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Abstract 
 

In this present work, we have established exact solutions for (2+1) and (3+1) dimensional extended shallow-water wave equations in-

volving parameters by applying the improved (G’/G) -expansion method. Abundant traveling wave solutions with arbitrary parameter are 

successfully obtained by this method, and these wave solutions are expressed in terms of hyperbolic, trigonometric, and rational func-

tions. The improved (G’/G) -expansion method is simple and powerful mathematical technique for constructing traveling wave, solitary 

wave, and periodic wave solutions of the nonlinear evaluation equations which arise from application in engineering and any other ap-

plied sciences. We also present the 3D graphical description of the obtained solutions for different cases with the aid of MAPLE 17. 
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1. Introduction 

A great deal of work has been carried out in order to determine 

exact traveling wave solutions for nonlinear evaluation equations 

(NLEEs) in all areas of Science and Engineering. In the nonlinear 

sciences, it is well known that many NLEEs are widely used as to 

describe the complex physical phenomena, such as Plasma phys-

ics, Chemical physics, Solid-state physics, Chemical kinematics, 

Biology, Optical fibers, Fluid mechanics, etc., It is well known 

that searching for an exact solution of nonlinear evolution equa-

tion arising in mathematical physics plays an important role in the 

study of nonlinear physical phenomena. In the recent past, many 

researchers have implemented various analytical methods [1-24] 

to seek traveling wave solutions of different nonlinear partial dif-

ferential equations. Many powerful methods have been successful-

ly developed by diverse groups of mathematicians and physicists, 

such as, Hirota’s bilinear method [1], the tanh-function method 

[2], [3], the extended than-function method [4], the exp -function 

method [5-7], sine–cosine method [8], the Inverse scattering trans-

forms [9], the Jacobi elliptic function expansion [10], [11], the 

homogeneous balance method [12], the Homotopy perturbation 

methods [13], auxiliary equation method [14], the first integral 

method [15-17], the tanh-coth method [18], the Cole-Holf trans-

formation method [19], the  '/G G -expansion method [20-22], 

the improved  '/G G -expansion method [23], the Enhance 

 '/G G -expansion method [24] and so on. The improved 

 '/G G -expansion method [23] is a direct and effective algebraic 

method for handling nonlinear evaluations equations, and the au-

thor [23] have been applied the improved  '/G G -expansion 

method for solving modified Korteweg–de Vries equation.  

The objective of this study is to apply the improved  '/G G -

expansion method to find the exact traveling wave solutions of the 

 2 1  and  3 1  dimensional extended shallow-water wave 

equations involving parameters. The extended model of shallow-

water waves equations important partial differential equations of 

nonlinear dispersive waves. The (2+1) dimensional shallow-water 

wave equations [7], [22-23]. 

 

2 4 0
xt xxxy xx y x xy

u u u u u u                                                              (1) 

 

3 3 0
yt xxxy xx y x xy

u u u u u u                                                              (2) 

 

Were studied. Both equations reduce to potential KdV equation 

for y x .The difference between the two models (1) and (2) is 

that  replaces x y  in the term 
xt

u  and in the coefficients of the 

other terms. The (3+1) dimensional shallow water wave equations 

[7], [22-23] 

 

2( ) (4 ) 0
xzt xxxyz xx yz y xxz x xyz xz xy
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6 6 0
yzt xxxyz x xyz xz xy

u u u u u u                                                             (4) 

 
Were studied. Both equations reduce to potential KdV equation 

for y x .The difference between the two models (3) and 4) is 

that  replaces x y  in the term
xzt

u .  

In this present work, we will solve four extended  2 1  and 

 3 1  dimensional shallow water wave equations in that were 

solved by authors [7], [18-19], [22]. 

 

3 3 0
yt xxxy xx y x xy xy

u u u u u u u                                                      (5) 

 

2 4 0
xt xxxy xx y x xy xy

u u u u u u u                                                     (6) 

 

6 6 0
yzt xxxyz x xyz xz xy xyz

u u u u u u u                                                  (7) 

 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJPR


22 International Journal of Physical Research 

 

   2 4 0
xzt xxxyz xx yz y xxz x xyz xz xy xyz

u u u u u u u u u u u                       (8) 

 

These shallow-water wave equations play a major role in the study 

of nonlinear dispersive waves. The general idea of dispersive 

waves oriented from the problem of water waves. The shallow-

water wave equations describe the evaluation of incompressible 

flow, neglecting density change along the depth; shallow-water 

wave equations are applicable to cases where the horizontal scale 

of the flow is much bigger than the depth of fluid [21]. 

The article is arranged as follows: In section 2, the methodology is 

discussed. In section 3, we apply this method to solve the nonline-

ar evaluation equations point out above. We will discuss the 

solution of the result and its discussion in section 4. In section 5, 

we present the graphical representation, and finally we conclude 

this article in section 6. 

2. Methodology 

Suppose the general nonlinear partial differential equation in three 

independent variables x   and t  is given by  

 

 , , , , , , , , ... 0
t x y xy xx xt yt tt

N u u u u u u u u u                                                 (9) 

 

Where  , ,u u x y t  is an unknown function, N is a polynomial 

in  , ,u u x y t  and the subscripts signify the partial derivatives 

and the nonlinear term are involved. 

The main steps of the improved  '/G G -expansion method as 

follows: 

Step 1: Consider the traveling wave variable  

 

   , , ,u x y t u x y ct                                                          (10) 

 

Where c  is the speed of the traveling wave. 

Now using equation (10), the equation (9) is transformed into an 

ordinary differential equation for  u u   in the form 

 

 , ', '', ''',... 0P u u u u                                                                       (11) 

 

Where P is a polynomial in  u  and its total derivatives. The 

superscripts stand for the ordinary derivatives with respect to  . 

Step 2: Suppose that the traveling waves solution of equation (12) 

can be expressed by a polynomial in  F  as the following form:  

 

       
0 1

n ni i

i i
i i

u m F m F    


 

                                        (12) 

 

Where  
 
 

'
,

n

G
F

G


 


 and 

n
  are not zero simultaneously. 

Also, the function  G   is the solution of the linear ordinary dif-

ferential equation 

 

     ''' 0G G G                                                                (13) 

 

Where 
2

2
G''

d G

d
 , '

dG
G

d
  and ,   are real constants to be de-

termined later, n  is a positive integer to be determined later and 
n  can be determined by considering the homogeneous balance 

between the highest order derivatives and the highest order non-

linear terms appearing in ODE equation (11). 

The solutions of equation (13) can be written as follows: 

2.1. Hyperbolic function solution: (when 2 4 0     ) 

1
coth

2 2 2
F A




  
    

 
 

 

2
tanh

2 2 2
F A




  
    

 
 

2.2. Trigonometric function solution: (when 2 4 0     ) 

 

3
cot

2 2 2
F A




  
    

 
 

 

4
tan

2 2 2
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


  
    

 
 

2.3. Rational function solution: (when 2 4 0     ) 

5

2

B
F

A B




 


 

 

Step 3: Substituting equation (12) into (11) and using (13), with 

the value of n  obtained in step 2, then we obtain polynomials in 

 
i

F   and  
i

F 


  0,1,2,3,...i  , separate all terms with same 

order of  
i

F  and  
i

F 


, then equating each coefficient of the 

polynomials to zero, yield a system of algebraic equations for 
n

 , 

n
 , c ,   and  . 

Step 4: Solve the system of algebraic equations which are found in 

step - 3 with the aid of algebraic software Maple to obtain values 

for , ,
n n

m   and c . 

Step 5: Substitute obtained values in step - 4, in equation (12) 

along with equation (13) with the value of n , we obtain some 

exact traveling wave solutions of the nonlinear equation (9).  

3. Application of the method 

In this section, we implement the method described in section 2 to 

find the exact analytical solutions of (2+1) dimensional first and 

second extended shallow water wave equations via improved 

 '/G G -expansion method. 

3.1. The first extended shallow water wave equation 

In this present work, we consider the extended shallow water 

wave equation in (2+1) dimensions of the following form [7], [22]. 

 

2 4 0
xt xxxy xx y x xy xy

u u u u u u u                                                    (14) 

 

Where   is a non-zero constant. According to the method by 

using the traveling wave variable  

 

   , , ,u x t u kx ry ct                                                           (15) 

 

Where c is the speed of the traveling wave, transform equation 

(14) into an ordinary differential equation, integrating ODE and 

neglecting constants of integration, we have 

 

   
22 ''' ' 3 ' 0k ru r c u kr u                                                        (16) 

 

Where the prime denotes differential with respect to  . Balancing 

'''u  with  
2

'u  , we get  3 2 1n n    Hence 1n   

Hence for 1n   Eq. (12) reduces to 
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  1

0 1 1
( ) ( )u m F m F                                                         (17) 

 

Now substituting Eq. (17) along with Eq. (13) into Eq. (16), we 

get a polynomial in  F  .Equating the coefficient of same power 

of  F  , we attain the following system of algebraic equations: 

 
2 2

1 1
6 3 0k r kr    

 
2 2 2 2

1 1 1 1
24 12 12 6 0k mr k r kmr kr        

 
2 2 2 2 2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 1 1 1 1

36 48 7 18 24

3 8 6 6 0

k m r k mr k r km r kmr

kr k r k r kr r c

     

        

   

      
 

 
2 3 2 2 2 2 2 3 3 2

1 1 1 1 1

2 2 2 2 2 2

1 1 1 1

2 2

1 1 1 1 1 1

1 1 1 1

24 72 28 12

36 12 32 8

24 6 12 12

4 4 0

k m r k m r k mr k r km r

km r kmr k m r k r

km r k r kmr kr

mr r a cm c

      

      

       

   

   

   

   

    

  

 
4 2 2 2 2 4 2 2 2 2

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1 1

2 2 2

1 1 1 1 1 1

2 3 2 2 2

1 1 1 1 1 1

2 3 2 2 2

1 1

3 3 6 6 2

2 6 4 6

3 32 24

24 12 48 42

4 48

krm kr k rm k rm k r

k r k r m r cm r cm

c r kr c k rm krm

krm kr k rm k rm

k rm k rm k r

      

       

     

      

  

   

     

     

   

   2 2

1 1

3 2 2 2 2 2 2

1 1 1 1

2 2

1 1 1 1

6

4 24 18 36

6 6 0

k rm

rm krm krm krm

krm kr

  

    

    



   

  

 

 
2 2 3 3 2

1 1 1 1 1 1

3

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 1 1 1 1

2 2 4 2 3 2 2 2 3

1 1 1 1 1

2 3 2

1

6 4 6 4 2

4 2 24 12

48 4 36 12

12 12 28 6

32 12

kr k r m r cm cm mr

r cm cm c krm kr

k rm k rm krm krm

krm k rm k rm k rm

k rm k

      

       

     

       



    

     

   

   

  2 2 2 2 2

1 1 1

2 2 2 4 2

1 1 1 1 1

3 2 2 3 2 2 2

1 1 1

8 10

8 8 6 4 6

12 24 12 0

rm k rm k rm

k rm k r m r m r krm

krm krm krm

    

     

    



    

   

 

 
2 2 2 2 2 4 3 2

1 1 1 1 1 1

2 4 2

1 1 1 1 1 1 1

2 2 3 2 2 2

1 1 1 1 1

2 3 2 2 2 2

1 1 1 1 1 1

2 4 2 2 3 3

1 1

3 6 8 4 6

2 24

12 32 6

20 24 6 6

7 4

kr kr k r m r cm cm

m r cm r krm cm cm

c krm k rm k rm

k rm krm krm kr

k rm k rm

       

       

     

       

   

    

     

   

   

  2 4 2 2 2

1 1

2 2 2 2 3 2 2 2 2 3

1 1 1 1 1

2 4 2 2 4 2

1 1 1 1

2 2 2

1

8 12

7 4 8 7 4

6 2 3 6

18 0

k rm k rm

k rm k rm k rm k r m r

m r mr krm krm

krm

  

       

      

 

 

    

    

 

 

 
2 4 3 2 2 2 2 2 3

1 1 1 1

2 4 3 2 2 4 2 2

1 1 1 1

3 3 2 2 4 2

1 1 1 1

2 2 2 3 2

1 1 1 1 1

2 2 2 2

1 1 1 1 1

4

8 12 6

8 10

4 4 12 6

12 2 8

8 12 2

k rm krm kr k rm

k rm k rm cm k rm

m r cm k r krm

krm m r cm k rm

k rm krm cm m r

m r

     

      

     

      

     

  

   

    

   

  

 2 3 2

1 1
4 0k rm   

 

 
2 2 2 3 2 2 4 2

1 1 1 1 1

4 2 2 2 2 2 4 2

1 1 1

2 2 2 2 2 2 2 2

1 1 1

4 4 2

1 1 1

6 6

3 3 2

6 2

0

krm k r cm k rm

krm kr k rm

k rm k rm k rm

cm m r m r

       

     

     

    

   

   

  

  

 

 

Solving the above system of equations for 
0 1 1
, , ,m   and c  with 

MAPLE 17, we get the following values: 

Set 1: 
2 2 2

0 0

2

1 1

4 , ,

0, 2 2 2

c k r k r r m m

km km k

    

   

    

   
                                           (18) 

Set 2: 

 

2 2 2

0 0

2

1 1

1
4 16 , , ,

2

1
2 , 2

2

c k r k r r m

k k k

     

   

    

    

                                   (19) 

 

Set 3: 

 

2 2 2

0 0

2

1 1

1
4 16 , ,

2

1
2 , 2

2

c k r k r r m

k k k

     

   

    

    

                                      (20) 

3.1.1. Hyperbolic function solutions 

When, 2 4 0      we obtain the hyperbolic function solutions 

of Eq. (14) 

Family 1: 

 

 1 0

1 1 1
2 coth

2 2 2
u k m A   

  
        

  
                        (21) 

 

 2 0

1 1 1
2 tanh

2 2 2
u k m A   

  
        

  
                       (22) 

 

Where  2 2 24kx ry k r k r r t         

 

Family 2:  

 

 
2

3 0

2 2 2

1 1 1
coth

2 2 2

km km k
u

m A

 
 

 

 
 

 
     

 

                               (23) 

 

 
2

4 0

2 2 2

1 1 1
tanh

2 2 2

km km k
u

m A

 
 

 

 
 

 
     

 

                               (24) 

 

Where  2 2 24kx ry k r k r r t         

 

Family 3: 

 

 5 0

2

1
coth

2

1
2 2

2
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2

u k A

k k

A

  

 



 
     

 

 
  
 

 
   

 

                                               (25) 

 

 6 0

2
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2

1
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2

1
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2

u k A

k k

A

  
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
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 
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  
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 
   

 

                                               (26) 

Where  2 2 24 16kx ry k r k r r t         

3.1.2. Trigonometric function solutions 

When 2 4 0      , we obtain the trigonometric function solu-

tions of Eq. (14) 

Family 4: 

 

 7 0

1 1 1
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2 2 2
u k m A   
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  
                     (27) 
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 8 0
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u k m A   

  
        

  
                      (28) 

 

Where  2 2 24kx ry k r k r r t         

 

Family 5: 

 

 
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u
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     

 

                             (29) 

 

 
2

10 0

2 2 2

1 1 1
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2 2 2

km km k
u

m A
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 
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     

 

                            (30) 

 

Where  2 2 24kx ry k r k r r t         

 

Family 6: 
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
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 

 
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   

 

                                            (31) 
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2

1
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2
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2

1
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2

u k A

k k

A

  

 



 
     

 

 
  
 

 
   

 

                                          (32) 

 

Where  2 2 24 16kx ry k r k r r t         

3.1.3. Rational function solutions 

When 2 4 0    , we obtain the following solutions of Eq. (14). 

Family 7:  

 

 13 0

1
2

2

B
u k m

B A
  



 
    

 
                                               (33) 

 

Where  2 2 24kx ry k r k r r t         

Family 8: 

 

 
2
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2 2 2

1

2

km km k
u

B
m

B A

 
 




 
 

 


                                                  (34) 

 

Where  2 2 24kx ry k r k r r t         

 

Family 9: 

 

 
 2

15 0

1
2

2 2
k k B A
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u

B A B

  

 


 
   
   


                           (35) 

 

Where  2 2 24 16kx ry k r k r r t         

3.2. The second extended shallow water wave equation 

In this section, we consider the extended shallow water wave 

equation in (2+1) dimensions of the following form [7], [22]. 

 

3 3 0
yt xxxy xx y x xy xy

u u u u u u u                                                    (36) 

 

Where   is a non-zero constant. According to the method by 

using Eq. (15), transform equation (36) into an ordinary differen-

tial equation, integrating ODE and neglecting constants of integra-

tion we have: 

 

   
23 2''' ' 3 ' 0k u k c u k u                                                       (37) 

 

Where the prime denotes differential with respect to  . Balancing 

'''u  with  
2

'u  , we get  3 2 1n n    hence 1n  .Hence for 

1n   Eq. (12) reduces to 

 

  1

0 1 1
( ) ( )u m F m F                                                        (38) 

 

Now substituting Eq. (38) along with Eq. (14) into Eq. (37), we 

get a polynomial in  F  .Equating the coefficient of same power 

of  F  , we attain a system of algebraic equations that consists of 

nine algebraic equations ( for simplicity, we omitted to display 

them). Solving these systems of equations for 
0 1 1
, , ,m   and c  

with the aid of MAPLE 17, the following sets of solutions are 

obtained: 

Set- 01:  

 
3 2 3

0 0 1

2

1

4 , , , 0,

2 2 2

c k k k m m

km km k

     

  

     

  
                                  (39) 

 

Set- 02:  

 
3 2 3

0 0 1 1
4 , , , 2 , 0c k k k m m k                               (40) 

 

Set-3: 

 

3 2 3

0 0 1

2

1

1
4 16 , , , 2 ,

2

1
2

2

c k k k m k

k k

      

  

      

  

                        (41) 

3.2.1. Hyperbolic function solutions 

When 2 4 0      we obtain the hyperbolic function solutions 

of Eq. (36). 

Family 1:  

 

 
2
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2 2 2

1 1 1
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2 2 2

km km k
u

m A

 
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 

 
 

 
     

 

                               (42) 

 

 
2
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2 2 2

1 1 1
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2 2 2
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u
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 
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     

 

                               (43) 

 

Where  3 2 34kx ry k k k t         

 

Family 2:  

 

 3 0

1 1 1
2 coth

2 2 2
u k m A   

  
        

  
                        (44) 

 

 4 0

1 1 1
2 tanh

2 2 2
u k m A   

  
        

  
                       (45) 

 

Where  3 2 34kx ry k k k t         

Family 3: 
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2
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A
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
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 

          (46) 
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2
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 
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 
   

 

                                               (47) 

 

Where  3 2 34 16kx ry k k k t         

3.2.2. Trigonometric function solutions 

When 2 4 0      , we obtain the trigonometric function solu-

tions of Eq. (36). 

Family 4: 
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                             (48) 
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                             (49) 

 

Where  3 2 34kx ry k k k t         
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                     (51) 

 

Where  3 2 34kx ry k k k t         
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                                            (52) 
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
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 

                                            (53) 

 

Where  3 2 34 16kx ry k k k t         

3.2.4. Rational function solutions 

When 2 4 0     , we obtain the following solutions of Eq. 

(36). 

Family 7:  
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
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                                                  (54) 

 

Where  3 2 34kx ry k k k t         

 

Family 8: 

 

 14 0

1
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B
u k m

B A
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
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 
                                               (55) 

 

Where  3 2 34kx ry k k k t         

 

Family 9: 

 
 2

15 0

1
2

2 2
k k B A

kB
u

B A B

  

 


 
   
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                           (56) 

 

Where  3 2 34 16kx ry k k k t         

4. Results and discussion 

In this present work, we have solved extended shallow water wave 

equations and found fifteen solutions, but author [22] have found 

only six solutions by using basic  '/G G -expansion method. 

From our observation, we found that if we set 0m   and leave out 

the portion   
1

n i

i
i

m F 




 in our solution, then our obtained 

solution coincides with Biker [22] solution. Hence, we conclude 

that the basic  '/G G -expansion method established by Wang et 

al. [20] is the particular case of the improved  '/G G -expansion 

method. Comparing our obtained results from equations (14) and 

(36), it can be seen that the results are same with Biker [22] solu-

tions when we set 0m   and leave out the portion 

  
1

n i

i
i

m F 




 in our solution. Similarly, for extended (3+1) 

dimensional shallow water wave equations, using the wave varia-

ble kx ry sz ct      equations (7) and (8) must be carried into 

the ordinary differential equations (16) and (37) respectively. Thus 

the improved  '/G G -expansion method is applied to these equa-

tions, it can be seen that the obtained solutions are the same with 

solutions of equations (16) and (37).From our obtained solutions 

we observe that solutions from family 1 to family 3 are hyperbolic 

function solutions for 2 4 0    , from Family 4 to Family 6 are 

trigonometric function solutions for 2 4 0    and from Family 7 

to Family 9 are rational function solutions for 2 4 0   . When 

the parameters are taken as special values, the solitary wave solu-

tions and periodic wave solutions are derived from the hyperbolic 

function solution and trigonometric function solution, respective-

ly. 



26 International Journal of Physical Research 

 

5. Graphical representations 

In this section, we will discuss about the nature of some ob-

tained solutions of the equation (14) and (36) by selecting par-

ticular values of the parameters existing in the exact solutions 

use the mathematical software Maple 17, which are represent-

ed in Fig. 1-9 

 
Fig. 1: 3D Graphics (Soliton Profile) of Solutions Eq. (21) when 

0
3, 0.8, 2, 5, 3, 1, 1, 0, 5k r m y A            and 

.5 , 1x t    

 

 

 
Fig. 2: 3D Graphics (Kink Profile) of Solutions Eq. (24) when 

0
3, 0.8, 2, 5, 3, 1, 1, 0, 5k r m y A            and 

.5 , 1x t   . 

 

 
Fig. 3: 3D Graphics (Periodic Profile) of Solutions Eq. (27) when 

0
3, 1, 1, 2, 1, 2, 0.5, 0, 5k r m y A            and 

5 , 5x t   . 

 

 
Fig. 4: 3D Graphics (Periodic Profile) of Solutions Eq. (49) when 

0
3, 1, 1, 3, 1, 2, 0.5, 0, 5k r m y A            and 

5 , 5x t   . 

 
Fig. 5: 3D Graphics (Periodic Profile) of Solutions Eq. (28) when 

0
5, .8, 1, 2, .2, 3, 1, , 0k r m y A           and 2 , 2x t     

 

 
Fig. 6: 3D Graphics (Soliton Profile) of Solutions Eq. (53) when 

0
3, 1, 1, 3, 1, 2, 0.5, 0, 5k r m y A            and 

5 , 5x t   . 

 

 
Fig. 7: 3D Graphics (Soliton Profile) of Solutions Eq. (55) 

when
0

3, 1.5, 0.5, 3, 2, 1, 1, 0, 5, 1k r m y A B             a

nd 5 , 5x t   . 
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Fig. 8: 3D Graphics (Singular Kink Profile) of Solutions Eq. (34) when 

0
3, 1.5, 0.5, 1, 2, 1, 1, 0, 1, 1k r m y A B             And

5 , 5x t   . 

 

 
Fig. 9: 3D Graphics (Singular Kink Profile) of Solutions Eq. (56) when 

0
3, 1.5, 0.5, 3, 2, 1, 1, 0, 5, 1k r m y A B             and 

5 , 5x t   . 

6. Conclusion 

In this paper, we have examined the exact solutions for (2+1) and 

(3+1) dimensional extended shallow water wave equations involv-

ing parameters by applying the improved  '/G G -expansion 

method. Some of these results are in agreement with the results 

reported by others in the literature, and new results are formally 

developed in this work. The solution procedure is very simple and 

the travelling wave solutions are expressed in terms of hyperbolic 

functions, trigonometric functions and rational functions. It is 

shown that the improved  '/G G -expansion method provides a 

very effective and powerful mathematical tool for solving nonlin-

ear equations in mathematical physics. 
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