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Abstract 
 

The Cauchy pressure Cp was usually used to explain the atomic bonding character in a compound, while the mechanical stability criteri-

ons are usually used to study the stability of the structure under external compression. Using the elastic constants reported recently by 

Zahidur Rahaman et al. in Chinese Journal of Physics, 56 (2018) 231-237, as well as different mathematical formula, we reported on the 

Cauchy violation and the generalized mechanical stability criterions of cubic Na2He compound under high hydrostatic compression from 

100 GPa to 500 GPa. For pressures ranging from 100 to 500 GPa, all values of both Cauchy pressure Cp and the generalized mechanical 

stability criteria G are negative. In addition we calculated the Debye temperature θD of Na2He compound using Siethoff’s approach. The 

results obtained are slightly lower than those obtained from the Debye approach reported by Zahidur Rahaman et al. 
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1. Introduction 

Helium with symbol (He) is chemically inert element because of its closed-shell electronic configurations [1]. After hydrogen (H), heli-

um is the second most abundant element in the universe, it is present in significant quantities in normal stars [2].  

It is well known that the axial pressures as well as the hydrostatic compression have significant effects on the structural, electronic, me-

chanical, thermodynamical, and magnetic properties of materials [1-8].  

Using density functional theory (DFT) calculations, Zahidur Rahaman et al. [1] studied the pressure-dependent elastic constants, mechan-

ical moduli and thermodynamic properties of cubic Na2He compound in pressure ranging from 100 to 500 GPa. They found good ac-

cordance between the theoretical and experimental lattice parameters. 

Using a variable-composition evolutionary structure prediction algorithm, as implemented in the USPEX computer code, Dong et al. [2] 

have investigated the structural phase stability of helium (He)-sodium (Na) system at normal conditions and at high pressures. They 

found that under high compression (p >113 GPa), the Na2He compound becomes stable at the fluorite-type structure. They found also 

that the presence of helium atoms causes strong electron localization. Amari and Daoud [9] investigated the elastic constants and ther-

modynamic properties as well as the structural phase transition of TmAs material, while Benamrani et al. [10] studied the structural 

phase transition and both elastic and thermodynamic properties of scandium mono-phosphide (ScP) semiconducting compound. 

Some other works [11], [12] investigated the phase transition of materials under sufficient high pressure compression using the general-

ized mechanical stability criteria. 

In the present work, we attempt to the Cauchy violation and the generalized mechanical stability criterions of cubic Na2He compound 

under high hydrostatic compression from 100 to 500 GPa using the elastic constants reported by Zahidur Rahaman et al.[1]. 

2. Theory, results and discussion 

At equilibrium (zero-pressure), the Cauchy pressure Cp of the cubic crystals is given as follows: Cp = C12 - C44, while the mechanical 

stability criterions are expressed as follows: C11> 0, 
11 122 0+ C C , 

11 12 0− C C , and 
44 0C [1]. Under high pressure (under hydrostatic 

compression), the previous conditions should be written as a function of pressure. The new Cauchy pressure should be written Cp = C12 - 

C44 -2P [13, 14], where P is the pressure. The new stability criteria for cubic crystals were obtained by writing the elastic energy of de-

formation in terms of the Lagrangian strain [15]. The well-known stability conditions for a cubic crystal under hydrostatic compression 

can be obtained as [15]: 
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( ) 0+= /32BBK 1211 , 0= 44BG , and ( ) 0−= /2BB'G 1211                                                                                                               

(1) 

 

Where, B11, B12, and B44 are given as a function of pressure P as follows: ( )P-CB 11=11 , ( )PCB 12 +=12 , and ( )P-CB 4444 = [15]. So with 

consequence, under hydrostatic compression, the generalized mechanical stability criteria must be applied, and the expressions of the Eq. 

(1), becomes [11, 16-18]: 

 

( ) 02 ++= /3PCCK 1211 , ( ) 0−= PCG 44 , and ( ) 0' −−= /22PCCG 1211                                                                                                     
(2) 

 

In analogy with the zero-stress criteria, the stability criteria of Eq. (2) are referred as spinodal, shear and Born criteria, respectively [11]. 

Using the elastic constants obtained by Zahidur Rahaman et al. [1], the values of the Cauchy pressure Cp = C12 - C44 -2P and the general-

ized mechanical stability criteria K1, K2, and K3 were summarized in Table 1.  

 
Table 1: Cauchy Pressure and the Generalized Mechanical Stability Criteria of Cubic Na2He Compound. * Cij Are from Ref [1] 

p (GPa) C11 (GPa) [1] C12 (GPa) [1] C44 (GPa) [1] Cp(GPa) K(GPa) G(GPa) 'G (GPa) 

100 407.05 187.55 36.54 - 48.99 294.05 -63.46 9.75 

200 729.83 409.82 100.58 - 90.76 583.16 -99.42 -39.99 

300 1018.2 628.55 170.20 - 141.65 858.43 -129.80 -105.17 

400 1299.87 854.93 243.62 - 188.69 1136.58 -156.38 -177.53 
500 1575.16 1081.55 321.77 - 240.22 1412.75 -178.23 -253.20 

 

The evolutions of the Cauchy pressure Cp and the generalized elastic stability criteria under compression in the pressure ranging from 100 

to 500 GPa of Na2He compound were presented in Figure1 (curves (a) and (b), respectively). 
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Fig. 1: (A) Cauchy Pressure Cp Versus Pressure for Na2He Compound, (B) Generalized Stability Criteria Versus Pressure for Na2He Compound. 

 

The Debye temperature θD is an essential parameter in solid state physic [19-23]. For cubic crystals, the Debye temperature θD could be 

calculated using the following expression: ( )1/26/1 /MGasCθ ccD
−= , while ( )  ( ) 1/3 

12
2/1

3/2/ 441112114444c CC-CC-CCCG +=  [24-26], 

where, Cc = (26.05 ± 0.81) K (m kg N-1)1/2 (the numerical value 26.05 ± 0.81 K (m kg N-1)1/2 is valuable only for with cubic crystals), s is 

the number of atoms in the unit cell, a is the lattice parameter expressed in m, and M is the atomic weight (arithmetical average of the 

masses of the species), respectively [24-26]. 

Replacing the calculated elastic constants Cij (p) and the lattice parameter a (p) reported in Ref [1] into the previous formula, the obtained 

values of θD for Na2He compound are reported in table 2 and presented in Fig. 2, along the theoretical data of the Ref [1]. At pressure of 

300 GPa, the value (1080.7 K) of θD obtained here is slightly lower than the value (1129.59 K) obtained by Zahidur Rahaman et al. [1] 

using the Debye approach, the deviation being ~ 4.33%. 
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Fig. 2: Debye Temperature θD Versus Pressure for Na2He Compound, Along the Theoretical Data of Zahidur Rahaman et al. [1]. 

 
Table 2: Debye Temperature θD of Na2He Compound Versus Pressure 

p (GPa) 100 200 300 400 500 

θD (K)  659.9 911.6 1080.7 1213.2 1328.1 
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It is inferred from Fig. 2 that the Debye temperature θD of Na2He compound increases non-linearly with increasing in pressure from 100 

to 500 GPa. We note that a similar behavior was observed in comparison to data obtained for Cu3N compound up to 30 GPa [3], for cu-

bic zincblende boron nitride [12], for BeSe compound up to 50 GPa [20], for CaTe semiconducting material up to 27.8 GPa [25], for 

calcium oxide (CaO) compound [26, 27], for alkaline earth CaX (X = S, Se, Te) semiconducting materials [28], for both α-PbO2 and β-

PbO2 materials [29], for cubic zincblende thallium-phosphide (TlP) up to 12 GPa [30], and for Ni3Mo intermetallic compound up to 30 

GPa [31]. The best fit of our data on θD (expressed in K) versus pressure p (expressed in GPa) for Na2He compound is given as follows: 

θD = 301.1 +4.25 p - 0.007 p2+0.54 x 10-5p3. 

3. Conclusion 

Using the elastic constants reported by Zahidur Rahaman et al. in Chinese Journal of Physics, 56 (2018) 231-237, we studied the Cauchy 

violation and the generalized mechanical stability criterions of cubic Na2He compound under high hydrostatic compression for pressures 

ranging from 100 to 500 GPa. We found that all values of the Cauchy pressure Cp are negative, which signifies that the cubic Na2He 

compound from theoretical point behaves as brittle manner, and Na2He compound becomes more brittle and stiffer with increasing pres-

sure from 100 to 500 GPa. In addition all values of the generalized elastic stability criteria G are negative, which signifies that the cubic 

Na2He compound from theoretical point is not mechanically stable in the pressure ranging from 100 to 500 GPa. Due to the lack of both 

experimental and theoretical data regarding the generalized mechanical stability criterions for cubic Na2He compound under high hydro-

static compression, our results are predictions and still await experimental or other theoretical confirmation. Using Siethoff’s approach, 

the Debye temperature θD of Na2He compound increases non-linearly with increasing in pressure from100 to 500 GPa.  
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