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Abstract 

 

MCMC methods are very important tools for estimating unknown parameters in Bayesian models. Especially in the 

case of high dimensions. Gaussian mixture model is one of the applications of estimating hyper parameters by MCMC 

method. 
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1. Introduction 

In recent years MCMC methods have been applied for estimating of maximum likelihood of multivariate distribution 

especially in the case of lost or censored data [10], [11]. We will evaluate in this paper some applied examples that in 

them have used various methods of MCMC. In section 2, we will present brief explanation about various methods of 

MCMC. In section 3, we will explain role of MCMC in Gaussian Process Regression. In section 4, we will present 

example of applied problems that implemented in R & S-plus. 

2. Different methods of MCMC 

Gibbs sampler and Metropolis-Hastings algorithm are the most famous methods of MCMC. Although Gibbs sampler 

algorithm is simple and speed in comparison with Metropolis-Hastings, but it needs the calculation of marginal 

conditional densities [2], [9]. 

 Another MCMC method is slice sampling [3]. Assume we can decompose density of 
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to ( )
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k
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For each x  , 

( ) 0f xi  . This algorithm has following steps: 

Having start point tx  in time t: 

1) 
( )1 ~ 0, ( )11
tt uniform f x

 
    

2) 
( )1 ~ 0, ( )22
tt uniform f x
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    

 

And in kth step 1 ( 1)~ ( )t tx uniform A 
,  ( 1) 1: ( )t tA y f y

i
  

. 

Let i  ,i= 1… k, are uniform random variables in  0, ( )f xi . Using joint density of ( ,..., , )1 xk  and generalization of 

Gibbs sampling methods, we will reach samples of expected density. Let joint density define on S, where 

( ,..., , ),0 ( )1S x f xk i i     sup ( )x port f 
                                                                                                         (1) 

And assume 

( ,..., , )1g xk  
                                                                                                                                                              (2) 
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Marginal density of X is

     

 

( ) ( )
( ) ( ) ( )1 1

0 0

f x f xk k
g x B d d Bf x f xX k k   L L L

                                                                                                     (3) 

Then ( ) ( )g x f xX  . Now we generate random samples by Gibbs sampling of marginal density of X. Conditional 

distributions for each i , and X are as follows: 

( , , , , , , )1 1 1g x Bi i i i k       K K
          

 0, ( )f xi i 
                                                                                          (4) 

( , , )1gx x Bk  K
 

Sample selection for i with above conditional densities, is simple. If we suppose i  ,i= 1… k are obtained samples, 

we take sample of x from its correspondent conditional density and on D where  : ( )D x f xi i  , ( )i x Support f 

[3], [5]. 

3. The role of MCMC methods in Gaussian process regression 

In a Gaussian Process Regression model that we demonstrate it by: 

yi = f(xi) + i                                                                                                                                                                                                                                                                   (5) 

Where 2~ (0, )Ni  , is an error term? Errors of different data points are indipendent. For each i, xi has a normal 

distribution in a d-dimension space [14]. We demonstrate normal density function for a d-dimension space by: 

       
 

    
 
    

 
 

    
 

 
                                                                                                                              (6) 

Where    T
E x x       

,  E x   and θ the vector of the mean μ and covariance matrix Σ. We suppose f (xi) is 

a nonlinear function of xi, which xi has normal distribution. So we can consider f (xi) as a nonlinear combination of 

normal models.We show Gaussian mixture models k-trivial, GMM k-trivial, by: 

                  
 
                                                                                                                                                        (7) 

Where  's are weight of          . Obviously f (xi) consists of a Gaussian mixture models. For example for each i, we 

can consider f(xi) as a multivariate normal distribution with mean zero and covariance function C (xi , xj)=COV(f(xi) , 

f(xj)) . Such as:   

C (xi, xj) = C (xi, xj, ) =   exp (-
 

 
             

 
   

2
) +               

 
                                                                (8) 

Where                        
    denotes the set of unknown parameters. Since the vector of output variables are 

function of input variables, (yi = f(xi) + εi ), Y=          
 , and input variables have normal distribution, therefore 

Y=          
 , has a normal distribution with mean zero and covariance function              

  , where I is an 

identity matrix, C(   is an N×N covariance function with elements as given in (8). So we can say      is an N×N 

covariance function for output variables too. The set of data is D={y, x} = {(y1, x1) (yn,xn)}. Now, we should estimate 

parameters. The likelihood function is as follows:  

L (    
 

 
          

 

 
          

 

 
                                                                                                                (9) 

4. Applied examples 

In this section, we will evaluate some applied examples using methods of MCMC that are presented in section 2. In first 

example, we will generate random variable of Beta density by random walks method. In second example, we will 

evaluate defalt rate estimation related to data of pomp that is performed by Gibbs sampling [5]. Third example is related 

to resolve second example using slice sampling. In forth example we will simulate bivariate normal distribution by 

using Gibbs sampling. Fifth example is related to resolve forth example by Metropolis-Hastings algorithm. Sixth 

example is related to simulate means of two population of normal mixture using Gibbs sampling. 

 

4.1. Example 1 
 

We want to generate random sample for posterior density 55( ) (1 )n xxf x 
   , n=12, x=8 and random walks 

model y x z  , ~ (0,1)z N . To solve this example we will use Metropolis method. 
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Fig. 1: The Histogram by S-Plus Is As Follows 

 

4.2. Example 2 
 

In 1987 obtained set of data for some pomp [7] that had defalts in t-time. Suppose we have number of defalts, yi, for 

each 10 pomp in a nuclear plant. So we have time, ti, that in it each pomp has a defalt:  

Y=(5,1,5,14,3,19,1,1,4,22) t= (94,16,63,126,5,31,1,1,2,10) 

We want to model number of defalts by Gibbs sampling with a poisson likelihood function that in it differs expected 

mean of number of defalt, λi. The likelihood function is:  

10
( )

1

P ti i
i


  

Let for each λi, we have prior distribution (β, α)Γ with α = 1.8, and β has prior distribution  (δ,γ)Γ with γ = 0.01 and δ =  

1) The posterior distribution is as follows: 
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Fig. 2: The Histogram of the Posterior Density of Β: 
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Fig. 3: The Histogram of the Posterior Density of Number of Defalts: 

 

4.3. Example 3 
 

In this example, we will have evaluated data related to pomp in second example again. Histogram of produced data 

from posterior distribution that they are obtained in Slice method by S-plus as follows: 

 

0.0 0.05 0.10 0.15

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

lambda1

0 1 2 3

0
1

0
0

2
0

0
3

0
0

lambda2

 

0.0 0.05 0.10 0.15 0.20 0.25 0.30

0
5

0
1

0
0

1
5

0
2

0
0

lambda3

0.05 0.10 0.15 0.20

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

lambda4

 

Histogram of posterior$lambda.draws

posterior$lambda.draws

F
re

q
u

e
n

c
y

0 1 2 3 4

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0



52 International Journal of Scientific World 

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
5

0
1

0
0

1
5

0
2

0
0

lambda5

0.2 0.4 0.6 0.8 1.0

0
5

0
1

0
0

1
5

0

lambda6

 

0.0 0.5 1.0 1.5 2.0

0
1

0
0

2
0

0
3

0
0

4
0

0

lambda8

0.0 0.5 1.0 1.5

0
1

0
0

2
0

0
3

0
0

4
0

0

lambda7

 

0.0 0.5 1.0 1.5 2.0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

lambda9

0.5 1.0 1.5 2.0 2.5

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

lambda10

 
Fig. 4: Output Example 3: Histogram of Posterior Densities: 
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Fig. 5: Histogram of Posterior Density of Β 
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4.4. Example 4 
 

In this example, we will simulate N (0, 0, 1, 1, ρ) by using Gibbs sampling. 

 
Fig. 5: The Histogram of Marginal Densities in R Software is as Follows 

 

4.5. Example 5 
 

This example is related to resolve 4th example by using Metropolis-Hastings algorithm.  
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Fig. 6: Histogram of this Example by R Software is as Follows 

 

4.6. Example 6 
 

In this example, we will generate 500 samples to simulate means of normal mixture models by Gibbs sampler and with 

means 2.9, 4.5 and standard deviation 0.1. 

So in this example, each of normal models has weight 1/2, that in fact show share of any normal model in Gaussian 

Mixture Models. 

 

 
Fig. 7: Histogram of this Example in R Software is as Follows 
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