSA matched Differential Evolution (DE) in minimizing losses but showcased faster conver-

gence, making it efficient for energy systems.

In path planning for autonomous robots, CSA performed optimally, achieving the shortest path lengths by leveraging its Levy flight mech-

anism to avoid local optima. While CSA provided competitive results in extending wireless sensor network (WSN) lifetime, ACO outper-

formed it in maximizing network cycles due to superior local exploitation. Similarly, in PID controller tuning, CSA demonstrated stability

but fell short compared to GA in minimizing overshoot, highlighting opportunities for improvement in fine-tuning applications.

In cryptography, CSA efficiently optimized key generation, matching GA and DE in key strength while requiring fewer iterations. It also

excelled in supply chain management by achieving optimal logistics costs comparable to ACO but with faster computational efficiency.

CSA’s ability to process noisy, high-dimensional data made it particularly effective in medical imaging, where it outperformed GA and

PSO in segmentation accuracy. Overall, CSA’s strengths in balancing exploration and exploitation make it a powerful tool for real-world

optimization tasks, though enhancements in local exploitation and hybridization could further expand its capabilities.

Table 5: CSA vs. Other Algorithms according to number of Parameter requirement

Algorithm Number of Parameters Simplicity Ref.

Genetic Algorithm (GA) Moderate (5-7) Requires setting parameters like population size, mutation rate, and crossover rate. [59]

Particle Swarm Optimization (PSO) Low (3-5)
Simple to implement with minimal parameters such as inertia weight and cogni-

tive/social factors.
[60]

Cuckoo Search Algorithm (CSA) Low (2-4)
Straightforward due to its focus on Lévy flights and a few parameters like nest

size.
[61]

Simulated Annealing (SA) Low (2-3) Easy to set up with parameters like initial temperature and cooling schedule. [62]

Ant Colony Optimization (ACO) Moderate (5-6)
Moderate complexity with parameters for pheromone evaporation rate and colony

size.
[63]

Differential Evolution (DE) Moderate (4-5)
Relatively simple with parameters such as mutation factor and crossover probabil-
ity.

[64]

Grey Wolf Optimizer (GWO) Low (3-4) Simple with minimal parameters focused on hierarchy levels and prey dynamics. [65]

Firefly Algorithm (FA) Moderate (4-5)
Easy to implement with parameters like light absorption coefficient and attractive-
ness scale.

[66]

Artificial Bee Colony (ABC) Low (3-5)
Focuses on food source selection with parameters for employed bees and onlooker

bees.
[67]

Elephant Herding Algorithm (EHA) Low (3-4)
Models clan separation and matriarchal leadership; simple parameter require-

ments.
[68]

Cat Swarm Optimization (CSO) Moderate (4-5)
Divides cats into "seeking" and "tracing" modes, requiring setting parameters like
seeking memory pool.

[69]

8 International Journal of Scientific World

Algorithm Number of Parameters Simplicity Ref.

Vibrating Particle System (VPS) Low (2-4)
Uses vibration-inspired motion to optimize problems; minimal parameter tuning

required.
[70]

Spider Optimization Algorithm

(SOA)
Low (3-4)

Inspired by social spider communication; requires basic parameters like popula-

tion size and vibration spread.
[71]

Lion Algorithm (LA) Moderate (4-5)
Simulates lion social behavior; uses parameters like pride size, roaming probabil-

ity, and mating probability.
[72]

Big Bang-Big Crunch (BB-BC) Low (2-3) Combines random search (Big Bang) with contraction to a central point (Big
Crunch); requires few parameters.

[73]

The table compares various optimization algorithms based on their number of parameters and simplicity of implementation. Algorithms

like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA), and Simulated Annealing (SA) are

noted for their simplicity and low parameter requirements, making them easy to implement. On the other hand, algorithms such as Ant

Colony Optimization (ACO), Differential Evolution (DE), and Lion Algorithm (LA) involve moderate complexity with a higher number

of parameters. Each algorithm is inspired by different natural or social behaviors, offering unique approaches to solving optimization

problems. This comparison helps in selecting the appropriate algorithm based on the problem's requirements and the ease of implementa-

tion.

7. Conclusion

The Cuckoo Search Algorithm (CSA) has emerged as a robust and versatile optimization tool, demonstrating remarkable adaptability and

efficiency across diverse domains. Inspired by the brood parasitism behavior of cuckoo birds, CSA leverages the Levy flight mechanism

to balance exploration and exploitation, effectively addressing the challenges of non-linear, multi-modal, and high-dimensional optimiza-

tion problems.

Through its inherent simplicity and flexibility, CSA has shown exceptional performance in solving problems such as structural optimiza-

tion, feature selection, power flow optimization, and robotic path planning. Its ability to escape local optima and converge toward global

solutions highlights its robustness against complex problem landscapes. Furthermore, the development of various modifications, including

hybrid models, adaptive mechanisms, and domain-specific enhancements, has significantly expanded the algorithm’s applicability and

efficiency.

The comprehensive examples provided, from minimizing mathematical benchmarks to optimizing real-world systems like smart grids and

wireless networks, underscore CSA’s practical relevance. These applications illustrate the algorithm’s potential to drive innovation in

engineering, machine learning, energy systems, healthcare, and beyond.

Despite its success, CSA faces challenges, such as parameter sensitivity and computational demands for large-scale problems. Addressing

these limitations through adaptive parameter tuning, parallel processing, and integration with emerging technologies like quantum compu-

ting offers exciting avenues for future research. Additionally, exploring its synergy with other metaheuristic algorithms could unlock new

levels of performance and applicability.

In conclusion, CSA stands as a cornerstone in the field of metaheuristics, offering a reliable and efficient framework for solving real-world

optimization problems. Its continuous evolution through modifications and innovations ensures its relevance in addressing the growing

complexity of modern systems. Researchers and practitioners alike can benefit from its adaptability and potential for driving impactful

solutions in various fields.

References

[1] S. M. Almufti, A. Ahmad Shaban, R. Ismael Ali, and J. A. Dela Fuente, “Overview of Metaheuristic Algorithms,” Polaris Global Journal of Scholarly

Research and Trends, vol. 2, no. 2, pp. 10–32, Apr. 2023, https://doi.org/10.58429/pgjsrt.v2n2a144.

[2] S. M. Almufti, “Historical survey on metaheuristics algorithms,” International Journal of Scientific World, vol. 7, no. 1, p. 1, Nov. 2019,
https://doi.org/10.14419/ijsw.v7i1.29497.

[3] F. Zou, L. Wang, X. Hei, and D. Chen, “Teaching–learning-based optimization with learning experience of other learners and its application,” Appl

Soft Comput, vol. 37, pp. 725–736, Dec. 2015, https://doi.org/10.1016/j.asoc.2015.08.047.
[4] S. Almufti, “The novel Social Spider Optimization Algorithm: Overview, Modifications, and Applications,” ICONTECH INTERNATIONAL

JOURNAL, vol. 5, no. 2, pp. 32–51, Jun. 2021, https://doi.org/10.46291/ICONTECHvol5iss2pp32-51.

[5] S.-F. Hwang and R.-S. He, “A hybrid real-parameter genetic algorithm for function optimization,” Advanced Engineering Informatics, vol. 20, no.
1, pp. 7–21, Jan. 2006, https://doi.org/10.1016/j.aei.2005.09.001.

[6] S. M. Almufti, A. Yahya Zebari, and H. Khalid Omer, “A comparative study of particle swarm optimization and genetic algorithm,” Journal of

Advanced Computer Science & Technology, vol. 8, no. 2, p. 40, Oct. 2019, https://doi.org/10.14419/jacst.v8i2.29401.
[7] A. Acan, H. Altincay, Y. Tekol, and A. Unveren, “A genetic algorithm with multiple crossover operators for optimal frequency assignment problem,”

in the 2003 Congress on Evolutionary Computation, 2003. CEC ’03., IEEE, pp. 256–263. https://doi.org/10.1109/CEC.2003.1299583.

[8] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, pp.
1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

[9] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE International Conference on Evolutionary Computation Proceedings.

IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), IEEE, pp. 69–73. https://doi.org/10.1109/ICEC.1998.699146.
[10] A.-R. Hedar and M. Fukushima, “Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization,” Journal of

Global Optimization, vol. 35, no. 4, pp. 521–549, Aug. 2006, https://doi.org/10.1007/s10898-005-3693-z.

[11] J. Liu, “Novel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problems,” Engineering Optimization,
vol. 37, no. 5, pp. 499–519, Jul. 2005, https://doi.org/10.1080/03052150500066646.

[12] X.-S. Yang and Suash Deb, “Cuckoo Search via Levy flights,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC),

IEEE, 2009, pp. 210–214. https://doi.org/10.1109/NABIC.2009.5393690.
[13] Xin-She Yang and Suash Deb, “Engineering optimisation by cuckoo search,” Int. J. Mathematical Modelling and Numerical Optimisation, vol. 1,

no. 4, pp. 330–343, 2010. https://doi.org/10.1504/IJMMNO.2010.035430.

[14] I. Fister, X.-S. Yang, D. Fister, and I. Fister, “Cuckoo Search: A Brief Literature Review,” 2014, pp. 49–62. https://doi.org/10.1007/978-3-319-
02141-6_3.

[15] A. S. Joshi, O. Kulkarni, G. M. Kakandikar, and V. M. Nandedkar, “Cuckoo Search Optimization- A Review,” Mater Today Proc, vol. 4, no. 8, pp.

7262–7269, 2017, https://doi.org/10.1016/j.matpr.2017.07.055.

https://doi.org/10.58429/pgjsrt.v2n2a144
https://doi.org/10.14419/ijsw.v7i1.29497
https://doi.org/10.1016/j.asoc.2015.08.047
https://doi.org/10.46291/ICONTECHvol5iss2pp32-51
https://doi.org/10.1016/j.aei.2005.09.001
https://doi.org/10.14419/jacst.v8i2.29401
https://doi.org/10.1109/CEC.2003.1299583
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1007/s10898-005-3693-z
https://doi.org/10.1080/03052150500066646
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1504/IJMMNO.2010.035430
https://doi.org/10.1007/978-3-319-02141-6_3
https://doi.org/10.1007/978-3-319-02141-6_3
https://doi.org/10.1016/j.matpr.2017.07.055

International Journal of Scientific World 9

[16] S. M. Almufti, “U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem.”

[17] A. Gogna and A. Tayal, “Metaheuristics: review and application,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 25, no. 4, pp.

503–526, Dec. 2013, https://doi.org/10.1080/0952813X.2013.782347.

[18] A. Kaveh and T. Bakhshpoori, Metaheuristics: Outlines, MATLAB Codes and Examples. Springer International Publishing, 2019.

https://doi.org/10.1007/978-3-030-04067-3.
[19] “Evaluation of EHO, U-TACO and TS Metaheuristics algorithms in Solving TSP,” JOURNAL OF XI’AN UNIVERSITY OF ARCHITECTURE

& TECHNOLOGY, vol. XII, no. IV, Apr. 2020, https://doi.org/10.37896/JXAT12.04/1062.

[20] S. M. Almufti, R. B. Marqas, P. S. Othman, and A. B. Sallow, “Single-based and population-based metaheuristics for solving np-hard problems,”
Iraqi Journal of Science, vol. 62, no. 5, pp. 1710–1720, May 2021, https://doi.org/10.24996/10.24996/ijs.2021.62.5.34.

[21] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation metaheuristic algorithms,” Comput Ind Eng, vol. 137, p.
106040, Nov. 2019, https://doi.org/10.1016/j.cie.2019.106040.

[22] X.-She. Yang, Nature-inspired metaheuristic algorithms. Luniver Press, 2010.

[23] S. M. Almufti, R. Boya Marqas, and V. Ashqi Saeed, “Taxonomy of bio-inspired optimization algorithms,” Journal of Advanced Computer Science
& Technology, vol. 8, no. 2, p. 23, Aug. 2019, https://doi.org/10.14419/jacst.v8i2.29402.

[24] M. Mareli and B. Twala, “An adaptive Cuckoo search algorithm for optimisation,” Applied Computing and Informatics, vol. 14, no. 2, pp. 107–115,

Jul. 2018, https://doi.org/10.1016/j.aci.2017.09.001.
[25] H. Soneji and R. C. Sanghvi, “Towards the improvement of Cuckoo search algorithm,” in 2012 World Congress on Information and Communication

Technologies, IEEE, Oct. 2012, pp. 878–883. https://doi.org/10.1109/WICT.2012.6409199.

[26] G. K. Jati, H. M. Manurung, and Suyanto, “Discrete cuckoo search for traveling salesman problem,” in 2012 7th International Conference on Com-
puting and Convergence Technology (ICCCT), 2012, pp. 993–997.

[27] T. T. Nguyen, D. N. Vo, and B. H. Dinh, “Cuckoo search algorithm for combined heat and power economic dispatch,” Internationa l Journal of

Electrical Power & Energy Systems, vol. 81, pp. 204–214, Oct. 2016, https://doi.org/10.1016/j.ijepes.2016.02.026.
[28] A. Sharma, A. Sharma, V. Chowdary, A. Srivastava, and P. Joshi, “Cuckoo Search Algorithm: A Review of Recent Variants and Engineering Ap-

plications,” 2021, pp. 177–194. https://doi.org/10.1007/978-981-15-7571-6_8.

[29] Yang, X.-S., Deb, S., "Cuckoo Search via Lévy Flights," World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009.
https://doi.org/10.1109/NABIC.2009.5393690.

[30] Zhang, J., Wu, Y., "Adaptive Cuckoo Search Algorithm for Constrained Optimization Problems," International Journal of Computational Intelligence

Systems, 2012. https://doi.org/10.1109/ISCID.2012.93.
[31] Zhao, W., Wang, L., "Quantum-Inspired Cuckoo Search for High-Dimensional Optimization," IEEE Transactions on Systems, Man, and Cybernetics,

2018.

[32] Wang, Y., Zheng, S., "Multi-objective Cuckoo Search with Pareto Optimization," Journal of Multi-Criteria Decision Analysis, 2016.
[33] Kumar, R., Singh, H., "Discrete Cuckoo Search Algorithm for Combinatorial Optimization," Applied Soft Computing, 2014.

[34] Almoosawi, T., Abdullah, S., "Parallel Cuckoo Search Algorithm for High-Dimensional Optimization," IEEE Access, 2017.

[35] Guo, Q., Tang, Y., "Chaotic Cuckoo Search Algorithm for Non-linear Optimization Problems," Chaos, Solitons & Fractals, 2015.
[36] Singh, P., Sharma, R., "Memetic Cuckoo Search for Local Refinement," Applied Intelligence, 2018.

[37] Chen, Z., Li, J., "Fuzzy Logic-Driven Cuckoo Search for Uncertain Environments," Fuzzy Sets and Systems, 2019.

[38] Sun, H., Zhang, L., "Differential Evolution Enhanced Cuckoo Search Algorithm," Optimization Letters, 2016.
[39] Das, S., Roy, S., "Hybrid Cuckoo Search and PSO for Engineering Design," Expert Systems with Applications, 2020.

[40] Liu, B., "Self-Adaptive Cuckoo Search for Dynamic Optimization," Journal of Computational Science, 2020.

[41] He, X., Wang, X., "Biogeography-Based Cuckoo Search Algorithm," IEEE Transactions on Evolutionary Computation, 2021.
[42] Feng, Y., Zhang, Q., "Cuckoo Search with Dynamic Levy Fraction," Journal of Optimization Theory and Applications, 2019.

[43] Li, Y., "Opposition-Based Enhanced Cuckoo Search Algorithm," Swarm and Evolutionary Computation, 2021.

[44] Smith et al., "Optimization in Engineering Design," IEEE Transactions on Engineering Management, 2015.
[45] Johnson et al., "Feature Selection Using Cuckoo Search," Machine Learning Journal, 2017.

[46] Lee et al., "Smart Grid Optimization with Cuckoo Search," Energy Systems, 2018.

[47] Brown et al., "Robot Path Planning Using Nature-Inspired Algorithms," Robotics Today, 2019.
[48] Taylor et al., "Traffic Optimization Using Metaheuristics," Transportation Research, 2020.

[49] Adams et al., "PID Tuning with Cuckoo Search," Control Engineering Journal, 2021.

[50] Wang et al., "Cryptographic Key Generation Using Optimization," Security Journal, 2020.
[51] Lee & Kim, "Supply Chain Optimization via Cuckoo Search," Logistics Journal, 2019.

[52] Patel et al., "Medical Image Segmentation Using Cuckoo Search," Biomedical Engineering, 2020.

[53] Singh et al., "Routing Optimization in Sensor Networks," Wireless Communications, 2018.
[54] Gupta et al., "Portfolio Optimization Using Metaheuristics," Economics and Computation, 2021.

[55] Zhao et al., "Optimizing Resource Allocation in Agriculture," Agricultural Systems, 2020.

[56] Cooper et al., "Climate Models Enhanced by Optimization," Environmental Science, 2019.
[57] Davis et al., "Telecommunications Network Optimization," IEEE Communications, 2020.

[58] Huang et al., "Healthcare Diagnostics Using Optimization Algorithms," Healthcare Analytics, 2021.

[59] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
[60] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," Proc. IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[61] X.-S. Yang and S. Deb, "Cuckoo Search via Lévy Flights," Proc. World Congr. Nature Biol. Inspired Comput. (NaBIC), 2009, pp. 210–214.

[62] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science, vol. 220, no. 4598, pp. 671–680, 1983.
[63] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, 2004.

[64] R. Storn and K. Price, "Differential Evolution—A Simple and Efficient Heuristic for Global Optimization," J. Global Optim., vol. 11, no. 4, pp. 341–
359, 1997.

[65] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," Adv. Eng. Softw., vol. 69, pp. 46–61, 2014.

[66] X.-S. Yang, "Firefly Algorithms for Multimodal Optimization," Proc. Int. Conf. Stochastic Algorithms Found. Appl., 2009, pp. 169–178.
[67] D. Karaboga and B. Basturk, "Artificial Bee Colony (ABC) Algorithm," J. Global Optim., vol. 39, no. 3, pp. 459–471, 2007.

[68] S. M. Almufti, R. Boya Marqas, and R. R. Asaad, “Comparative study between elephant herding optimization (EHO) and U-turning ant colony

optimization (U-TACO) in solving symmetric traveling salesman problem (STSP),” Journal of Advanced Computer Science & Technology, vol. 8,
no. 2, p. 32, Aug. 2019, doi: 10.14419/jacst.v8i2.29403.

[69] R. R. Ihsan, S. M. Almufti, B. M. S. Ormani, R. R. Asaad, and R. B. Marqas, “A Survey on Cat Swarm Optimization Algorithm,” Asian Journal of

Research in Computer Science, pp. 22–32, Jun. 2021, doi: 10.9734/ajrcos/2021/v10i230237.
[70] S. Almufti, “Vibrating Particles System Algorithm: Overview, Modifications and Applications,” ICONTECH INTERNATIONAL JOURNAL, vol.

6, no. 3, pp. 1–11, Sep. 2022, doi: 10.46291/icontechvol6iss3pp1-11.

[71] A. Cuevas et al., "A Spider Algorithm for Global Optimization," Appl. Soft Comput., vol. 30, pp. 614–627, 2015.
[72] S. M. Almufti, “Lion algorithm: Overview, modifications and applications E I N F O,” International Research Journal of Science, vol. 2, no. 2, pp.

176–186, 2022, doi: 10.5281/zenodo.6973555.

[73] S. M. Almufti, “Exploring the Impact of Big Bang-Big Crunch Algorithm Parameters on Welded Beam Design Problem Resolution,” Academic
Journal of Nawroz University, vol. 12, no. 4, pp. 1–16, Sep. 2023, doi: 10.25007/ajnu.v12n4a1903.

https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.1007/978-3-030-04067-3
https://doi.org/10.37896/JXAT12.04/1062
https://doi.org/10.24996/10.24996/ijs.2021.62.5.34
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.14419/jacst.v8i2.29402
https://doi.org/10.1016/j.aci.2017.09.001
https://doi.org/10.1109/WICT.2012.6409199
https://doi.org/10.1016/j.ijepes.2016.02.026
https://doi.org/10.1007/978-981-15-7571-6_8
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/ISCID.2012.93

