Fundamental physics and the fine-structure constant

Authors

How to Cite

Sherbon, M. (2017). Fundamental physics and the fine-structure constant. International Journal of Physical Research, 5(2), 46-48. https://doi.org/10.14419/ijpr.v5i2.8084

Received date: July 5, 2017

Accepted date: August 7, 2017

Published date: August 17, 2017

DOI:

https://doi.org/10.14419/ijpr.v5i2.8084

Keywords:

Euler’s Equation, Fine-Structure Constant, Forces of Nature, Fundamental Constants, Symmetry Principles.

Abstract

From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.

References

  1. [1] L. Debnath, The Legacy of Leonhard Euler: A Tricentennial Tribute, Imperial College Press, London, World Scientific Publishing, River Edge, NJ, (2009) p.180. https://doi.org/10.1142/p698.

    [2] W. Eisen, The Essence of the Cabalah, DeVorss, Marina Del Rey, CA, 1984, pp.474-479.

    [3] M.A. Sherbon, Quintessential nature of the fine-structure constant, Global Journal of Science Frontier Research A, 15, 4 (2015) 23-26.

    [4] R.R. Nair, et al, Fine structure constant defines visual transparency of graphene, Science, 320, 5881 (2008) 1308-1308. https://doi.org/10.1126/science.1156965.

    [5] Z. Zi-Xiang, An observation of relationship between the fine structure constant and the Gibbs phenomenon in Fourier analysis, Chinese Physics Letters, 21.2 (2004) 237-238. https://doi.org/10.1088/0256-307X/21/2/006.

    [6] T. Aoyama, M. Hayakawa, T. Kinoshita, & M. Nio, Tenth-order electron anomalous magnetic moment: contribution of diagrams without closed lepton loops, Physical Review D, 91, 3 (2015) 033006.

    [7] M.A. Sherbon, Fundamental nature of the fine-structure constant, International Journal of Physical Research, 2, 1 (2014) 1-9. https://doi.org/10.14419/ijpr.v2i1.1817.

    [8] C.B. Hills, Supersensonics, University of the Trees, Boulder Creek, CA, 1978, p.120.

    [9] G. Rosi, et al, Precision measurement of the Newtonian gravitational constant using cold atoms, Nature, 510.7506 (2014) 518-521. https://doi.org/10.1038/nature13433.

    [10] A.S. Burrows & J.P. Ostriker, Astronomical reach of fundamental physics, PNAS, 111, 7 (2014) 2409-2416. https://doi.org/10.1073/pnas.1318003111.

    [11] D. d’Enterria, P.Z. Skands, S. Alekhin, et al, High-precision αS measurements from LHC to FCC-ee, CERN-PH-TH (2015) 299.

    [12] A. Bodek, Precision measurements of electroweak parameters with Z bosons at the Tevatron, The European Physical JournalC, 76, 3 (2016) 1-12. In Proceedings of the Third LHCP15, 2015. Saint Petersburg, Russia.

    [13] M. Thomson, Modern Particle Physics, Cambridge University Press, Cambridge, UK, 2013, 298.

    [14] K.A. Olive, et al, (Particle Data Group) The review of particle physics, Chinese Physics C, 38 (2014) & update (2015) 090001.

    [15] K. Sundermeyer, Symmetries in Fundamental Physics, Springer, New York, 2014. https://doi.org/10.1007/978-94-007-7642-5.

    [16] S.P. Sirag, ADEX Theory: How the ADE Coxeter Graphs Unify Mathematics and Physics, World Scientific Publishing, River Edge, NJ, 2016, pp.2-4. https://doi.org/10.1142/9502.

    [17] K.P. Jungmann, Fundamental symmetries and interactions, Nuclear Physics A, 751 (2005) 87. https://doi.org/10.1016/j.nuclphysa.2005.02.099.

    [18] C. Quigg, Electroweak symmetry breaking in historical perspective, Annual Review of Nuclear and Particle Science, 65, 1 (2015) 25-42. https://doi.org/10.1146/annurev-nucl-102313-025537.

    [19] T. Gannon, Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics, Cambridge University Press, Cambridge, UK, 2006. https://doi.org/10.1017/CBO9780511535116.

    [20] J.F.R. Duncan, M.J. Griffin & K. Ono, Moonshine, Research in the Mathematical Sciences, 2 (2015) 11. https://doi.org/10.1186/s40687-015-0029-6.

    [21] N.J.A. Sloane, Coefficients of modular function j as power series in q, The On-Line Encyclopedia of Integer Sequences, (2001) OEIS:A000521.

    [22] D. Grumiller, R. McNees, & J. Salzer, Black holes and thermodynamics, Quantum Aspects of Black Holes, Springer, New York, 2015, pp.27-70.

    [23] G.W. Adamson, Convolution square root of A000521, The On-Line Encyclopedia of Integer Sequences, (2009) OEIS:A161361.

    [24] T. Eguchi, H. Ooguri & Y. Tachikawa, Notes on the K3 surface and the Mathieu group M24, Experimental Mathematics, 20, 1 (2011) 91-96. https://doi.org/10.1080/10586458.2011.544585.

    [25] P.P. Dechant, Clifford algebra is the natural framework for root systems and Coxeter groups. Group theory: Coxeter, conformal and modular groups, Advances in Applied Clifford Algebras, (2015) 1-15.

    [26] H.F. Verheyen, The icosahedral design of the great pyramid, Fivefold Symmetry, World Scientific Publishing, River Edge, NJ, 1992, pp.333-360. https://doi.org/10.1142/9789814439497_0020.

    [27] J. Michell, the New View over Atlantis, Thames & Hudson, New York, 1995, p.149.

    [28] M.A. Sherbon, Wolfgang Pauli and the fine-structure constant, Journal of Science, 2, 3 (2012) 148-154.

    [29] R.G. Newton, Galileo’s Pendulum: From the Rhythm of Time to the Making of Matter, Harvard University Press, Cambridge, MA, 2004, p.137. https://doi.org/10.4159/9780674041486.

    [30] F. Petrie, Origin of the time pendulum, Nature, 132, 3324 (1933) 102.

    [31] J. Maldacena, The symmetry and simplicity of the laws of physics and the Higgs boson, European Journal of Physics, 37, 1, 12 (2015) 015802.

Downloads

How to Cite

Sherbon, M. (2017). Fundamental physics and the fine-structure constant. International Journal of Physical Research, 5(2), 46-48. https://doi.org/10.14419/ijpr.v5i2.8084

Received date: July 5, 2017

Accepted date: August 7, 2017

Published date: August 17, 2017