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Abstract 
 

In this study, with help of the Mathematica software, we employ the Kudryashov method and the modified extended tanh expansion 

method with the Riccati differential equation to analytically treat the Benney-Luke equation. The Benney-Luke equation considered in 

this study features fractional derivatives in both the spatial and the temporal variables of the newly introduced conformable fractional 

derivative. We extensively examine the equation via the two methods, and we construct various structures such as the exponential func-

tions, trigonometric functions and hyperbolic functions. Finally, we depict the graphs of all solutions. 
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1. Introduction 

Nonlinear partial differential equations featuring fractional order 

derivatives play important roles in modeling many real-life 

applications. The study of such equations becomes imperative 

since they best describe physical situations in many instances. In 

particular, one can find equations such as the Boussinesq-Burgers 

equation [1] and Benney-Luke equation [2] to be of paramount 

importance in the study of shallow water, fluid dynamics and 

plasma physics among others. More recently, the classical 

Benney-Luke equation Eq. (1) 

 

= 0, [0,1]
tt xx xxxx xxtt t xx x xt

u u pu qu u u u u x                                  (1) 

 

Where = 1/ 3p q w  , and w  is the surface tension parameter; 

was studied by Islam et al. in [3] by employing the /G G  

expansion method. Moreover, one can find many other analytical 

methods in the literature to study such class of equations, see [4-

20]. 

On the other hand, the theory of the fractional calculus is gaining 

weight with various definition ranging from the Riemann-

Liouville fractional derivative and Caputo's fractional derivative 

definition [21-22]; and the recent conformable and Atangana-

Baleanu fractional derivative definitions [23-24], [25], 

respectively.  

Further, for the conformable fractional derivative; for  

𝑢: [0,∞) → ℝ , the  s order conformable derivative of u  is 

defined by 

 
1

0

( ) ( )
( ( )) = , > 0, (0,1].limt

u t t u t
D u t t
















 
                               (2) 

 

However, in this study, the space-time fractional Benney-Luke 

equation Eq. (3)  

 

2 2 4 4 3 23 = 0,
tt xx xxxx xxtt xxt

D u D u pD u qD u D u        (0,1]                     (3) 

 

Will be examined using the newly introduced conformable 

fractional derivative definition [23-24] by employing two 

promising and reliable analytical methods. The methods involve 

are the Kudryashov method [4] and the modified extended tanh 

expansion method with the Riccati differential equation [5]. The 

Mathematica software will be fully utilized in the solution aspect 

as well as in the graphical representation. The paper is organized 

as follows: Section 2 gives properties of the conformable 

fractional derivative and methodology of solution. Section 3 gives 

the outline of the solution of Benney-Luke equation. In Section 4, 

we give the results and discussion. Section 5 gives the conclusion. 

2. The properties of the conformable fraction-

al derivative and methodology of solution 

Some properties of the conformable fractional derivative is given 

using the following theorems:  

Theorem 1: Let (0,1]  and suppose ( )u t  and ( )v t  are  -

differentiable at > 0t . Then 

 

a) ( ) = ,c c

t
D t ct   for all 𝑐 ∈ ℝ. 

 

b) ( ) = 0,
t

D a  for all constant function ( ) = .u t a  

 

c) ( ( )) = ( ( )),
t t

D au t aD u t   for all a  constant. 

 

d)  ( ) ( ) = ( ) ( ),
t t t

D au t bv t aD u t bD v t     for all 𝑎, 𝑏 ∈ ℝ 

 

e)      ( ) ( ) = ( ) ( ) ( ) ( ) .
t t t

D v t u t D v t u t u t D v t    
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f) 
2

( ) ( ) ( ) ( )( )
= , ( ) 0.

( ) ( )

t t

t

v t D u t u t D v tu t
D v t

v t v t

 

   
 

 
 

 

g) If, in addition to ( )u t  is differentiable, then 1( ) = .
t

du
D u t t

dt

   

 

Theroem 2: Let (0,1]  such ( )u t  is differentiable and also  -

differentiable. Let ( )v t  be a function defined in the range of ( )u t  

also differentiable, then  

 

  1( ) ( ) = ( ) ( ( )).
t

D u t v t t v t u v t   o  

 

See also [23-24].  

Now, considering the following conformable fractional 

differential equation, we present the method:  

 
2 2

1 2 1 2 1 2

1 2
( , , , , , ,...) = 0, 0 < , <1.

t x t x tt xx
P u D u D u D D u D u D u

     

              (4) 

 

By the wave transformation, we set 

 
1 2

1 2

( , ) = ( ), = ,
x t

u x t U a b

 

 
 

                                                      (5) 

 

where 
1 2
,   are fractional orders, a  and b  are nonzero constants. 

Substitution of transformation (5) into (4), we get a reduced 

ordinary differential equation of the polynomial form  

 
2

2
( ( ), ( ), ( ),...) = 0.

d d
Q U U U

d d
  

 
                                                 (6) 

3. Solution of conformable space-time Benney-

Luke equation 

Consider the conformable space-time Benney-Luke equation  

 
2 2 4 4 3 23 = 0, (0,1].

tt xx xxxx xxtt xxt
D u D u pD u qD u D u                               (7) 

 

On using the transformation Eq. (5), we get a reduced ordinary 

differential equation as follows  

 
2 2 4 2 2 2 23 ( ) = 0.b u a u a pu qa b u a b u                                       (8) 

 

Balancing the highest order derivative with the highest nonlinear 

order in Eq. (8) after integrating trice with zero constant of 

integration assumption,we get  

 
= 1.N                                                                                            (9) 

3.1. Soliton solution by Kudryashov method 

From Eq. (9), Kudryashov method offers a truncated series 

solution of the form:  

 

0 1
( ) = ( ),U a a                                                                         (10) 

 

Where, 
0

a  and 
1

a  are constants and ( )  is given by the function 

 

1
( ) = ,

1 exp( )d






                                                                     (11) 

 

Which satisfies the differential equation 

 
2( ) = ( ) ( ).                                                                        (12) 

 

Thus, substituting Eq. (10) with its necessary derivatives 

alongside Eq. (12) into Eq. (8); equating the coefficients of ( )  

to zero we get the following algebraic equations with the help of 

Mathematica software: 

 
2 2 4 2 2 2

1 1 1 1 0 1
6 = 0,a a b a a pa a b qa a ba a      

 
2 2 4 2 2 2 2 2

1 1 1 1 0 1 1
3 3 15 15 42 24 = 0,a a b a a pa a b qa a ba a a ba      

 
2 2 4 2 2 2 2 2

1 1 1 1 0 1 1
2 2 50 50 72 114 = 0,a a b a a pa a b qa a ba a a ba       

 
4 2 2 2 2 2

1 1 0 1 1
60 60 36 162 = 0,a pa a b qa a ba a a ba     

 
4 2 2 2 2

1 1 1
24 24 72 = 0.a pa a b qa a ba   

 

Solving the above system, we get the following:  

Case 1: 

 

0 0

0 0 1 0 2 2

6 6
= , = 2 , = , = .

2

a a
a a a a a b

p qp pq q
  

 
 

 

Which produces 

 
2

0( , ) = ,
1,2 0 6 6

0 01 exp( )
2 22

a
u x t a

a ax t
d

p qp pq q

 

 



  
 

       (13) 

 

(see Fig. 1).  

3.2. Soliton solution by modified extended tanh method 

From Eq. (9), modified extended tanh method offers a truncated 

series solution of the form: 

 

1

0 1
( ) = ( ) ,

( )

b
U a a 


  


                                                           (14) 

 

Where, 
0 1
,A A  and 

1
B  are constants and ( )  is given by the 

function 

 

( ) = tanh ,                                                                                (15) 

 

Which satisfies the differential equation 

 
2( ) = ( ),r                                                                           (16) 

 

Where r  is constant. Also, Eq. (16) has the following structure of 

solutions: 

 

a) If < 0r , then  

 

( ) = tanh( ),

( ) = coth( ),

r r

r r

 

 

   

   
 

 

b) If = 0r , then  

 

1
( ) = ,


   

 

c) If > 0r , then 

 

( ) = tan( ),

( ) = cot( ).

r r

r r

 

 



 
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Therefore, substituting Eq. (14) with its necessary derivatives 

alongside Eq. (16) into Eq. (8); equating the coefficients of ( )  

to zero we get the following algebraic equations with the help of 

Mathematica software: 

 
4 4 2 2 4 2 3 2 2 3

1 1 1 0 1
24 24 72 = 0,36 = 0,a pr b a b qr b a br b a br a b   

 
2 2 2 2 4 3 2 2 3 2 2 2

1 1 1 1 1
2 2 40 40 120 = 0,a r b b r b a pr b a b qr b a br b      

 
2 2 4 2 2 2 2 2 2

1 1 1 1 1
2 2 16 16 48 = 0,a rb b rb a pr b a b qr b a brb      

 
2 2 2 2 2 2

0 1 0 1 0 1 0 1
12 12 = 0,48 = 0, 48 = 0,a br a a a bra b a br a b a bra a    

 
2 2 4 2 2 2 2 2 2 2

1 1 1 1 1
2 2 16 16 48 = 0,a ra b ra a pr a a b qr a a br a      

 
2 2 4 2 2 2 2

1 1 1 1 1
2 2 40 40 120 = 0,a a b a a pra a b qra a bra      

 
2 4 2 2 2 2

0 1 1 1 1
36 = 0,24 24 72 = 0.a ba a a pa a b qa a ba    

 

Solving the above system, we get the following:  

 

Case 1: 

 

0 1 1 1

1 1

2 2

= 0, = , = 0,

3 3
= , = , = .

2

a a a b

a a
a b r r

p qp pq q


 

 

 

Which produces 

 

1

2 2

1,2 1

1

3

2
( , ) = tanh , < 0,

3

a x

p pq q
u x t a r r r

a t

p q









  
  

     
  
      

       (17) 

 

(See Fig. 2). 

 

1

2 2

3,4 1

1

3

2
( , ) = coth , < 0,

3

a x

p pq q
u x t a r r r

a t

p q









  
  

     
  
      

       (18) 

 

(See Fig. 3).  

 

1

2 2

5,6 1

1

3

2
( , ) = tan , > 0,

3

a x

p pq q
u x t a r r r

a t

p q









  
  

   
  
      

               (19) 

 

(See Fig. 4).  

 

1

2 2

7,8 1

1

3

2
( , ) = cot , > 0,

3

a x

p pq q
u x t a r r r

a t

p q









  
  

   
  
      

             (20) 

 

(See Fig. 5).  

Case 2: 

 

1

0 1 1 1 2 2

1

3
= 0, = , = 0, = ,

2

3
= , = 0.

a
a a a b a

p pq q

a
b r

p q


 



 

 

Which produces  

 

1

9,10

1 1

2 2

( , ) = .
3 3

2

a
u x t

a ax t

p qp pq q

 

 


 
m

                                   (21) 

 

(See Fig. 6).  

Case 3: 

 

1

0 1 1 1 1 2 2

1 1 1

2 2

3
= 0, = , = , = ,

2

3 9
= , = ,< 0.

( )

a
a a a b b a

p pq q

a ab
b r

p q a p q


 


 

 

 

Which produces 

 

1 1 1 1

11,12 1 2 2 2 2

1 1 1

2 2

1 1

2 2

1 1

2 2

9 9
( , ) = tanh

( ) ( )

9
coth ,

( )9

( )

3 3
= .

2

ab ab
u x t a

a p q a p q

b ab

a p qab

a p q

a ax t

p qp pq q

 






 

 
     

 
    



 
 

                          (22) 

 

(See Fig. 7).  

4. Graphical representations 

In the present section, we give the graphical representations of the 

conformable space-time fractional Benney-Luke 

equation’ssolutions obtained and presented in Eq. (13) and Eqs. 

(17-22). The graphs are ploted for 0 ≤ x ≤ 2 and 0 ≤ t ≤ 1and 

the used papameters are prescribed below each figure given in 

Fig1-7 as follows: 
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Fig. 1: Profiles of Eq. (13), Subsituting the Values of the Parameters 

0
= 2; = 0.2, = 2; = 0.7; = 0.33.p q a d   and = 1t  for the 2D Graphs. 

 

 
Fig. 2: Profiles of Eq. (17), Subsituting the Values of the Parameters 

1
= 2, =1.8, = 0.6, = 1, = 0.75a p q r   and = 1.5t  for the 2D Graph. 

 

 
Fig. 3: Profiles of Eq. (18), Subsituting the Values of the Parameters 

1
= 2, = 2, =1, = 4, = 0.45a p q r   and = 1t  for 2D Graph. 

 

 
Fig. 4: Profiles of Eq. (19), Subsituting the Values of the Parameters 

1
= 2, = 2, =1, = 2, = 0.8a p q r   and = 2.5t  for the 2D Graph. 
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Fig. 5: Profiles of Eq. (20), Subsituting the Values of the Parameters 

1
= 2.3, = 2, =1, =1.5, = 0.85a p q r   and = 2t  for the 2D Graph. 

 

 
Fig. 6: Profiles of Eq. (21), Subsituting the Values of the Parameters 

1
= 2.8, = 3, =1, = 0, = 0.25a p q r   and = 0.25t  for 2D Graph. 

 

 
Fig. 7: Profiles of Eq. (22), Subsituting the Values of the Parameters 

1 1
=1.8, =1.2, = 2, =1, =1.2, = 0.57a b p q a   and = 2.4t  for the 2D Graph. 

 

5. Results and discussion 

This study effectively examines and constructs varieties of 

solutions for the conformable space-time fractional Benney-Luke 

equation consisting of exponential, trigonometric and hyperbolic 

function using two reliable methods of Kudryashov and modified 

extended than expansion methods, respectively. Various graphical 

illustrations are depicted using the Mathematica software ranging 

from Fig. 1 through Fig. 7 at various chosen values of .  different 

solitons solutions such the singular periodic wave's shapes, kink-

type solution shapes and singular soliton solution shapes are 

obtained for the problem. Finally, it is worth mentioning that at 
= 1 , the classical Benney-Luke equation is recovered, which 

shows that clearly these reliable methods would give some of the 

exact analytical solutions obtained in [3]. 

6. Conclusion 

In conclusion, the conformable space-time fractional Benney-

Luke equation is extensively examined in this study by employing 

two reliable analytical methods. The first method was the 

powerful Kudryashov method that gives exponential function 

solutions while the second method was the modified extended 

than expansion method with the Riccati differential equation and 

yields different trigonometric and hyperbolic function solutions, 

respectively. Thus, the method can be used in treating various 
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nonlinear space-time fractional differential equations. Finally, the 

graphs of all solutions are depicted for visualization. 
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