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Abstract

In this study, we have implemented the modified extended tanh-function method to obtain the exact travelling wave solutions for the
general (2+1)-dimensional nonlinear evolution equations. By using this method, some travelling wave solutions are successfully obtained
and which have been expressed by the trigonometric, hyperbolic and rational functions. These obtained solutions are an appropriate and
desirable for instructive specific nonlinear physical phenomena in genuinely nonlinear dynamical systems. The method is an efficient and
reliable mathematical tool for solving many nonlinear evolution equations arising in science and engineering problems.
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1. Introduction

In recent years, nonlinear partial differential equations (NPDES) is
widely used to describe many important phenomena and dynamic
processes in various fields of science and engineering, especially
in fluid mechanics, hydrodynamics, mathematical biology, diffu-
sion process, solid state physics, plasma physics, neural physics,
chemical Kkinetics and geo-optical fibers. It’s prominent that find-
ing exact solutions of nonlinear evolution equations (NLEEs), by
using different abundant method plays an important role in the
proper understanding of mechanisms of the numerous physical
phenomena in mathematical physics and become one of the fur-
thermost exciting and awfully active areas of research investiga-
tion for mathematicians, physicist, and engineers.

On the basis of the finding new exact solutions of nonlinear evolu-
tion equations, many researchers [1-34] have devoted significant
effort to study of exact explicit traveling and solitary wave solu-
tions and several effective techniques have been proposed and
developed such as the sine-cosine method [1-3], homogeneous
balance method [4,5], auxiliary equation method [6,7], the tanh-
function method [8], the extended tanh function method [9,10], the
modified extended tanh-function method [11-13], the modified

simple equation method [14-18], the (G’/G)-expansion method

[19-23], the Exp-function method [24,25], the exp(—¢(&)) expan-

sion method [26-28], the F-expansion method [29-31], ansatz
method [32-33] , the first integral method [ 34] and so on.

The extended tanh function method, which was developed by
Wazwaz [9,10] is a direct and effective algebraic method for han-
dling nonlinear equations and authors [11-12] have been applied

the modified extended tanh-function method solving nonlinear
partial differential equations.

The objective of this study is to apply the modified extended tanh-
function method to find the exact traveling waves solutions of the
generalized (2+1)-dimensional nonlinear evolution equation [35—
37] in the form,

Uxt +aUxUxy +buyyUy +Uxxxy =0 Q)

where, a and b are arbitrary constants.

Recently, some special cases of Eq. (1) have been studied by sev-
eral authors [18, 38-40]. When setting a=4and b=2, Eq. (1)
becomes the (2+1)-dimensional Calogero—Bogoyavlenskii—Schiff
(CBS) equation:

Uy +4Uy Uy + 22Uy Uy + Uy, =0 2

X0y

When setting a=—4and b=-2, Eq. (1) becomes the (2+1)-
dimensional breaking soliton equation:
Uy = AUyUy, — 22U Uy + Uy, =0 3)

When setting a=4 and b=4, Eq. (1) becomes the (2+1)-
dimensional Bogoyavlenskii’s breaking soliton equation:

Uy +4UyUy +4U Uy + Uy, =0 4)

The rest of this paper is organized as follows: In section 2, the
modified extended tanh-function method is discussed in details. In
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section 3, presents the application of this method to construct the  or,

exact traveling wave solutions of the nonlinear evolution equa-

tions and the section 4, we briefly make a conclusion to the results _ = ( — )

that have been obtained. P(S) = o cothly-o& (10)

2. Methodology

In this section, we will describe the algorithm of the modified
extended tanh-function method for finding traveling wave solu-
tions of nonlinear evolution equations. Let us consider a general
nonlinear PDE in the form

P (U, U U Uy Uy Uy Uy Uy » (5)
Where, U=u(X, Y,t) is an unknown function, P is a polynomi-
al in u(x,y,t) and its derivative in which highest order derivatives

and nonlinear terms are involved and the subscripts stand for the
partial derivatives. The main steps of this method are as follows:
Step 1: Combine the real variables x, y andt by a compound

variable &

u(x, y,t)=u(é), E=x+y+£Vvt (6)

where, V is the speed of the traveling wave. The traveling wave
transformation (6), converts Eq. (6) into an ordinary differential
equation (ODE) for u=u(&):

Qu, U’ u" U" i ), @)

Where, Q is a polynomial of u and its derivatives and the super-
scripts indicate the ordinary derivatives with respect to & .

Step 2: Suppose the traveling wave solution of Eq. (7) can be ex-
pressed as follows:

u§)=a, + i:Z:(aicoi +be™! ) 8

Where, the coefficients &;,15,(L1<i<n,neN) are constants to
be determined and either a, or b, may be zero but both a, and

b, cannot be zero simultaneously. The positive integer n can be

determined by considering the homogeneous balance between the
highest order derivatives and nonlinear terms appearing in Eq. (8).
Moreover, we define the degree of U(&) as D(U(£)) =n, which

gives rise to degree of another expression as follows:

d% SETRY
Dl — |=n+g, DluPl|—=| |=np+s(n+q).
(dqu q (ng p+s(n+q)

Therefore, we can find the value of n in Eq. (8), where ¢ = @(&)
satisfies the following Riccati equation:

P& =0+p*(&), ©)

where, o is a constant. Equation (9) admits several types of solu-
tions according to the following:

Type-l (Hyperbolic function solution): If o <0, then

P(&)=—-o tanh(ﬁf)

Type-I1 (Trigonometric function solution): If >0, then

o(&) = x/Etan(\/;ef)

or,

o(&) = o cotlyore)

11)
Type-I11 (Rational function solution): If o =0, then
1
p(&) = E (12

Step 3: After we determine the index parameter n, we substitute
Eq.(8) along Eq.(9) into Eq.(7) and collecting all the terms of the

same power (pi, i =0,+1,+2,.... and equating them to zero, we
obtain a system of algebraic equations, which can be solved by
Maple or Mathematica to get the values of a; , b, and V . Substitut-
ing the values of &;, b, and other values into Eg. (8) along with

general solutions of Eq. (9) completes the determination of the
solution of Eq. (7).

3. Application of the method

In this section, we implement the method described in Section 2 to
find the exact traveling wave solutions of the (2+1) dimensional
nonlinear evolution equation, Eq. (1).

3.1. The general (2+1) dimensional nonlinear evolution
equation

We seek the exact traveling wave solution of the Eq. (1) using
extended tanh-function method.
The traveling waves transformation

u(x,y,t)=u(é), E=x+y-Vt (13)
Reduces Eq. (1) to the ODE of the form
—Vu”+(a+b)u’u”+uiv=0 (14)

Integrating once w.r.t. £ and setting the constant of integration to
zero, yields

~Vu'+ (_a Z bj(u’)2 +U"=0 (15)

Where, primes denote differentiation with respect to £. By bal-

m

ancing the highest order derivative term u” with the nonlinear

term (u’)2 in (15), gives n=1. Therefore, modified extended

tanh-function method allows us to use the solution in the follow-
ing form:

u(E) = a +a1¢(§)+% (16)
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where, a,,a; and b, are constants that need to be determined
such that a; #0or by #0.

Now substituting Eq.(9), Eq.(16) and its derivative into Eq.(15),
and collecting coefficients of (pi and equating them to zero, we
obtain a system of algebraic equations for a; , a, , by and respec-
tively:

%aaz b? +%b02b12 65, =0 (172)
—ac’ah, —bo?ab, +ach? +bob? +Vob, w7
—802b, =0

L @+b)o? a2 - 2(a+b)oab, —Voa,

2 1 (17c¢)
+E(a+b)b12 +20%a, +Vh —20b, =0

acal +boa? —aab, —bab, —Va, +80a, =0 (17d)
%aaf +%bal2 +6a, =0 (17¢)

Solving the obtained system of equations (17a-17e) by using Ma-
ple, the following sets of solutions are obtained:

12
Case-l: V =—-40, a, =ay,8; = — and b, =0
0 =480, a4 a+h by
120
Case-1I: V =40, a, =ay,a, =0and b, =
O, dg 011 ! a+h
120
Case-lll: V =-160, ag =ay,8, = — and b, =
0T a+b by a+b

Now substituting the values of V ,a,,a, and b, in the Eq. (16),
then the general solution of the above cases is as follows:

For case-l: u(&) =ag —i(p(f) ; (18)
a+b
where £ =X+ Yy +4ot
120
F Al u(é)=ay + ————, 19
or case (&) =a, @D (19)
where £ =X+Yy+4ot
_ ., 120
For case-Ill: u(&) =a, a+b¢)(§)+ @100 (20)

where & =X+ Yy+160t

In case-l, we deduce the traveling wave solutions of Eq. (1) with
the help of Eq. (10-12) and Eq. (18) is as follows.

(21a)

u(x,y,t)=a, + 12;1? tanh(\/jf),

or,

U (X, y,t) =ap + 12‘/5 coth(ﬁg),

- (21b)
12Jo
us(x, y,t)=a, — b tan(\/gg), (22a)
or,
12Jo
us(x,y,t)y=a, + ~1b cot(\/g§),
(22b)
where £ =X+Yy+4ot
12
Us(X, Yy, t) =a + Gib)E’ (23)

where £ =X+Yy+4ot

In case-11, we deduce the traveling wave solutions of Eq. (1) with
the help of Eq. (10-12) and Eq. (19) is as follows.

ug(x, y,t)y=a, — 20 , (243)
(a+b)\/$tanh(\/—a§)
or,
us(x,y,t)=a, - 120 , (24b)
(@a+b)v-o cothly-o¢)
12Jo
Yy, t)=a , 25
UB(X y,t) 0+(a+b)tan(\/;§) (253)
or,
12Jo
Ug(X,Y,t) =85 — , 25b
s(x.:1) =2 (a+b)coti\/;§i (250)
where £ =X+ Y +4ot
U (X, y,t) = ay, (26)

where £ =X+Yy+4ot

In case-111, we deduce the traveling wave solutions of Eq. (1) with
the help of Eq. (10-12) and Eq. (20) is as follows.

U (X, y,t)=ap + V- tanh(\/:g)

a+b

12¢ (27a)

- (a+ b)mtanh(\/jg)

or,
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Vo coth(ﬁg)

a+b

Up(x,y,t)=a, +

126 (27b)

- (a+ b)\/: coth(ﬁg}
12Jo
+b

Us(X y,t)y=ay - a—tan(\/gg)+

12Jo

(a+b) tan‘\/gé ) @5

or,

12V

cot(\/gg)—m(m (28b)

Uy (X Y, 1) =4, +12‘/;
A °"a+b

where & =X+ Yy+160t

12
(a+b)¢

where & =X+ Yy+160t

Us (X, y,t) =ay + : (29)

3.1.1. (2+1) dimensional
(CBS) equation

Calogero—Bogoyavlenskii—Schiff

By using the section 3.1, settinga =4 and b = 2 in the above Egs.
(21-29), then we explore the fifteen exact solutions of Eq. (2)
which is indicated the symbol u; (X, Y,t) -u;5(X, y,t) . For spe-
cial values of parameters, the shapes of traveling wave solutions
are originated from the obtained exact solutions (see Figs. 1-4).

3.1.2. (2+1)-dimensional breaking soliton equation

By using the section 3.1, setting a = —4andb =—2 in the above
Egs. (21-29), then we explore the fifteen exact solutions of Eq. (3)
which is indicated the symbol Uyg(X,Y,t) - Ugy(X,Y,t) . For
special values of parameters, the shapes of traveling wave solu-
tions are originated from the obtained exact solutions (see Figs. 5—
8).

Fig. 1: 3D graphics (Kink profile) of U;(X,Y,t) whena, =10 =-1
, y=0and-10<x,t <10,

Fig. 2: 3D graphics (Periodic profile) of Us(X,y,t) when
8y =Lo=1, y=0and-10<x,t <10.
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Fig. 3: 3D graphics (Singular cuspon profile) of Us(X,Y,t) when
a;=10=0, y=0and-10<x,t <10.
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Fig. 4: 3D graphics (Periodic profile) of U;1(X,Yy,t) when

a;=10=-0.1,y=0and-10<x,t <10.
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Fig. 5: 3D graphics (Kink profile) of U;g(X,Yy,t) when Fig. 8: 3D graphics (Periodic profile) of Uyg(X,Y,t) when
8y =10=-1, y=0and-10<x,t<10. 8y =L0o=-01,y=0and 5 x,t<5.
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Fig. 9: 3D graphics (Kink profile ) of Us; (X, Y,t) when
Fig. 6: 3D graphics (Singular kink profile) of U;; (X, y,t) when a, —1lo=-1, y =0and—10< x,t<10.
a,=Lo=-1,y=0and-3<Xx,1<3.
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Fig. 10: 3D graphics (Singular kink profile) of Ug,(X,Y,t) when
Fig. 7: 3D graphics (Singular cuspon profile) of Uyy(X,Y,t) when a9-Lo=—1,y=0and—3< x,t <3.
a,=40=0,y=0and-10<x,t <10.
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3.1.3. (2 + 1)-dimensional Bogoyavlenskii’s breaking soliton
equation

By using the section 3.1, setting a =4 and b = 4 in the above Egs.

(21-29), then we explore the fifteen exact solutions of Eq. (4)
which is indicated the symbol ug;(X,Y,t) - Uy (X, y,t) . For

special values of parameters, the shapes of traveling wave solu-
tions are originated from the obtained exact solutions (see Figs. 8—
12).

4. Conclusion

The modified extended tanh-function method has been successful-
ly used to seek exact solutions of the general (2+1)-dimensional
nonlinear evolution equations such as the (2+1)-dimensional
Calogero—Bogoyavlenskii—Schiff (CBS) equation, the (2+1)-
dimensional breaking soliton equation and the (2 + 1)-dimensional
Bogoyavlenskii’s breaking soliton equation. The performance of
this method is reliable, simple and gives some new exact traveling
wave solutions as well as solitons, kinks, and periodic solutions.
We assure that the gained results will be helpful for further studies
in mathematical physics and engineering.

Fig. 11: 3D graphics (Kink profile) of u41(x, y,t) when
8y =1o0=-1, y=0and-10<x,t <10.

Fig. 12: 3D graphics (Periodic profile) of U,3(X,Y,t) when
a,=10=1, y=0and-5<x,t <5.
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