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Abstract 
 

In this paper, using the methods of ansatz, sine-cosine and He’s semi-inverse variation, non-topological 1-soliton solution to Resonant 

Nonlinear Schrodinger Equation with Kerr law nonlinearity is obtained. The results show that these methods are very effective ones for 

finding exact solutions to various types of nonlinear evolution equations appearing in the studies of science and engineering. 
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1. Introduction 

The Resonant Nonlinear Schrodinger Equation [1, 2] is encoun-

tered in the studies of Nonlinear Fiber Optics, Fluid Physics and 

Plasma Physics. The dimensionless form of this equation is often 

written in the form  

 

𝑖
𝜕𝛹

𝜕𝑡
+  𝛼

𝜕2𝛹

𝜕𝑥2  +  𝛽𝐹(|𝛹|2)𝛹 +  𝛾 {
𝜕2|𝛹|

𝜕𝑥2

|𝛹|
}  𝛹 = 0                      (1) 

 

where the first term represents the temporal evolution term, the 

second term represents the Group Velocity Dispersion (GVD) 

term, the third term represents the nonlinearity term and the fourth 

term represents the resonant nonlinearity term. Moreover, 𝑖 =

 √(− 1) is the imaginary number, α is the coefficient of GVD, β is 

the coefficient of nonlinearity, γ is the coefficient of resonant non-

linearity and 𝐹(𝑠) is a function defining the type of nonlinearity. 

The dependent variable 𝛹(𝑥, 𝑡) is a complex valued wave profile 

and the independent variables x and t represent dimensionless 

distance in the direction of propagation and the retarded time in 

the GVD frame. For Kerr law nonlinearity, we have, 𝐹(𝑠) = 𝑠 

and, hence, we write equation (1) as  

 

𝑖
𝜕𝛹

𝜕𝑡
 +  𝛼

𝜕2𝛹

𝜕𝑥2  +  𝛽|𝛹|2𝛹 +  𝛾 {
𝜕2|𝛹|

𝜕𝑥2

|𝛹|
} 𝛹 = 0.                           (2) 

 

In the present paper, non-topological 1-soliton solution to equation 

(2) is found out using the methods of ansatz, sine-cosine and He’s 

semi-inverse variation. 

2. Reduction to nonlinear ordinary differential 

equation 

To reduce Eq. (2) to a nonlinear ordinary differential equation 

(NLODE), let us put 

 

𝛹(𝑥, 𝑡) = 𝑢(𝜉)𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡) , 𝜉 = 𝑥 − 𝑣𝑡                                       (3) 

 

where k represents the frequency, ω represents the propagation 

number and v represents the propagation speed of the soliton. 

Using the above transformations, we obtain 
 

       𝑖
𝜕𝛹

𝜕𝑡
 =  𝑖 (− 𝑣

𝑑𝑢

𝑑𝜉
+ 𝑖𝜔𝑢) 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡),                                    (4a)                                       

 

      𝛼
𝜕2𝛹

𝜕𝑥2  =  𝛼 (
𝑑2𝑢

𝑑𝜉2 − 2𝑖𝑘
𝑑𝑢

𝑑𝜉
− 𝑘2𝑢) 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡),                   (4b) 

 

      𝛽|𝛹|2𝛹 =  𝛽𝑢3 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡) ,                                                    (4c) 
 

      𝛾 {
𝜕2|𝛹|

𝜕𝑥2

|𝛹|
} 𝛹 =  𝛾

𝑑2𝑢

𝑑𝜉2  𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡) .                                       (4d) 

 
Substituting Eqs. (4) into Eq. (2), we obtain 
 

  (𝛼 + 𝛾)
𝑑2𝑢

𝑑𝜉2  − 𝑖(𝑣 + 2𝛼𝑘)
𝑑𝑢

𝑑𝜉
− (𝜔 + 𝛼𝑘2)𝑢 + 𝛽𝑢3 = 0.       (5) 

 
Splitting Eq. (5) into real and imaginary parts, we write  

 

Real Part: 

 

 (𝛼 +  𝛾)
𝑑2𝑢

𝑑𝜉2  −  (𝜔 +  𝛼𝑘2)𝑢 +  𝛽𝑢3  = 0,                               (6) 

 
Imaginary part: 
 
       𝑣 =  − 2𝛼𝑘.                                                                                   (7) 
 
Thus, if we solve 𝑢(𝜉) from Eq. (6), we can find the solution of 

Eq. (2) using the transformations (3) together with Eq. (7). 

3. Solution via ansatz method 

In the ansatz method [3 - 5] of finding bright or non-topological 

soliton solution, we assume the solution of Eq. (6) as 

http://creativecommons.org/licenses/by/3.0/
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𝑢(𝜉) = 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉)                                                                   (8) 

 

where A, B, p are parameters to be determined latter. The parame-

ter A is called soliton amplitude and the parameter B is called in-

verse width of soliton. 

Substituting Eq. (8) and its second order derivative into Eq. (6), 

we obtain 

 

(𝛼 +  𝛾)[𝑝2𝐴𝐵2 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉)] –  𝑝(𝑝 + 1)𝐴𝐵2 𝑠𝑒𝑐ℎ𝑝+2(𝐵𝜉)  
 

  − (𝜔 +  𝛼𝑘2) 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉)  +  𝛽𝐴3  𝑠𝑒𝑐ℎ3𝑝(𝐵𝜉)  = 0.             (9) 

 

From Eq. (9), equating the exponents (𝑝 + 2) and 3𝑝, we obtain 

𝑝 = 1. 
Again, from Eq. (9), equating the coefficients of sech3(𝐵𝜉)  to 

zero, we obtain 

 

𝛽𝐴2  =  2(𝛼 +  𝛾)𝐵2   with 𝐴 ≠ 0.                                            (10) 

 

Further, from Eq. (9), equating the coefficient of sech(𝐵𝜉) to zero, 

we obtain 

 

𝐵 =  ± √
𝜔+ 𝛼𝑘2

𝛼+ 𝛾
 .                                                                         (11) 

 

Substitution of Eq. (11) into Eq. (10) yields 

 

𝐴 = ± √
2(𝜔+ 𝛼𝑘2)

𝛽
 .                                                                      (12) 

 

Substituting the values of A, B and p into Eq. (8), we obtain 

 

𝑢(𝜉) = ± √
2(𝜔+ 𝛼𝑘2)

𝛽
 𝑠𝑒𝑐ℎ {(√

𝜔+ 𝛼𝑘2

𝛼+ 𝛾
) 𝜉}                               (13) 

 

Substituting Eq. (13) with the positive coefficient into Eq. (3) and 

recalling the expressions for v and 𝜉, we obtain 

 

𝛹(𝑥, 𝑡)  

 

= √
2(𝜔+ 𝛼𝑘2)

𝛽
[𝑠𝑒𝑐ℎ {(√

𝜔+ 𝛼𝑘2

𝛼+ 𝛾
) (𝑥 + 2𝛼𝑘𝑡)}] 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡).     (14) 

 

Here, Eq. (14) represents Bright or Non-topological 1- soliton 

solution of Resonant Nonlinear Schrodinger Equation with Kerr 

law nonlinearity.  

4. Solution via sine-cosine method 

In the sine-cosine method [6 - 10], the solution of Eq. (6) is as-

sumed as in either of the forms 

        𝑢(𝜉) =  𝐴 𝑠𝑖𝑛𝜆(𝜇𝜉)                                                            (15)  

 

Or, 𝑢(𝜉) =  𝐴 𝑐𝑜𝑠𝜆(𝜇𝜉)                                                             (16) 

 

where in either case, 𝐴, 𝜆 and 𝜇 are parameters to be determined 

latter. 

In the present work, let us choose the cosine form in Eq. (16). 

Substituting Eq. (16) and its second order derivative into Eq. (6), 

we obtain  

(𝛼 +  𝛾) {𝐴𝜆(𝜆 − 1)𝜇2  𝑐𝑜𝑠𝜆−2(𝜇𝜉) − 𝐴𝜆2𝜇2  𝑐𝑜𝑠𝜆(𝜇𝜉)}  

       − (𝜔 +  𝛼𝑘2)𝐴 𝑐𝑜𝑠𝜆(𝜇𝜉) +  𝛽𝐴3  𝑐𝑜𝑠3𝜆(𝜇𝜉) = 0.            (17) 

 

From Eq. (17), equating the exponents (𝜆 − 2) and 3𝜆, we obtain 

 

𝜆 =  −1.  
 

Again, equating the coefficient of cos−3(𝜇𝜉) to zero, we obtain 

2(𝛼 +  𝛾)𝜇2 +  𝛽𝐴2  = 0, with 𝐴 ≠ 0.                                   (18) 

Further, from Eq. (17), equating the coefficient of cos− 1 (𝜇𝜉) to 

zero, we obtain 

 

− (α +  γ)μ2 − (ω +  αk2)  = 0  
 

yielding 

 

𝜇 =  ± 𝑖 √
𝜔 + 𝛼𝑘2

𝛼+ 𝛾
 .                                                                      (19) 

 

Substituting Eq. (19) into Eq. (18), we obtain 

 

𝐴 =  ± √
2(𝜔 + 𝛼𝑘2)

𝛽
 .                                                                   (20) 

 

Substituting the values of A, 𝜇 and 𝜆 into Eq. (16), we obtain 

 

𝑢(𝜉) =  ± √
2(𝜔 + 𝛼𝑘2)

𝛽
 𝑠𝑒𝑐 {𝑖 (√

𝜔 + 𝛼𝑘2

𝛼+ 𝛾
) 𝜉}   

 

=  ± √
2(𝜔 + 𝛼𝑘2)

𝛽
 𝑠𝑒𝑐ℎ {(√

𝜔 + 𝛼𝑘2

𝛼+ 𝛾
) 𝜉}.                                  (21) 

 

Substituting Eq. (21) with the positive coefficient into Eq. (3) and 

recalling the expressions for 𝜉 and v, we obtain the solution of Eq. 

(2) as 

 

𝛹(𝑥, 𝑡)  

 

= √
2(𝜔 + 𝛼𝑘2)

𝛽
[𝑠𝑒𝑐ℎ {(√

𝜔 + 𝛼𝑘2

𝛼 + 𝛾
) (𝑥 + 2𝛼𝑘𝑡)}] 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡) .   (14) 

 

We see that the solution obtained here is just the non-topological 

1-soliton solution obtained earlier by the method of ansatz. 

5. Solution via He’s semi-inverse variation 

method 

In this section, the solution of Eq. (6) is to be obtained via He’s 

semi-inverse variation method [4], [11 -15]. However, before 

applying the method, let us first introduce a brief description of 

the method as in the following. 

5.1. Description of He’s semi-inverse variation method 

If the nonlinear partial differential equation to be solved is in the 

form 

 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑥 , 𝑢𝑡𝑥, . . . ) = 0                                                (22) 

 

where t and x are independent variables and the subscripts denote 

partial derivatives of the dependent variable u with respect to them, 

and then we are to perform the following operational steps. 

 

Step 1: The given nonlinear partial differential equation (NLPDE) 

is first to be reduced to a nonlinear ordinary differential equation 

(NLODE) by introducing a transformation 

      𝑢(𝑥, 𝑡) =  𝑈(𝜉)   and 𝜉 = 𝑥 − 𝑣𝑡   as in section 2. 

 

  Let us write the reduced NLODE as 

 

𝑄(𝑈, 𝑈′, 𝑈′′, . . . )  = 0                                                                  (23) 

 

where  𝑈′ =  
𝑑𝑈

𝑑𝜉
,   𝑈′′ =  

𝑑2𝑈

𝑑𝜉2 , etc.  

 

Step 2: The reduced NLODE is to be integrated once or more so 

long as every term in that equation contains derivative(s) and for 
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the sake of simplicity, we are to choose the integration constant(s) 

as zero. 

 

Step 3: Next, we are to construct a trial function 

𝐽(𝑈) =  ∫ 𝐿 𝑑𝜉
𝑏

𝑎
                                                                           (24) 

 

where a and b are the lower and the upper limits related to the 

problem and  L  is a function of  U and its derivatives.  

 

Step 4: In accordance with Ritz method, we assume a solitary 

wave solution U in any one of the forms 

 

       𝑈(𝜉) = 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉) ,      𝑈(𝜉) = 𝐴  𝑐𝑜𝑠𝑒𝑐ℎ𝑝(𝐵𝜉),   
 

       𝑈(𝜉) = 𝐴 𝑡𝑎𝑛ℎ𝑝(𝐵𝜉) ,     𝑈(𝜉) = 𝐴 𝑐𝑜𝑡ℎ𝑝(𝐵𝜉) , 𝑒𝑡𝑐.  
 

Here, the parameter p is to be determined through a balancing of 

degrees between the term with the highest derivative and the term 

with highest nonlinearity. The remaining parameters A and B are 

to be determined by substituting the assumed solitary solution to 

Eq. (24) and making J stationary with respect to A and B, that is 

making 

 

  
𝜕𝐽

𝜕𝐴
= 0                                                                                       (25) 

 

and       
𝜕𝐽

𝜕𝐵
= 0.                                                                           (26) 

 

Solving Eqs. (25) And (26), we will obtain the values of the pa-

rameters  A and  B. Then, substituting the values of p, A and  B 

into the assumed solitary wave solution, we can obtain a solution 

of the Reduced NLODE and hence of the given NLPDE. 

5.2. Application of semi-inverse variation method 

From Equation (6), balancing of degrees between the term with 

highest order derivative and the term with highest nonlinearity 

results in 

 

      𝑝 + 2 =  3𝑝   giving   𝑝 = 1.  
 

Now, multiplying both sides of Eq. (6) by 
𝑑𝑢

𝑑𝜉
 , we obtain 

 

      (𝛼 +  𝛾)
𝑑𝑢

𝑑𝜉

𝑑2𝑢

𝑑𝜉2 −  (𝜔 +  𝛼𝑘2) 𝑢 
𝑑𝑢

𝑑𝜉
+  𝛽𝑢3 𝑑𝑢

𝑑𝜉
= 0.  

 

Integrating both sides with respect to  𝜉  and choosing the integra-

tion constant as zero, we obtain 

 

     
(𝛼+ 𝛾)

2
 (

𝑑𝑢

𝑑𝜉
)

2
 −  

(𝜔 + 𝛼𝑘2)

2
 𝑢2  +  

𝛽

4
 𝑢4  = 0.  

 

Next, we construct the trial function 

 

    𝐽 = 𝐽(𝑢)  

      =  ∫ [− 
(𝛼+ 𝛾)

2
 (

𝑑𝑢

𝑑𝜉
)

2
 −  

(𝜔 + 𝛼𝑘2)

2
 𝑢2  +  

𝛽

4
 𝑢4]  𝑑𝜉

∞

0
.        (27) 

 

We assume a solitary wave solution in the form 

 

        𝑢(𝜉) = 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉) =  𝐴 𝑠𝑒𝑐ℎ(𝐵𝜉) .                            (28) 

 

Substitution of Eq. (28) into Eq. (27) yields 

 

𝐽 =  ∫ [
− 

(𝛼 + 𝛾)

2
 𝐴2 𝐵2  𝑠𝑒𝑐ℎ2(𝐵𝜉) 𝑡𝑎𝑛ℎ2(𝐵𝜉) 

– 
(𝜔+ 𝛼𝑘2)

2
 𝐴2  𝑠𝑒𝑐ℎ2(𝐵𝜉)  +  

𝛽

4
 𝐴4  𝑠𝑒𝑐ℎ4(𝐵𝜉)

] 𝑑𝜉
∞

0
  

 

=  − 
(𝛼 + 𝛾)

6
 𝐴2 𝐵 − 

(𝜔 + 𝛼𝑘2)

2𝐵
 𝐴2  +  

𝛽

6𝐵
 𝐴4 .                             (29) 

Making  J stationary with respect to A and B, we obtain respec-

tively 

 

   
𝜕𝐽

𝜕𝐴
=  − 

(𝛼 + 𝛾)

3
 𝐴𝐵 − (𝜔 +  𝛼𝑘2) 

 𝐴

𝐵
 +  

2𝛽

3

𝐴3

𝐵
 = 0                (30)   

 

and 

 

   
𝜕𝐽

𝜕𝐵
 =  − 

(𝛼 + 𝛾)

6
 𝐴2  +  

(𝜔 + 𝛼𝑘2)

2
 

𝐴2

𝐵2
 −  

𝛽

6 
 

𝐴4

𝐵2
= 0.                   (31) 

 

Solving Eqs. (30) and (31), we obtain 

 

𝐴 =  ± √
2 (𝜔 + 𝛼𝑘2)

𝛽
                                                                     (32) 

 

and 

 

𝐵 =  ± √
(𝜔 + 𝛼𝑘2)

𝛼 + 𝛾
                                                                      (33) 

 

Substituting these values of  A and B into Eq. (28), we obtain 

 

𝑢(𝜉) =  ± √
2(𝜔 + 𝛼𝑘2)

𝛽
 𝑠𝑒𝑐ℎ {(√

𝜔 + 𝛼𝑘2

𝛼 + 𝛾
) 𝜉} .                           (34) 

 

Substituting Eq. (34) with the positive coefficient into Eq. (3) and 

recalling the expressions for v and  𝜉, we obtain the bright or non-

topological soliton solution of Eq. (2) as 

 

𝛹(𝑥, 𝑡) =  

 

√
2(𝜔 + 𝛼𝑘2)

𝛽
[𝑠𝑒𝑐ℎ {(√

𝜔 + 𝛼𝑘2

𝛼 + 𝛾
) (𝑥 + 2𝛼𝑘𝑡)}] 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡).        (14) 

6. Discussion 

From all of the three methods used here, we obtain the same bright 

or non-topological 1-soliton solution of the Resonant Nonlinear 

Schrodinger Equation with Kerr law nonlinearity. Such a soliton 

will have a bell-shaped profile.  

7. Conclusion 

In this paper, three methods namely (1) the Ansatz method, (2) the 

Sine-cosine method and (3) the Semi-inverse variation method 

have been applied in obtaining Bright or Non-topological 1-

soliton solution of Resonant Nonlinear Schrodinger Equation with 

Kerr law nonlinearity and the results reveal that these methods are 

powerful tools for obtaining exact solutions of various types of 

Nonlinear Evolution Equations (NLEEs) in the studies of science 

and engineering. 
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