Dark Photons and Their Correlation with The Dark Sector ‎Gravitons and The Higgs Boson H→γγ Decay

Authors

How to Cite

Markoulakis, E., & Valamontes, A. (2025). Dark Photons and Their Correlation with The Dark Sector ‎Gravitons and The Higgs Boson H→γγ Decay. International Journal of Physical Research, 13(2), 1-13. https://doi.org/10.14419/xhvxrg97

Received date: June 4, 2025

Accepted date: June 29, 2025

Published date: August 7, 2025

DOI:

https://doi.org/10.14419/xhvxrg97

Keywords:

Quantum Gravity; Zero-Point Vacuum Energy; Graviton; Higgs Boson; Dark Photons; Time-of-Flight (ToF) Detector; Dark Sector ‎Experiment; Quantum Cosmology

Abstract

In this paper, we present an in-depth phenomenological and technical description of the ATLAS LHC experiment, focusing on two-γ-photon decay events of the Higgs boson. We explore the implications of these decay events in the context of our novel theory, the ‎Superluminal Graviton Condensate Vacuum (SGCV). This theory predicts the existence of "superluminal propagating massless ‎dark photons”, which act as ghost particles of superluminal displaced vacuum dark sector gravitons. The detection of these particles ‎would establish a significant link between the Higgs field, the quantum field of normal photons, and the dark sector. We propose ‎experimental setups and Time-of-Flight (ToF) instrumentation detectors to validate these predictions, emphasizing their importance ‎for understanding the vacuum and the fabric of spacetime, which is hypothesized to be fundamentally composed of superluminal ‎vibration energy‎.

Author Biography

  • Emmanouil Markoulakis, Department of Electronic Engineering, Hellenic Mediterranean University, Romanou 3, Chania 73133, Crete, Greece

    Dr. Emmanouil Markoulakis

    Deprt. Electronic Engineering

    Hellenic Mediterranean University (HMU)

    Research Fellow/Academic staff/Post Doc (PhD)

    Age: 55

References

  1. E.N. Markoulakis, Superluminal graviton condensate vacuum, Int. J. Phys. Res. 12 (2024) 45–61. https://doi.org/10.14419/bmr9g725.
  2. E.N. Markoulakis, The superluminous vacuum, Int. J. Phys. Res. 11 (2023) 18–25. https://doi.org/10.14419/ijpr.v11i1.32269.
  3. A. Filippi, M. De Napoli, Searching in the dark: the hunt for the dark photon, Rev. Phys. 5 (2020) 100042. https://doi.org/10.1016/j.revip.2020.100042.
  4. H. Abreu et al., Search for dark photons with the FASER detector at the LHC, Phys. Lett. B. 848 (2024) 138378. https://doi.org/10.1016/j.physletb.2023.138378.
  5. N.T. Hunt-Smith, W. Melnitchouk, N. Sato, A.W. Thomas, X.G. Wang, M.J. White, Global QCD analysis and dark photons, J. High Energy Phys. 2023 (2023) 1–16. https://doi.org/10.1007/JHEP09(2023)096.
  6. M. Graham, C. Hearty, M. Williams, Searches for Dark Photons at Accelerators, Annu. Rev. Nucl. Part. Sci. 71 (2021) 37–58. https://doi.org/10.1146/annurev-nucl-110320-051823.
  7. J.T. Li, G.M. Fuller, E. Grohs, Probing dark photons in the early universe with big bang nucleosynthesis, J. Cosmol. Astropart. Phys. 2020 (2020) 049. https://doi.org/10.1088/1475-7516/2020/12/049.
  8. M.J. Dolan, F.J. Hiskens, R.R. Volkas, Constraining dark photons with self-consistent simulations of globular cluster stars, J. Cosmol. Astropart. Phys. 2024 (2024) 099. https://doi.org/10.1088/1475-7516/2024/05/099.
  9. E.W. Kolb, A.J. Long, Completely dark photons from gravitational particle production during the inflationary era, J. High Energy Phys. 2021 (2021) 1–41. https://doi.org/10.1007/JHEP03(2021)283.
  10. T.G. Rizzo, G.N. Wojcik, Kinetic mixing, dark photons and extra dimensions. Part III. Brane localized dark matter, J. High Energy Phys. 2021 (2021) 1–45. https://doi.org/10.1007/JHEP03(2021)173.
  11. S.K. Acharya, J. Chluba, A closer look at dark photon explanations of the excess radio background, Mon. Not. R. Astron. Soc. 521 (2023) 3939–3950. https://doi.org/10.1093/mnras/stad768.
  12. D. Curtin, R. Essig, S. Gori, J. Shelton, Illuminating dark photons with high-energy colliders, J. High Energy Phys. 2015 20152. 2015 (2015) 1–45. https://doi.org/10.1007/JHEP02(2015)157.
  13. A. Caputo, A.J. Millar, C.A.J. O’Hare, E. Vitagliano, Dark photon limits: A handbook, Phys. Rev. D. 104 (2021) 095029. https://doi.org/10.1103/PhysRevD.104.095029.
  14. H. An, M. Pospelov, J. Pradler, New stellar constraints on dark photons, Phys. Lett. B. 725 (2013) 190–195. https://doi.org/10.1016/j.physletb.2013.07.008.
  15. H. An, M. Pospelov, J. Pradler, A. Ritz, Direct detection constraints on dark photon dark matter, Phys. Lett. B. 747 (2015) 331–338. https://doi.org/10.1016/j.physletb.2015.06.018.
  16. R. Aaij et al., Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801. https://doi.org/10.1103/PhysRevLett.120.061801.
  17. S. Ghosh, E.P. Ruddy, M.J. Jewell, A.F. Leder, R.H. Maruyama, Searching for dark photons with existing haloscope data, Phys. Rev. D. 104 (2021) 092016. https://doi.org/10.1103/PhysRevD.104.092016.
  18. J.R. Batley et al., Search for the dark photon in π0 decays, Phys. Lett. B. 746 (2015) 178–185. https://doi.org/10.1016/j.physletb.2015.04.068.
  19. G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett. B. 731 (2014) 265–271. https://doi.org/10.1016/j.physletb.2014.02.035.
  20. J.P. Lees et al., Search for a Dark Photon in e+e- Collisions at B a B ar, Phys. Rev. Lett. 113 (2014) 201801. https://doi.org/10.1103/PhysRevLett.113.201801.
  21. P. Jenni, T.S. Virdee, The Discovery of the Higgs Boson at the LHC, (2020). https://doi.org/10.1007/978-3-030-38207-0_6.
  22. H. Yang, H→γγ measurements at ATLAS and CMS on behalf of ATLAS and CMS collaborations, (2017). https://cds.cern.ch/record/2281322/files/ATL-PHYS-SLIDE-2017-682.pdf.
  23. A. Valamontes, The Dodecahedron Linear String Field Hypothesis: A Path Towards Unified Field Theory and String Theory, (2024). https://doi.org/10.2139/ssrn.4887058.

Downloads

How to Cite

Markoulakis, E., & Valamontes, A. (2025). Dark Photons and Their Correlation with The Dark Sector ‎Gravitons and The Higgs Boson H→γγ Decay. International Journal of Physical Research, 13(2), 1-13. https://doi.org/10.14419/xhvxrg97

Received date: June 4, 2025

Accepted date: June 29, 2025

Published date: August 7, 2025