Dynamical characteristics and modulation instability (MI) analysis of sharp slope bell soliton and kink wave solutions to the perturbed space-time fractional Boussinesq equation
DOI:
https://doi.org/10.14419/sqp3vq09Keywords:
Space-Time Fractional Perturbed Boussinesq Equation; Conformable Derivative (CD); The Advanced- exp(-ϕ(ξ)) Expansion Technique; Modulation Instability MI Analysis; Soliton SolutionsAbstract
To attain soliton results for the nonlinear fractional progression equations (NLFEEs) like the space-time fractional Boussinesq equation, we have utilized the advanced expansion technique. In this study, solutions are explicitly determined as kink, soliton, and sharp slope bell soliton types. These obtained singular wave solutions might play a significant role in finding the mathematical model of the realistic corporal phenomena. The results illustrated that the advanced- expansion technique is a simple, straightforward, and actual mathematical model for searching extensive wave solutions with suitable parameters of higher-dimensional NLFEEs. We have also applied the modulation instability analysis (MI) to deliberate the consistency scrutiny of the achieved solutions, and the driving character of the obtained waves is inspected, which ensures that all achieved solutions are explicit, reliable, exact, and stable.
References
- Iqbal, M. A., Miah, M. M., Ali, H. S., Shahen, N. H. M., & Deifalla, A. (2024). New applications of the fractional derivative to extract abundant soliton solutions of the fractional order PDEs in mathematics physics. Partial Differential Equations in Applied Mathematics, 9, 100597. https://doi.org/10.1016/j.padiff.2023.100597.
- Shahen, Nur Hasan Mahmud, et al. "Soliton structures of fractional coupled Drinfel’d–Sokolov–Wilson equation arising in water wave mechanics." Scientific Reports 14.1 (2024): 18894. https://doi.org/10.1038/s41598-024-64348-2.
- Shahen, N. H. M., Rahman, M. M., Alshomrani, A. S., & Inc, M. (2023). On fractional order computational solutions of low-pass electrical trans-mission line model with the sense of conformable derivative. Alexandria Engineering Journal, 81, 87-100. https://doi.org/10.1016/j.aej.2023.09.025.
- Shahen, N. H. M., & Rahman, M. M. (2022). Dispersive solitary wave structures with MI Analysis to the unidirectional DGH equation via the uni-fied method. Partial Differential Equations in Applied Mathematics, 6, 100444. https://doi.org/10.1016/j.padiff.2022.100444.
- Justin, M., David, V., Shahen, N. H. M., Sylvere, A. S., Rezazadeh, H., Inc, M., ... & Doka, S. Y. (2022). Sundry optical solitons and modulational instability in Sasa-Satsuma model. Optical and Quantum Electronics, 54, 1-15. https://doi.org/10.1007/s11082-021-03439-0.
- Shahen, N. H. M., Islam, M. R., Bekir, A., Rahman, M. M. (2022). Dynamical Analysis of Nonlocalized Wave Solutions of 2+ 1-Dimensional CBS and RLW Equation with the Impact of Fractionality and Free Parameters. Advances in Mathematical Physics, 2022, 1-18. https://doi.org/10.1155/2022/3031117.
- Raju, I., & Shahen, N. H. M. Non-Localized Traveling Wave Solutions to the (2+ 1)-D generalized Breaking Soliton Equation with the Assist of Riemann Equation.
- Barman, Hemonta Kumar, Md Ekramul Islam, and M. Ali Akbar. "A study on the compatibility of the generalized Kudryashov method to deter-mine wave solutions." Propulsion and Power Research 10.1 (2021): 95-105. https://doi.org/10.1016/j.jppr.2020.12.001.
- Jawad A. J. A. M., Al Azzawi F. J. I., Biswas A., Khan S., Zhou Q., Moshokoa S. P., Belic M. R. Bright and singular optical solitons for Kaup–Newell equation with two fundamental integration norms, Optik 182 (2019) 594-597. https://doi.org/10.1016/j.ijleo.2019.01.050.
- Yaşar E., Yıldırım Y., Zhou Q., Moshokoa S.P., Ullah M.Z., Triki H., Biswas A., Belic M. Perturbed dark and singular optical solitons in polariza-tion preserving fibers by modified simple equation method, Superlattices Microstructures 111 (2017) 487–498. https://doi.org/10.1016/j.spmi.2017.07.004.
- Manafian J., Lakestani M. The Classification of the Single Traveling Wave Solutions to the Modified Fornberg–Whitham Equation, Int J Appl Comput Math 3(4) (2016) 3241–3252. https://doi.org/10.1007/s40819-016-0288-y.
- Ma W.X., Huang T., Zhang Y. A multiple exp-function method for nonlinear differential equations and its application, Phys Scr 82(6) (2010) 065003. https://doi.org/10.1088/0031-8949/82/06/065003.
- Khatun M.S., Hoque M.F., Rahman M.A. Multisoliton solutions, completely elastic collisions and non-elastic fusion phenomena of two PDEs, Pra-mana 88(6) (2017) 1. https://doi.org/10.1007/s12043-017-1390-3.
- Mamun A.A., An T., Ananna N.S., Foyjonnesa, Shahen N.H.M., Hossain F.M., Muazu T. Exact and explicit traveling-wave solutions to the family of new 3D time-fractional WBBM equations in mathematical physics, Results Phys 19 (2020) 103517. https://doi.org/10.1016/j.rinp.2020.103517.
- Khater M.M.A., Kumar D. New exact solutions for the time fractional coupled Boussinesq–Burger equation and approximate long water wave equation in shallow water, J Ocean Eng and Sci 2(3) (2017) 223–228. https://doi.org/10.1016/j.joes.2017.07.001.
- Bekir A. On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation, Commun Nonlinear Sci Numer Simul 14(4) (2009) 1038-1042. https://doi.org/10.1016/j.cnsns.2008.03.014.
- Bekir A., Aksoy E., Cevikel A. C. Exact solutions of nonlinear time fractional partial differential equations by sub‐equation method, Math Methods Appl Sci 38(13) (2015) 2779-2784. https://doi.org/10.1002/mma.3260.
- Liu W. New Solitary Wave Solution for the Boussinesq Wave Equation Using the Semi-Inverse Method and the Exp-Function Method, Z Naturforsch A 64(11) (2009) 709–712. https://doi.org/10.1515/zna-2009-1106.
- Kaplan M., Bekir A., Akbulut A., Aksoy E. The modified simple equation method for nonlinear fractional differential equations, Rom J Phys 60(9-10) (2015) 1374-1383.
- Odabasi M., Misirli E. On the solutions of the nonlinear fractional differential equations via the modified trial equation method, Math Methods App Sci 41(3) (2015) 904–911. https://doi.org/10.1002/mma.3533.
- Li Y., Ma W.X., Zhang J.E. Darboux transformations of classical Boussinesq system and its new solutions, Phys Lett A 275(1–2) (2000) 60–66. https://doi.org/10.1016/S0375-9601(00)00583-1.
- Zeidan D., Chau C.K., Lu T.T., Zheng W.Q. Mathematical studies of the solution of Burgers’ equations by Adomian decomposition method, Math Methods App Sci 43(5) (2019) 2171–2188. https://doi.org/10.1002/mma.5982.
- Inan B., Osman M.S., Ak T., Baleanu D. Analytical and numerical solutions of mathematical biology models: The Newell‐Whitehead‐Segel and Allen‐Cahn equations, Math Methods App Sci 43(5) (2019) 2588–2600. https://doi.org/10.1002/mma.6067.
- Shahen, Nur Hasan Mahmud, et al. "On simulations of 3D fractional WBBM model through mathematical and graphical analysis with the assists of fractionality and unrestricted parameters." Scientific Reports 14.1 (2024): 16420. https://doi.org/10.1038/s41598-024-61405-8.
- Zuo J.M., Zhang Y.M. The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation, Chin Phys B 20(1) (2011) 010205. https://doi.org/10.1088/1674-1056/20/1/010205.
- Vakhnenko V.O., Parkes E.J., Morrison A.J. A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnen-ko equation, Chaos, Solitons Fractals. 17(4) (2003) 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6.
- Shahen N.H.M., Foyjonnesa, Bashar M.H, Tahseen T., Hossain S. Solitary and Rogue Wave Solutions to the Conformable Time Fractional Modi-fied Kawahara Equation in Mathematical Physics, Adv Math Phys (2021). https://doi.org/10.1016/j.ijleo.2017.04.032.
- Shahen N.H.M., Foyjonnesa, Bashar M.H., Ali M.S., Mamun A.A. Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2+1)-dimensional AKNS equation in water wave mechanics, Heliyon 6(10) (2020) e05276. https://doi.org/10.1016/j.heliyon.2020.e05276.
- Bekir A., Cevikel A.C. New exact travelling wave solutions of nonlinear physical models, Chaos, Solitons Fractals 41(4) (2009) 1733-1739. https://doi.org/10.1016/j.chaos.2008.07.017.
- Bezgabadi, A. Safaei, and M. A. Bolorizadeh. Analytic combined bright-dark, bright and dark solitons solutions of generalized nonlinear Schrö-dinger equation using extended sinh-Gordon equation expansion method. Results in Physics 30 (2021): 104852. https://doi.org/10.1016/j.rinp.2021.104852.
- Li, Wen-Wu, Ye Tian, and Zhe Zhang. "F-expansion method and its application for finding new exact solutions to the sine–Gordon and sinh-Gordon equations." Applied mathematics and computation 219.3 (2012): 1135-1143. https://doi.org/10.1016/j.amc.2012.07.021.
- Mamun A.A., Ananna S.N., Tianqing A., Shahen N.H.M., Foyjonnesa. Periodic and solitary wave solutions to a family of new 3D fractional WBBM equations using the two-variable method, Partial Differ Equations in Appl Math 3 (2021): 100033. https://doi.org/10.1016/j.heliyon.2021.e07704.
- Guner O., Bekir A., Hosseini K. Solitary wave solutions of nonlinear conformable time-fractional Boussinesq equations, Acta Phys Pol A 136(1) (2019) 135. https://doi.org/10.12693/APhysPolA.136.135.
- Mamun A.A., Shahen N.H.M., An T., Ananna S.N., Foyjonnesa. Periodic and solitary wave solutions to the family of new 3D fractional WBBM equations using the two-variable method in mathematical physics, Partial Differ Equations Appl Math (2021) 100033. https://doi.org/10.1016/j.padiff.2021.100033.
- Ekici, Mustafa, and Metin Ünal. "The Double (G^(^')/G, 1/G)-Expansion Method and Its Applications for Some Nonlinear Partial Differential Equations." Journal of the Institute of Science and Technology 11.1 (2021): 599-608. https://doi.org/10.21597/jist.767930.
- Hosseini K., Bekir A., and Ansari R. Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp-expansion –expansion method, Opt Quantum Electron 49(4) (2017) 1-11. https://doi.org/10.1007/s11082-017-0968-9.
- Khater M.M.A., Kumar D. Implementation of three reliable methods for finding the exact solutions of (2 + 1) dimensional generalized fractional evolution equations, Opt Quantum Electron 50(11) (2017) 1. https://doi.org/10.1007/s11082-017-1249-3.
- Khalil R., Al Horani M., Yousef A., Sababheh M. A new definition of fractional derivative, J Comput Appl Math 264 (2014) 65-70. https://doi.org/10.1016/j.cam.2014.01.002.
- Abdeljawad T. On conformable fractional calculus, J Comput Appl Math 279 (2015) 57-66. https://doi.org/10.1016/j.cam.2014.10.016.
- Bashar M.H., Tahseen T., Shahen N.H.M. Application of the Advanced exp (-φ (ξ))-Expansion Method to the Nonlinear Conformable Time-Fractional Partial Differential Equations, Turkish J of Math and Com Sci 13(1) (2021) 68-80.
- Mamun A.A., Ananna S.N., Shahen N.H.M., Asaduzzaman M., Foyjonnesa. Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics, Heliyon 7(8) (2021) e07704. https://doi.org/10.1016/j.heliyon.2021.e07704.
- Mamun A.A., Shahen N.H.M., Ananna S.N., Asaduzzaman M., Foyjonnesa. Solitary and periodic wave solutions to the family of new 3D fraction-al WBBM equations in mathematical physics, Heliyon 7(7) (2021) e07483. https://doi.org/10.1016/j.heliyon.2021.e07483.
- Akbar M.A., Ali N.H.M., Tanjim T. Adequate soliton solutions to the perturbed Boussinesq equation and the KdV-caudrey-dodd-gibbon equation, J King Saud Univ Sci 32(6) (2020) 2777-2785. https://doi.org/10.1016/j.jksus.2020.06.014.
- Seadawy A. R. Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a mag-netized electron–positron plasma, Physica A: Statistical Mech and its Appli 455 (2016) 44-51. https://doi.org/10.1016/j.physa.2016.02.061.
Downloads
How to Cite
Received date: March 25, 2025
Accepted date: April 14, 2025
Published date: May 8, 2025