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Abstract

This paper presents different methods of Bayesian estimation to estimate parameter and reliability function of two
parameter bathtub-shaped lifetime distribution based on progressively firrst-failure-censored samples under min-
imum expected and LINEX loss functions. Comparisons among estimators are investigated through simulation
study.
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1. Introduction

The bathtub shape provides an appropriate conceptual model for the hazard of some electro-mechanical, electronic
and mechanical products.In this paper, we discuss the two-parameter lifetime distribution with bathtub-shaped or
increasing failure rate function. the cumulative distribution function(CDF), probability density function (PDF),
reliability function and corresponding failure rate function of the new two parameter lifetime distribution with
bathtub-shaped or increasing failure rate function are given, respectively, by ( see Chen [11] )

F (x) = 1− eλ(1−e
xβ ), x > 0, λ, β > 0 (1)

f(x) = λβxβ−1ex
β+λ(1−ex

β
), x > 0, λ, β > 0 (2)

R(x) = eλ(1−e
xβ ), (3)

H(x) = λβxβ−1ex
β

. (4)
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where λ > 0 is the parameter but it does not affect the shape of the failure rate function, H(x), as in Equation
(4) and β > 0 is the shape parameter. In recent years, the two parameter bathtub-shaped lifetime distribution
has been studied by many authors, such as Lee et al. [5] and Wu et al [6]. Also Rastogi et al. [13] consider the
problem of estimating unknown parameters, reliability function and hazard function of a two parameter bathtub-
shaped distribution on the basis of progressive type-II censored sample by using different symmetric and asymmetric
such as LINEX, entropy and squared error loss functions. Sarhan et al. [14] discussed Maximum likelihood and
Bayes estimates of the two unknown parameters of two parameter bathtub-shaped lifetime distribution or Selim
[15] discussed Bayesian and non-Bayesian estimations problems of the unknown parameters for the two-parameter
bathtub-shaped lifetime distribution based on record values.
In this paper, we assume that shape parameter β is known and used different method of Bayesian estimation to
estimate parameter λ and reliability function of two parameter bathtub-shaped lifetime distribution under progres-
sively first-failure-censored samples based on different symmetric and asymmetric loss functions. In Section 2, a brief
description of progressive first-failure-censored sampling is given. In section 3, based on progressive first-failure-
censored samples and gamma prior density we derived likelihood function and posterior densities of parameter λ
and reliability function of bathtub-shaped lifetime distribution. In section 4 we derived Bayesian estimators of
parameter λ and reliability function of bathtub-shaped lifetime distribution under minimum expected and LINEX
loss functions. In section 5 We used empirical Bayesian estimation to estimate the parameter λ and reliability
function based on the method of maximum likelihood estimate. E-Bayesian estimation methods for estimation of
the parameter and reliability function of bathtub-shaped lifetime distribution are provided in Section 6. Simulation
study is provided in Section 7, and finally we conclude the paper in Section 8.

2. A progressive first-failure-censoring scheme

In a life-testing experiment, Suppose that n independent groups with k items within each group are put in a life
test. R1 groups and the group in which the first failure is observed are randomly removed from the test as soon as
the first failure (XR

1:m:n:k = X1) has occurred, R2 groups and the group in which the second failure is observed are
randomly removed from the test as soon as the second failure (XR

2:m:n:k = X2) has occurred, and finally Rm(m ≤ n)
groups and the group in which the m-th failure is observed are randomly removed from the test as soon as the m-th
failure (XR

m:m:n:k = Xm) has occurred. Then X1 < X2 < · · · < Xm are called progressively first-failure-censored
order statistics with the progressive censoring scheme R. It is clear that n = m+ R1 + R2 + · · ·Rm. If the failure
times of the n×k items originally in the test are from a continuous population with distribution function F (x) and
probability density function f(x), the joint probability density function for X1, X2, · · · , Xm is given by

f(x1, x2, · · · , xm) = ckm
m∏
i=1

f(xi) (1− F (xi))
k(Ri+1)−1

0 < x1 < x2 < · · · < xm <∞ (5)

where c = n(n−R1 − 1)(n−R1 −R2 − 2) · · · (n−R1 −R2 − · · · −Rm−1 −m+ 1). Note that if k = 1, the Eq. (5)
reduces to the joint probability density function of progressively type II censored order statistics. If R = (0, · · · , 0),
Eq. (5) reduces to the joint probability density function of first-failure censored order statistics. If k = 1 and
R = (0, · · · , 0), then n = m which corresponds to the complete sample, and if k = 1 and R = (0, · · · , 0, n −m),
then type II censored order statistics are obtained (see Wu and kus [1] or Wu and Huang [2]).

3. Likelihood, prior and posterior

Suppose X1 < X2 < · · · < Xm are progressively first-failure-censored sample with progressive censoring scheme R
from the two parameter bathtub-shaped lifetime distribution with CDF and PDF (1), (2). Substituting (1) and (2)
into (5), the likelihood function becomes to be proportional to

L(λ,X) ∝ λmeλk
∑m
i=1(Ri+1)(1−ex

β
i ) (6)

It is assumed that the parameter λ > 0 has a conjugate gamma prior distribution with the shape and scale
parameters a > 0 and b > 0, and it has the PDF

π(λ) =
ba

Γ(a)
λa−1e−bλ. (7)
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Combining (6) and (7), from Bayesian theorem the posterior density function of λ can be written as

π(λ|x) =
(b−Q(xi))

m+a

Γ(m+ a)
λm+a−1e−λ(b−Q(xi)) (8)

where,

Q(xi) = k

m∑
i=1

(Ri + 1)(1− ex
β
i )

Substituting λ = − ln s
g(t) into (8), we obtain the posterior probability density function of S = R(t) with fixed

x = t > 0 as

π(S|x) =
1

Γ(m+ a)

(
b−Q(xi)

g(t)

)m+a

(− ln s)m+a−1s
b−Q(xi)

g(t)
−1 (9)

where g(t) = et
β − 1.

4. Bayesian Estimation

4.1. Bayes estimator under minimum expected loss function

In Bayesian estimation, widely used loss function is a quadratic loss function given by

L(λ, λ̂) = w
(
λ̂− λ

)2
If w = 1, it reduces to squared error loss function and for w = λ−2 ,it becomes

L(λ, λ̂) = λ−2
(
λ̂− λ

)2
known as minimum expected loss function introduced by Rao Tummala and Sathe [4]. based on Minimum Expected
Loss Function The Bayesian estimator of λ is given by

λ̂ME =
E(λ−1|x)

E(λ−2|x)

Therefore we obtain Bayes estimators of parameter λ of bathtub-shaped lifetime distribution as the following
form

λ̂ME =
m+ a− 2

b−Q(xi)
. (10)

Other problems of interest are those of estimating the reliability function R(t). under squared-error loss function,
the Bayesian estimators of R(t) are found to be

R̂ME =

[
1− g(t)

b−Q(xi)− g(t)

]m+a

(11)

4.2. Bayes estimator under LINEX loss function

The LINEX loss function for λ can be expressed as the following proportional

L(∆) ∝ exp(k∆)− k∆− 1; k 6= 0

where ∆ = (λ̂ − λ) and λ̂ is an estimate of λ. The Bayes estimator of λ, denoted by λ̂L under the LINEX loss
function is given by

λ̂L = −1

k
lnE[exp(−kλ)]



34 International Journal of Scientific World

For more details about LINEX loss function see Zellner [12]. Under LINEX loss function, we obtain Bayesian
estimator of the parameter λ, and reliability function R(t), as the following forms

λ̂L = −m+ a

δ
ln

[
b−Q(xi)

b+ δ −Q(xi)

]
(12)

R̂Li = −1

δ
ln

 ∞∑
j=0

(−δ)j

j!

(
b−Q(xi)

b−Q(xi) + jg(t)

)m+a
 (13)

5. Empirical Bayesian Estimation

We assume that parameter a in the conjugate gamma prior distribution (7) is known and parameter b is unknown
In the parametric empirical Bayes method to estimate of the hyperparameter usually used the method of maximum
likelihood or a method of moments estimate (Carlin and Louis [7], p.62). Here we estimate the unknown hyperpa-
rameter λ based on the method of maximum likelihood estimate. from (6) and (7) the marginl density function of
X is

f(x) =

∫
L(x, λ)π(λ)dλ =

∫
λm(u(xn))

β ba

Γ(a)
λa−1e−bλdλ =

Γ(n+ a)

Γ(a)

ba

(b− lnu(xn))n+a

Based on f(x) the MLE of b is

b̂ = −aQ(xi)

m
(14)

5.1. Empirical Bayes Estimation under minimum expected loss function

Substituting b̂ into (10), the empirical Bayes estimation of λ under minimum expected loss function is obtained

λ̂EME =
−m(m+ a− 2)

Q(xi)(a+m)
(15)

Similarly, the empirical Bayes estimation of R(t) is given as follows:

R̂EME =

[
1 +

mg(t)

(a+m)Q(xi) + g(t)

]m+a

(16)

5.2. Empirical Estimation under LINEX loss function

Substituting b̂ into (12) and (13), the empirical Bayes estimation of λ and reliability function R(t) under LINEX
loss function are obtained

λ̂ELI = −m+ a

δ
ln

(m+ a)Q(xi)

Q(xi)(a+m)−mδ
, (17)

R̂ELI = −1

δ
ln

 ∞∑
j=0

(−δ)j

j!

(
(a+m)Q(xi)

(a+m)Q(xi)−mjg(t)

)m+a
 . (18)

6. E-Bayesian Estimation

According to Han [8], in the conjugate gamma prior distribution (7), parameters a and b should be selected to
guarantee that π(λ) is a decreasing function of λ. The derivative of π(λ) with respect to λ is
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dπ(λ)

dλ
=

ba

Γ(a)
λa−2e−bλ ((a− 1)− bλ)

since a > 0, b > 0, and λ > 0, it follows 0 < a < 1, b > 0 due to dπ(λ)
dλ < 0 and therefore π(λ) is a decreasing function

of λ.

Assuming that a and b are independent with bivariate density function

π(a, b) = π(a)π(b),

then, the Expectation of the Bayesian estimate of λ (E-Bayesian estimate of λ ) can be written as

λ̂EB =

∫ ∫
λ̂Bayesπ(a, b)dadb, (19)

where λ̂Bayes is the Bayes estimate of λ given by (10) and (12). For more details, see Han [9] or jahen and okasha
[10].

Here we condider following prior distribution a and b for obtain the E-Bayesian estimate of parameter λ and
reliability function R(t)(jahen and okasha )

π(a, b) =
1

cB(u, v)
au−1(1− a)v−1, 0 < a < 1, 0 < b < c. (20)

6.1. E-Bayesian Estimation under minimum expected loss function

Based on the minimum expected loss function and independent bivariate prior distribution (20), the E-Bayesian
estimation λ takes the form

λ̂E−BME =
m+ u

u+v − 2

c
ln
Q(xi)− c
Q(xi)

. (21)

Similarly, Based on the minimum expected loss function and independent bivariate prior distribution (20), the
E-Bayesian estimation of reliability function R(t) is obtained from (11) as

R̂E−BME =
1

cB(u, v)

∫ 1

0

∫ c

0

au−1(1− a)v−1
(

1− g(t)

b−Q(xi)− g(t)

)m+a

dbda (22)

Obtaining a closed form expression for and R̂E−BME is not possible.

6.2. E-Bayesian Estimation under LINEX loss function

Based on the LINEX loss function, the E-Bayesian estimation λ is computed as follows:

λ̂E−BLI =
1

cδ

(
m+

u

u+ v

)(
(Q(xi)− c) ln

c−Q(xi)

c−Q(xi) + δ
+Q(xi) ln

δ −Q(xi)

−Q(xi)
+ δ ln

c+ δ −Q(xi)

δ −Q(xi)

)
(23)

. Under LINEX loss function and prior distribution (20), the E-Bayesian estimation of reliability function R(t) is
obtained from (13) as

R̂E−BLI = − 1

δcB(u, v)

∫ 1

0

∫ c

0

au−1(1− a)v−1 ln

 ∞∑
j=0

(−δ)j

j!

(
b−Q(xi)

b−Q(xi) + jg(t)

)m+a
 dbda (24)

Analytical and numerical computations for the integrals in (24) are very complicated.
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Table 1: Prior parameters

a b δ c u v

for estimates of λ 4 1.5 1.5 0.1 0.4 0.9
for estimates of R(t) 4 1 0.5 0.1 0.6 0.9
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Figure 1: MSE for different estimators of parameter λ

7. Simulation study

Applying the algorithms of Balakrishnan and Sandhu [3], we have generated 2000 different progressive first-failure-
censored samples from bathtub-shaped lifetime distribution with parameters (λ = β =) and different size n,m, k and
different censoring secheme R = (R1, · · · , Rm). The true value of R(t) in t = 0.2 is obtained R(0.2) = 0.9235971.
We used the above sample and prior parameters which displayed in Table 1, and compute the Bayesian estimators,
empirical Bayes estimators and E-Bayesian estimators of parameter λ and reliability function R(t) respectively,
using (10), (12), (15), (17), (21), (23), (11), (13), (16), (18), and obtain the means and the MSEs (Mean Squared
Error) for generated 2000 different progressive first-failure-censored samples. The results are summarized in Tables
2, 3, and figures 1, 2, 3 and 4.

8. Conclusions

Based on the results shown in Table 2, one can conclude Bayesian estimation methods give relatively more accurate
estimators as compared with the Empirical Bayes estimation methods or E-Bayesian estimation methods. While
the figures 1 and 2, shows that the Bayes estimates of parameter λ under the LINEX loss function have the smallest
MSE’s as compared with the estimates under minimum expected loss function, empirical Bayes estimators and
E-Bayesian estimators under minimum expected and LINEX loss functions. Table 3, shows that the empirical
Bayes estimators of reliability function R(t) under the LINEX loss function more accurate estimators as compared
with the other estimators, but according to figures 3, 4 one can conclude the Bayes estimates of reliability function
R(t) under the LINEX loss function have the smallest estimated MSE’s as compared with the Bayes estimates
under minimum expected loss function and Empirical Bayes estimators under minimum expected and LINEX loss
functions. Also as sample size n increases, Bayes estimators of reliability function R(t) under the LINEX loss
function and Empirical Bayes estimators under minimum expected and LINEX loss functions are Approximately
equal. In all above cases it is immediate to note that MSE’s decrease as sample size n and m increases, and generally
when k increases the MSE’s of all estimators increases.
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Figure 2: MSE for different estimators of parameter λ
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Figure 3: MSE for different estimators of reliability function R(t)
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Table 2: Averaged values for estimates of the parameter λ.

n m k R = (R1, ..., Rm) λ̂ME λ̂L λ̂EME λ̂ELI λ̂E−BME λ̂E−BLI

10 5 1 (5,0,0,0,0) 1.871828 2.006320 1.919919 1.999702 1.582412 1.841578
3 1.875971 2.009581 1.935179 2.009738 1.593847 1.848868
6 1.890754 2.022845 1.966642 2.035284 1.618714 1.869175

7 1 (2,1,0*5) 1.925583 2.026798 1.905310 1.984977 1.731613 1.897927
3 1.929062 2.029930 1.910352 1.989916 1.736282 1.902275
6 1.925478 2.026146 1.908643 1.986906 1.734480 1.899145

10 1 (0,...,0) 1.943456 2.018982 1.885488 1.955556 1.805343 1.915682
3 1.959967 2.034663 1.906348 1.975081 1.825084 1.934046
6 1.945886 2.020692 1.892360 1.960400 1.811628 1.919760

20 10 1 (5,2,2,1,0*6) 1.956458 2.031007 1.903850 1.971958 1.822617 1.930862
3 1.965889 2.039793 1.916135 1.983390 1.834244 1.941558
6 1.950859 2.025925 1.895195 1.964520 1.814515 1.924065

15 1 (5,0,...,0) 1.971041 2.024554 1.907372 1.960794 1.876985 1.947531
3 1.976647 2.029730 1.914570 1.967389 1.883991 1.953853
6 1.963621 2.017541 1.898724 1.952513 1.868526 1.939502

20 1 (0,...,0) 1.969550 2.011589 1.910076 1.952853 1.896985 1.949154
3 1.981481 2.022897 1.923939 1.965989 1.910663 1.962009
6 1.986857 2.028373 1.928878 1.971202 1.915586 1.967239

30 10 1 (5*4,0,...,0) 1.946533 2.022190 1.888272 1.958511 1.808007 1.918613
3 1.957004 2.031685 1.902962 1.971829 1.821874 1.930935
6 1.957070 2.032015 1.902530 1.971488 1.821453 1.930697

15 1 (5*3,0,...,0) 1.983027 2.035669 1.922531 1.974772 1.891748 1.960956
3 1.964471 2.018178 1.900135 1.953721 1.869895 1.940623
6 1.983668 2.036203 1.923753 1.975724 1.892917 1.961828

20 1 (5,5,0,...,0) 1.971456 2.013408 1.912223 1.954919 1.899107 1.951182
3 1.987876 2.029150 1.930743 1.972687 1.917399 1.968626
6 1.978818 2.020864 1.919154 1.962148 1.906008 1.958415

30 1 (0,...,0) 1.981112 2.010524 1.933288 1.963559 1.931408 1.965721
3 1.980798 2.010179 1.933070 1.963294 1.931186 1.965447
6 1.992298 2.021482 1.945069 1.975132 1.943146 1.977227

50 20 1 (5*6,0*14) 1.970682 2.012678 1.911257 1.954037 1.898157 1.950325
3 1.968875 2.011197 1.908400 1.951635 1.895367 1.948049
6 1.980048 2.021829 1.921316 1.963890 1.908111 1.960049

30 1 (5*4,0*26) 1.997010 2.026062 1.950142 1.980064 1.948197 1.982123
3 1.997607 2.026667 1.950708 1.980649 1.948764 1.982709
6 1.989471 2.018777 1.941903 1.972107 1.939999 1.974236

40 1 (5*2,0*38) 2.001631 2.023932 1.963415 1.986356 1.964709 1.989845
3 1.994897 2.017371 1.956256 1.979373 1.957565 1.982893
6 1.993730 2.016323 1.954784 1.978041 1.956105 1.981584

50 1 (0,...,0) 1.992724 2.011083 1.960029 1.978864 1.962448 1.982681
3 2.003110 2.021269 1.970894 1.989524 1.973303 1.993317
6 2.002490 2.020679 1.970198 1.988864 1.972610 1.992661
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Table 3: Averaged values for estimates of reliability function R(t)

n m k R = (R1, ..., Rm) R̂ME R̂L R̂EME R̂ELI

10 5 1 (5,0,0,0,0) 0.8909059 0.8982645 0.9051733 0.9125776
3 0.8897451 0.8971451 0.9030546 0.9105621
6 0.8901883 0.8975713 0.9035326 0.9110755

7 1 (2,1,0*5) 0.8964211 0.9032041 0.9092949 0.9160919
3 0.8966601 0.9034401 0.9096409 0.9164238
6 0.8963549 0.9031429 0.9091343 0.9159407

10 1 (0,...,0) 0.9033478 0.9096739 0.9141569 0.9205263
3 0.9019640 0.9082915 0.9126717 0.9190375
6 0.9019728 0.9083093 0.9125187 0.9189002

20 10 1 (5,5,0*8) 0.9012217 0.9075638 0.9116302 0.9180175
3 0.9034319 0.9097635 0.9141250 0.9205076
6 0.9018968 0.9082276 0.9125352 0.9189076

15 1 (5,0,...,0) 0.9079865 0.9139739 0.9160856 0.9221470
3 0.9081530 0.9141458 0.9162027 0.9222708
6 0.9087300 0.9147227 0.9168541 0.9229230

20 1 (0,...,0) 0.9109119 0.9167426 0.9173221 0.9232341
3 0.9115435 0.9173803 0.9179813 0.9239004
6 0.9112657 0.9170995 0.9176946 0.9236103

30 10 1 (5*4,0,...,0) 0.9028701 0.9091974 0.9136361 0.9200047
3 0.9015599 0.9078982 0.9120589 0.9184405
6 0.9024728 0.9088025 0.9131752 0.9195460

15 1 (5*3,0,...,0) 0.9084077 0.9143994 0.9164982 0.9225663
3 0.9079183 0.9139054 0.9160118 0.9220730
6 0.9076882 0.9136773 0.9157232 0.9217868

20 1 (5,5,0,...,0) 0.9113908 0.9172250 0.9178342 0.9237504
3 0.9115603 0.9173989 0.9179826 0.9239033
6 0.9115230 0.9173601 0.9179560 0.9238752

30 1 (0,...,0) 0.9146747 0.9203677 0.9192032 0.9249719
3 0.9145144 0.9202046 0.9190430 0.9248087
6 0.9152099 0.9209103 0.9197556 0.9255324

50 20 1 (5*6,0*14) 0.9113908 0.9172250 0.9178342 0.9237504
3 0.9115230 0.9173601 0.9179560 0.9238752
6 0.9113972 0.9172298 0.9178589 0.9237735

30 1 (5*4,0*26) 0.9145422 0.9202347 0.9190545 0.9248226
3 0.9145598 0.9202504 0.9190927 0.9248588
6 0.9138723 0.9195531 0.9183854 0.9241410

40 1 (5*2,0*38) 0.9161004 0.9217220 0.9195912 0.9252785
3 0.9159366 0.9215568 0.9194149 0.9251004
6 0.9162100 0.9218342 0.9196972 0.9253871

50 1 (0,...,0) 0.9171047 0.9226884 0.9199385 0.9255793
3 0.9172774 0.9228650 0.9201088 0.9257536
6 0.9170120 0.9225943 0.9198421 0.9254814
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Figure 4: MSE for different estimators of reliability function R(t)
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