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Abstract 
  

With reference to ‘reciprocal’ of the strong coupling constant and ‘reduced Compton's wavelength’ of the nucleon, we make an attempt 

to understand the background of nuclear charge radius, binding energy and stability. 
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1. Introduction 

The modern theory of strong interaction is quantum chromo dy-

namics (QCD) [1]. It explores baryons and mesons in broad view 

with 6 quarks and 8 gluons. According to QCD, the four important 

properties of strong interaction are: 1) color charge; 2) confine-

ment; 3) asymptotic freedom [2]; 4) short-range nature (<10-15 m). 

Color charge is assumed to be responsible for the strong force to 

act on quarks via the force carrying agent, gluon. Experimentally 

it is well established that, strength of strong force depends on the 

energy through the interaction or the distance between particles. 

At lower energies or longer distances: a) color charge strength 

increase; b) strong force becomes ‘stronger’; c) nucleons can be 

considered as fundamental nuclear particles and quarks seem to be 

strongly bound within the nucleons leading to ‘Quark confine-

ment’. At high energies or short distances: a) color charge strength 

decreases; b) strong force gets ‘weaker’;3) colliding protons gen-

erate ‘scattered free quarks leading to ‘Quark Asymptotic free-

dom’. Based on these points, low energy nuclear scientists assume 

‘strong interaction’ as a strange nuclear interaction associated with 

binding of nucleons and implications and its implications were not 

considered. High-energy nuclear scientists consider nucleons as 

composite states of quarks and try to understand the nature and 

strength of strong interaction at sub nuclear level.  

At this juncture, one important question to be answered and re-

viewed at the basic level is: How to understand nuclear interac-

tions in terms of sub nuclear interactions? Unfortunately, the fa-

mous nuclear models like, Liquid drop model and Fermi's gas 

model [3-6] are lagging in answering this question. To find a way, 

we would like to suggest that, by implementing the ‘strong cou-

pling constant’  0.1186 ,
s

  in low energy nuclear physics, nucle-

ar binding energy and stability can be understood. In this new 

direction, we have developed interesting concepts and produced 

many semi empirical relations [7-9]. Even though it is in its bud-

ding stage, our model seems to be simple and realistic compared 

to the new integrated model proposed by N. Ghahramany et al 

[10-12]. It needs further study at a fundamental level.  

2. Role of the strong coupling constant in low 

energy nuclear physics 

We propose the following four assumptions.  

1) Nuclear binding energy can be understood with a single en-

ergy coefficient associated with ‘reciprocal’ of the strong 

coupling constant.  

2) Characteristic nuclear radius can be expressed as, 
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 Seem to play a crucial role in 

understanding beta stability line and nuclear binding energy. 

3. About the semi empirical mass formula 

Let A  be the total number of nucleons, Z the number of protons 

and N  the number of neutrons. According to the semi-empirical 

mass formula (SEMF), nuclear binding energy:  
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Here 
v

a = volume energy coefficient, 
s

a is the surface energy co-

efficient, 
c

a is the coulomb energy coefficient, 
a

a  is the asym-

metry energy coefficient and 
p

a  is the pairing energy coefficient. 

If we consider the sum of the volume energy, surface energy, cou-

lomb energy, asymmetry energy and pairing energy, then the pic-

ture of a nucleus as a drop of incompressible liquid roughly ac-

counts for the observed variation of binding energy of the nucleus. 
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By maximizing  ,B A Z  with respect to Z , one can find the 

number of protons Z of the stable nucleus of atomic weight A  as,  

 
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By substituting the above value of Z  back into B  one obtains 

the binding energy as a function of the atomic weight,  .B A  

Maximizing   /B A A  with respect to A gives the nucleus which 

is most strongly bound or most stable.  

4. Beta stability line with respect to strong 

coupling constant 

If 0.1186,
s

  for Z >8, close to the line of beta stability, 

for Z >8,  
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5. Beta stability line with respect to nucleon 

mass difference 

With reference to nucleon and electron rest masses, we noticed 

that,  
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Based on this observation, beta stability line can be understood 

with the following empirical relations.  
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Based on these relations,  
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6. Relations for understanding nuclear bind-

ing energy 

Based on the new integrated model proposed by N. Ghahramany 

et al [10-12] and with reference to relation (7), it is possible to 

show that, for  40 to 83 ,Z   close to the beta stability line,  
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Based on this strange and simple relation and with reference to our 

recent publications [8], [9], close to the beta stability line, numeri-

cally it is possible to show that,  for Z  24 ,  if 
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It is for further study. 

 For Z  24 ,  binding energy per nucleon can be expressed as:  
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a) See table 1 for nuclear binding energy of stable and unstable 

isotopes of Z=23 to 100 estimated from relations (7) and 

(10). 

b) See table 2 for nuclear binding energy of natural isotopes of 

Z=30, 40, 50, 60, 70, 80 and 92 estimated from relation (10). 

c) See table 3 for nuclear binding energy of natural isotopes of 

Z=25 to 83 estimated from relation (10). 

 
 

Table 1: Nuclear Binding Energy of Z = 23 To 100 Estimated From Relations (7) and (10) 

Proton  

number 

Mass  

number 

Neutron  

number 

Estimated  

binding energy(MeV) 

Actual[10] or reference [4]  

binding energy (MeV) 

Error  

(MeV) 

23 49 26 431.1 426.34 -4.7 

24 52 28 457.6 456.349 -1.2 

25 54 29 475.1 472.33 -2.8 

26 56 30 492.6 492.258 -0.4 

27 59 32 518.8 517.313 -1.5 

28 61 33 536.1 534.666 -1.4 
29 63 34 553.4 551.385 -2.0 

30 66 36 579.2 578.136 -1.1 

31 68 37 596.3 590.61 -5.7 
32 70 38 613.3 610.521 -2.8 

33 73 40 638.8 634.34 -4.5 

34 75 41 655.7 651.02 -4.7 
35 78 43 680.9 676.11 -4.8 

36 80 44 697.6 695.434 -2.2 
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37 83 46 722.6 720.46 -2.1 

38 85 47 739.1 737.85 -1.3 

39 88 49 763.9 763.88 0.0 

40 90 50 780.2 783.893 3.7 

41 93 52 804.7 805.765 1.1 
42 95 53 820.9 821.625 0.7 

43 98 55 845.1 844.4 -0.7 

44 100 56 861.1 861.928 0.8 
45 103 58 885.1 884.163 -0.9 

46 105 59 900.9 899.914 -1.0 

47 108 61 924.7 922.2 -2.5 
48 111 63 948.2 947.622 -0.6 

49 113 64 963.8 963.094 -0.7 

50 116 66 987.1 988.684 1.6 
51 118 67 1002.5 1000.48 -2.0 

52 121 69 1025.5 1024.43 -1.1 

53 124 71 1048.5 1046.32 -2.1 
54 126 72 1063.5 1063.909 0.4 

55 129 74 1086.2 1085.08 -1.1 

56 132 76 1108.7 1110.038 1.4 
57 135 78 1131.0 1131.00 0.0 

58 137 79 1145.7 1145.7 0.0 

59 140 81 1167.8 1168.67 0.9 
60 143 83 1189.7 1191.266 1.5 

61 146 85 1211.5 1209.52 -2.0 

62 148 86 1225.8 1225.392 -0.4 
63 151 88 1247.3 1244.141 -3.2 

64 154 90 1268.7 1266.627 -2.1 

65 157 92 1289.9 1287.38 -2.5 
66 160 94 1311.0 1309.455 -1.5 

67 162 95 1324.7 1321.18 -3.6 

68 165 97 1345.5 1343.08 -2.5 
69 168 99 1366.2 1363.31 -2.9 

70 171 101 1386.7 1384.744 -1.9 

71 174 103 1407.0 1404.44 -2.6 

72 177 105 1427.2 1425.185 -2.0 

73 180 107 1447.2 1444.663 -2.6 
74 183 109 1467.1 1465.525 -1.6 

75 186 111 1486.8 1484.63 -2.2 

76 189 113 1506.4 1505.007 -1.4 
77 192 115 1525.8 1523.81 -2.0 

78 195 117 1545.0 1545.682 0.7 

79 198 119 1564.1 1564.94 0.8 
80 201 121 1583.1 1587.411 4.3 

81 204 123 1601.9 1606.87 5.0 

82 207 125 1620.5 1629.063 8.6 
83 210 127 1639.0 1643.94 5.0 

84 213 129 1657.3 1659.72 2.4 

85 216 131 1675.4 1673.42 -2.0 
86 219 133 1693.5 1690.59 -2.9 

87 222 135 1711.3 1706.49 -4.8 

88 225 137 1729.0 1724.18 -4.8 

89 228 139 1746.6 1740.67 -5.9 

90 231 141 1763.9 1759.14 -4.8 

91 234 143 1781.2 1776.08 -5.1 
92 238 146 1804.2 1801.69 -2.6 

93 241 148 1821.1 1817.31 -3.8 

94 244 150 1837.8 1835.45 -2.4 
95 247 152 1854.4 1851.73 -2.7 

96 250 154 1870.8 1868.97 -1.8 

97 254 157 1892.8 1888.79 -4.0 
98 257 159 1908.9 1906.19 -2.7 

99 260 161 1924.8 1922.2 -2.6 

100 263 163 1940.5 1939.52 -1.0 

 
Table 2: Nuclear Binding Energy of Natural Isotopes of Z =30, 40, 50, 60, 70, 80, 92 Estimated from Relation (10) 

Proton  
number 

Mass 
number 

Neutron  
number 

Estimated binding energy 
(MeV) 

Actual [10] binding energy  
(MeV) 

Error 
(MeV) 

30 64 34 561.9 559.098 -2.83 

30 66 36 579.2 578.136 -1.05 
30 67 37 587.8 585.189 -2.62 

30 68 38 596.4 595.387 -1.03 

30 70 40 613.6 611.087 -2.53 
40 90 50 780.2 783.893 3.68 

40 91 51 788.5 791.087 2.62 

40 92 52 796.7 799.722 3.02 
40 94 54 813.2 814.677 1.52 

40 96 56 829.6 828.996 -0.59 

50 112 62 955.6 953.532 -2.11 
50 114 64 971.4 971.574 0.18 
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50 115 65 979.3 979.121 -0.13 

50 116 66 987.1 988.684 1.58 

50 117 67 995.0 995.627 0.67 

50 118 68 1002.8 1004.955 2.16 

50 119 69 1010.6 1011.438 0.82 
50 120 70 1018.4 1020.546 2.11 

50 122 72 1034.1 1035.53 1.47 

50 124 74 1049.6 1049.963 0.32 
60 142 82 1182.3 1185.142 2.84 

60 143 83 1189.7 1191.266 1.53 

60 144 84 1197.2 1199.083 1.92 
60 145 85 1204.6 1204.838 0.25 

60 146 86 1212.0 1212.403 0.41 

60 148 88 1226.8 1225.028 -1.76 
60 150 90 1241.6 1237.448 -4.11 

70 168 98 1365.6 1362.793 -2.85 

70 170 100 1379.7 1378.13 -1.55 
70 171 101 1386.7 1384.744 -1.94 

70 172 102 1393.7 1392.764 -0.91 

70 173 103 1400.7 1399.131 -1.53 
70 174 104 1407.6 1406.595 -1.05 

70 176 106 1421.6 1419.283 -2.29 

80 196 116 1550.2 1551.218 1.00 
80 198 118 1563.4 1566.489 3.10 

80 199 119 1570.0 1573.153 3.20 

80 200 120 1576.5 1581.181 4.66 
80 201 121 1583.1 1587.411 4.34 

80 202 122 1589.6 1595.165 5.55 

80 204 124 1602.7 1608.652 5.98 
92 234 142 1780.2 1778.567 -1.63 

92 235 143 1786.2 1783.864 -2.36 

92 238 146 1804.2 1801.69 -2.56 

 
Table 3: Nuclear Binding Energy of Natural Isotopes of Z = 25 To83 Estimated from Relation (10) 

Proton  

number 

Mass  

number 

Neutron  

number 

Estimated binding energy 

(MeV) 

Actual [10] binding energy 

 (MeV) 

Error 

(MeV) 

25 55 30 483.9 482.075 -1.84 

27 59 32 518.8 517.313 -1.45 
29 65 36 570.7 569.212 -1.46 

31 69 38 604.9 601.996 -2.88 

33 75 42 655.8 652.564 -3.26 
35 79 44 689.3 686.321 -3.03 

37 87 50 756.0 757.856 1.87 

39 89 50 772.1 775.538 3.39 
41 93 52 804.7 805.765 1.06 

45 103 58 885.1 884.163 -0.95 

47 109 62 932.6 931.727 -0.91 
49 115 66 979.6 979.404 -0.15 

51 123 72 1041.4 1042.097 0.66 
53 127 74 1071.6 1072.577 0.99 

55 133 78 1116.7 1118.528 1.83 

57 139 82 1161.2 1164.551 3.36 

59 141 82 1175.3 1177.919 2.64 

63 153 90 1261.9 1258.998 -2.93 

65 159 94 1304.3 1302.027 -2.30 
67 165 98 1346.1 1344.256 -1.86 

69 169 100 1373.2 1371.352 -1.88 

71 175 104 1414.0 1412.106 -1.86 
73 181 108 1454.1 1452.24 -1.84 

75 187 112 1493.6 1491.877 -1.70 

77 193 116 1532.5 1532.058 -0.40 
79 197 118 1557.5 1559.386 1.86 

81 203 122 1595.3 1600.87 5.52 

83 209 126 1632.5 1640.23 7.68 

 

With an error bar of 5 MeV, to some extent, relation (10) can be 

applied to light atomic nuclides and for Z = 3 to 100, modified 

relation can be expressed as,  
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Estimated data can be compared with first four terms of the semi 

empirical mass formula. 

7. Discussion 

a) By considering coulombic repulsions and with reference to 

our earlier publications [7], [8], close to the beta stability 

line, binding energy can also be expressed with: 
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b) By fine tuning the values of 
 0

 and 
s

R
and by considering 

even-odd corrections and shell corrections, accuracy can be 

improved. 

c) With a suitable mathematical relation and with a single en-

ergy coefficient lying in between (8.9 to 10) MeV, it is pos-

sible to estimate nuclear binding energy. 

d) Close to the beta stability line, ignoring the pairing energy 

term, semi empirical mass formula energy coefficients can 

be expressed as: 
3
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8. Conclusion 

Understanding and estimating nuclear binding energy and stability 

with ‘sub-nuclear strong interaction’ seems to be quite interesting 

and needs a serious consideration at a fundamental level. We be-

lieve that, results obtained from above relations are simple to un-

derstand and seem to be more physical and relatively closer to the 

experimental data. With further research, current nuclear models 

and strong interaction concepts, pertaining to high-energy physics 

can be studied in a unified manner, and a realistic nuclear model 

can be developed.  
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