Dark Photons and Their Correlation with The Dark Sector Gravitons and The Higgs Boson H→γγ Decay
DOI:
https://doi.org/10.14419/xhvxrg97Keywords:
Quantum Gravity; Zero-Point Vacuum Energy; Graviton; Higgs Boson; Dark Photons; Time-of-Flight (ToF) Detector; Dark Sector Experiment; Quantum CosmologyAbstract
In this paper, we present an in-depth phenomenological and technical description of the ATLAS LHC experiment, focusing on two-γ-photon decay events of the Higgs boson. We explore the implications of these decay events in the context of our novel theory, the Superluminal Graviton Condensate Vacuum (SGCV). This theory predicts the existence of "superluminal propagating massless dark photons”, which act as ghost particles of superluminal displaced vacuum dark sector gravitons. The detection of these particles would establish a significant link between the Higgs field, the quantum field of normal photons, and the dark sector. We propose experimental setups and Time-of-Flight (ToF) instrumentation detectors to validate these predictions, emphasizing their importance for understanding the vacuum and the fabric of spacetime, which is hypothesized to be fundamentally composed of superluminal vibration energy.
References
- E.N. Markoulakis, Superluminal graviton condensate vacuum, Int. J. Phys. Res. 12 (2024) 45–61. https://doi.org/10.14419/bmr9g725.
- E.N. Markoulakis, The superluminous vacuum, Int. J. Phys. Res. 11 (2023) 18–25. https://doi.org/10.14419/ijpr.v11i1.32269.
- A. Filippi, M. De Napoli, Searching in the dark: the hunt for the dark photon, Rev. Phys. 5 (2020) 100042. https://doi.org/10.1016/j.revip.2020.100042.
- H. Abreu et al., Search for dark photons with the FASER detector at the LHC, Phys. Lett. B. 848 (2024) 138378. https://doi.org/10.1016/j.physletb.2023.138378.
- N.T. Hunt-Smith, W. Melnitchouk, N. Sato, A.W. Thomas, X.G. Wang, M.J. White, Global QCD analysis and dark photons, J. High Energy Phys. 2023 (2023) 1–16. https://doi.org/10.1007/JHEP09(2023)096.
- M. Graham, C. Hearty, M. Williams, Searches for Dark Photons at Accelerators, Annu. Rev. Nucl. Part. Sci. 71 (2021) 37–58. https://doi.org/10.1146/annurev-nucl-110320-051823.
- J.T. Li, G.M. Fuller, E. Grohs, Probing dark photons in the early universe with big bang nucleosynthesis, J. Cosmol. Astropart. Phys. 2020 (2020) 049. https://doi.org/10.1088/1475-7516/2020/12/049.
- M.J. Dolan, F.J. Hiskens, R.R. Volkas, Constraining dark photons with self-consistent simulations of globular cluster stars, J. Cosmol. Astropart. Phys. 2024 (2024) 099. https://doi.org/10.1088/1475-7516/2024/05/099.
- E.W. Kolb, A.J. Long, Completely dark photons from gravitational particle production during the inflationary era, J. High Energy Phys. 2021 (2021) 1–41. https://doi.org/10.1007/JHEP03(2021)283.
- T.G. Rizzo, G.N. Wojcik, Kinetic mixing, dark photons and extra dimensions. Part III. Brane localized dark matter, J. High Energy Phys. 2021 (2021) 1–45. https://doi.org/10.1007/JHEP03(2021)173.
- S.K. Acharya, J. Chluba, A closer look at dark photon explanations of the excess radio background, Mon. Not. R. Astron. Soc. 521 (2023) 3939–3950. https://doi.org/10.1093/mnras/stad768.
- D. Curtin, R. Essig, S. Gori, J. Shelton, Illuminating dark photons with high-energy colliders, J. High Energy Phys. 2015 20152. 2015 (2015) 1–45. https://doi.org/10.1007/JHEP02(2015)157.
- A. Caputo, A.J. Millar, C.A.J. O’Hare, E. Vitagliano, Dark photon limits: A handbook, Phys. Rev. D. 104 (2021) 095029. https://doi.org/10.1103/PhysRevD.104.095029.
- H. An, M. Pospelov, J. Pradler, New stellar constraints on dark photons, Phys. Lett. B. 725 (2013) 190–195. https://doi.org/10.1016/j.physletb.2013.07.008.
- H. An, M. Pospelov, J. Pradler, A. Ritz, Direct detection constraints on dark photon dark matter, Phys. Lett. B. 747 (2015) 331–338. https://doi.org/10.1016/j.physletb.2015.06.018.
- R. Aaij et al., Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801. https://doi.org/10.1103/PhysRevLett.120.061801.
- S. Ghosh, E.P. Ruddy, M.J. Jewell, A.F. Leder, R.H. Maruyama, Searching for dark photons with existing haloscope data, Phys. Rev. D. 104 (2021) 092016. https://doi.org/10.1103/PhysRevD.104.092016.
- J.R. Batley et al., Search for the dark photon in π0 decays, Phys. Lett. B. 746 (2015) 178–185. https://doi.org/10.1016/j.physletb.2015.04.068.
- G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett. B. 731 (2014) 265–271. https://doi.org/10.1016/j.physletb.2014.02.035.
- J.P. Lees et al., Search for a Dark Photon in e+e- Collisions at B a B ar, Phys. Rev. Lett. 113 (2014) 201801. https://doi.org/10.1103/PhysRevLett.113.201801.
- P. Jenni, T.S. Virdee, The Discovery of the Higgs Boson at the LHC, (2020). https://doi.org/10.1007/978-3-030-38207-0_6.
- H. Yang, H→γγ measurements at ATLAS and CMS on behalf of ATLAS and CMS collaborations, (2017). https://cds.cern.ch/record/2281322/files/ATL-PHYS-SLIDE-2017-682.pdf.
- A. Valamontes, The Dodecahedron Linear String Field Hypothesis: A Path Towards Unified Field Theory and String Theory, (2024). https://doi.org/10.2139/ssrn.4887058.
Downloads
How to Cite
Received date: June 4, 2025
Accepted date: June 29, 2025
Published date: August 7, 2025