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Abstract

A new approach in studying the planetary orbits and deflection of light in General Relativity (GR) by means of the Variational iteration
method (VIM) is proposed in this paper. For this purpose, a brief review of the nonlinear geodesic equations in the spherical symmetry
spacetime and the main ideas of VIM are given. The appropriate correct functionals are constructed for the geodesics in the spacetime
of Schwarzschild, Reissner-Nordström and Kiselev black holes. In these cases, the Lagrange multiplier is obtained from the stationary
conditions for the correct functionals. Then, VIM leads to the simple problem of computation of the integrals in order to obtain the
approximate solutions of the geodesic equations. On the basis of these approximate solutions, the perihelion shift and the light deflection
have been obtained for the metrics mentioned above.
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1. Introduction

The perihelion precession of Mercury, the deflection of light by the
Sun and the radar echo delay observations are well-known tests for
the Schwarzschild solution of GR [1]. It is well known that the
geodesics equations in RG are nonlinear, and therefore cannot in
general be solved exactly. Only in rare cases, the problem of plane-
tary motion or propagation of the light ray can be solved exactly. For
instance, the geodesic equations resulting from the Schwarzschild
gravitational metric element are solved exactly by the Weierstraß
Jacobi modular form [2].
Mostly, the perihelion precession of planetary orbits and the light
deflection based on Einstein’s equations had been calculated in differ-
ent approximations for a general spherically symmetric line element.
Most of these approximate methods are based on the existence of a
small parameter of the physical origin. At the same time, there are
methods for approximate solution of nonlinear differential equations,
in which the existence of the small parameter in the equation is not
assumed originally. Some examples of these approximate methods
are represented by the Homotopy Perturbation Method (HPM) and
the Variational Iteration Method, both of which have been proposed
by J.-H. He [3]-[6].
More recently, one of these approximate methods, HPM, has been
successfully applied to various problems of cosmology and astro-
physics [7]-[11]. It could be assumed that the other of the mentioned
approximation methods, VIM, can be also successfully applied in
GR, particularly for the problems of geodesic motion in the gravi-
tational field of astrophysical objects. In this method, a correction
functional is constructed by a general Lagrange multiplier, which
can be identified optimally via the variational theory. Being different
from the other non-linear analytical methods, such as perturbation

methods, this method does not depend on small parameters, such
that it can find wide application in non-linear problems without
linearization or small perturbations.

It should be noted that the interest to the problems of such a kind is
caused not only by the improvement of computational methods, but
also due to the theoretical discovery of new, sometimes very exotic,
compact objects in the universe. Moreover, due to the great rise
of possibilities in observational astronomy for the last few decades,
the classical tests of general relativity attract over and again the
attention of researchers in various aspects (see, e.g., [12]-[15] and
references therein). These studies can concern the gravity effects
associated with the modification of the gravitation theory itself, or
with some new hypothetical sources of gravity, say, dark energy and
dark matter.

A number of astronomical observations strongly confirmed that
the Universe is undergoing an accelerated expansion [16]-[20]. In
order to explain this phenomenon, an unknown energy component,
so called dark energy, has been introduced in the framework of
general relativity.The simplest candidate to the role of dark energy is
the cosmological constant model which is consistent with most of
the current astronomical observations, however it suffers from the
cosmological constant problem. It is thus natural to consider other
complicated cases. A dynamic scalar field can also serve as the dark
energy component such as quintessence, phantom, k-essence, etc..
Quintessence is the simplest scalar field dark energy model without
having theoretical problems like Laplacian instabilities or ghosts.
The energy density and the pressure of quintessence vary with time
depending on the scalar field and the potential, which are respectively
given by:ρq = (1/2)φ̇ 2 +V (φ) and pq = (1/2)φ̇ 2 −V (φ). One
Schwarzschild-like solution related to the quintessence model was
found in [21]. This solution describes a spherically symmetric and
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static exterior spacetime surrounded by a quintessence field. The
gravitational lensing due to this Schwarzschild-like black hole was
investigated in [22]. The consideration of accretion of matter onto
Kiselev black hole and some other aspects of problem concerning
this kind black hole can be found in [23]-[25].
It is the purpose of the present work to explore He’s Variational
Iteration Method in studying the orbital motion and the light de-
flection in the spherically symmetric gravitational field in GR. To
this end, we consider the geodesic equations in the spacetime of
Schwarzschild, Reissner-Nordström and Kiselev black holes. We
demonstrate that VIM leads to the simple problem of computation
of the integrals in order to obtain the approximate solutions of the
geodesic equations in these cases. Then, by using these approximate
solutions, the perihelion shift and the light deflection are obtained
for the aforementioned metrics.

2. Preliminaries

In this section, we give some basis equations of the geodesics in
the spherical symmetry gravitational fields and the method for their
solving.

2.1. Geodesic equations

Here, we mostly follow Ref. [12] in representing the main equations
of geodesic motion in a spherical symmetry spacetime. According
to Genaral Relativity [1, 12], in the case of 4-dimensional general
spherically symmetric spacetime, its stationary line element can be
represented by

ds2 =− f (r)dt2 +
dr2

h(r)
+ r2(dθ

2 + sin2
θdϕ

2). (1)

Since the perihelion precession and deflection of light are usually
treated as the time-like and null geodesics in spacetime, respectively,
let us consider the geodesics γ(τ) in the above spherically symmetric
spacetime. We set the geodesic γ(τ) expressed in the spherical
coordinates xµ = (t,r,θ ,ϕ) as xµ (τ), which satisfy

d2xµ

dτ2 +Γ
µ

νσ

dxν

dτ

dxσ

dτ
= 0.

The geodesic γ(τ) can be obtained by solving the above equation.
However, taking into account the symmetry of spacetime (1), one
could use the following simple way to obtain the geodesic γ(τ).
First, we can find that one component of the geodesic γ(τ) can
always be chosen as θ(τ) = π/2, which means that the geodesic can
always be chosen to lay in the equatorial plane of the spherically
symmetric spacetime. Thus, t = t(τ), r = r(τ), θ = π/2, ϕ = ϕ(τ).
Let us denote the tangent vector of geodesic γ(τ) as U µ ≡ dxµ/dτ .
For the time-like geodesic, we chose τ to be the proper time . Hence,
from (1) we can obtain

f (r)
( dt

dτ

)2
−h−1(r)

( dr
dτ

)2
− r2

(dϕ

dτ

)2
=−k, (2)

where we have used θ = π/2, and k = 1 corresponds to the time-like
geodesic, while k = 0 is the null geodesic.
Second, it could be noted that ξ a = (∂/∂ t)a and ψa = (∂/∂ϕ)a

are two Killing vectors in the spherically symmetric spacetime (1).
Therefore, there are two conserved quantities along the geodesic
γ(τ), the total energy and the angular momentum per unit mass, as
follows

E =−gabξ
aUb = f (r)

dt
dτ

, L = gabψ
aUb = r2 dϕ

dτ
. (3)

After inserting (3) into (2), one could obtain( dr
dτ

)2
=

h(r)
f (r)

E2−h(r)
(

k+
L2

r2

)
. (4)

This equation contains only one function r(τ), and it could be solved
in principle. Then, after inserting the solved r(τ) into (3), the rest
components t(τ) and ϕ(τ) of geodesic could be finally obtained.
However, it should be noted that the perihelion precession as well
as the deflection of light are usually related to the geodesics orbits,
i.e. r(ϕ). Therefore, it is convenient to rewrite equation (4) with the
help of (3) as( dr

dϕ

)2( L
r2

)2
=

h(r)
f (r)

E2−h(r)
(

k+
L2

r2

)
. (5)

It has been found that the coordinate u ≡ 1/r is more convenient
than r to derive the perihelion precession. Thus, the main equation
investigated in our paper could be simply obtained from equation (5)
by converting r into u( du

dϕ

)2
=

h(u)
f (u)

(E
L

)2
−h(u)

( k
L2 +u2

)
. (6)

Finally, differentiating the equation (6) with respect to ϕ , we get the
second-order geodesic equation in the following form

d2u
dϕ2 =

E2

2L2
d

du

[
h(u)
f (u)

]
−h(u)u− 1

2

( k
L2 +u2

)dh(u)
du

. (7)

In the simplest case of the metric (1), namely the Schwarzschild
metric describing the gravitational field of an uncharged non-rotating
star, one gets f (r) = h(r) = 1−2M/r, or

f (u) = h(u) = 1−2Mu. (8)

where M is a mass of the star. Therefore, Eq. (8) for the geodesic
can be reduced to

d2u
dϕ2 +u = k

M
L2 +3u2 M. (9)

Compared with the case of orbital motion in Newton’s gravity

d2u
dϕ2 +u =

M
L2 , (10)

the term 3u2M comes from the correction of general relativity.
In the case of the Reissner-Nordström spacetime of a charged star,
we have [12]

f (u) = h(u) = 1−2Mu+Q2u2, (11)

where Q is the charge. According to (11), the geodesic equation (8)
now is replaced by the following one

d2u
dϕ2 +

(
1+ k

Q2

L2

)
u = k

M
L2 +3u2 M−2Q2u3. (12)

On the other hand, the geometry of the static spherically symmetric
black hole surrounded by a quintessence (or Kiselev spacetime) is
given by equation (1) with [21]

f (u) = h(u) = 1−2Mu−σu3wq+1, (13)

where M is the mass of the black hole and σ is the quintessence
equation of state parameter, wq = pq/ρq, that is related to the energy
density as follows ρq =−3σwqu3(1+wq)/2.
Substituting (13) into equation (7), one can obtain the following
geodesic equations in the gravitational field of Kiselev black hole

d2u
dϕ2 +u= k

M
L2 +3u2 M+k

σ(3wq +1)
2L2 u3wq +

3σ(wq +1)
2

u3wq+2,

(14)

which of course coincides with equation (9) in the absence of
quintessence, i.e. when σ = 0.
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2.2. Description of VIM

The VIM was developed by He [4]-[6] for solving linear, nonlinear,
initial and boundary value problems. To give a general idea of the
VIM, we consider the following general non-linear equation:

L[u(x)]+N[u(x)] = g(x), (15)

where L and N are linear and nonlinear operators respectively, and
g(x) is a known function. The correct functional for the equation
(15) can be written as

un+1(x) = un(x)+
x∫

0

λ (s)
{

L[un(s)]+N[ũn(s)]−g(s)
}

ds, (16)

where λ is a Lagrange multiplier, that can be identified optimally
via variational iteration method. Here, ũn is considered to be a6
restricted variation which means that δ ũn = 0. Making the correct
functional (16) stationary, yields

δun+1(x) = δun(x)+δ

x∫
0

λ (s)
{

L[un(s)]+N[ũn(s)]−g(s)
}

ds

= δun(x)+
x∫

0

δ
{

λ (s)L[un(s)]
}

ds. (17)

Its stationary conditions, δun+1(x) = 0, can be obtained using in-
tegration by parts in Eq. (17) and noticing that δun(0) = 0. The
Lagrange multipliers can be easily and precisely obtained for lin-
ear problems. However, for nonlinear problems, it is not as trivial.
The nonlinear terms are treated as restricted variations such that the
Lagrange multiplier can be determined as a simpler form.
The importance and the very utility of method is endowed with
the choice of assumption of considering even highly nonlinear and
complicated dependent variables as restricted variables thereby syn-
chronizing the error occurring due to process of finding solution
to equation (15) to its minimum magnitude. Eventually, after λ

is determined as desired, a proper selective function, may it be a
linear or otherwise with respect to equation (15) is assumed as an
initial approximation for finding next successive iterative function
by equation (16) recursively.
The successive approximations un+1(x) of the solution will be readily
obtained upon using the obtained Lagrange multiplier and by using
any appropriate function for u0(x). The zeroth approximation u0(x)
may be selected by any function that just meets, at least, the initial
and boundary conditions. Therefore by starting from u0(x), the exact
solution may be obtained as

u(x) = lim
n→∞

un(x). (18)

Thus, in applications of VIM to differential equations, one should
undertake the following three steps: (i) establishing the correction
functional; (ii) identifying the Lagrange multipliers; (iii) determining
the initial iteration. For the convergence criteria and error estimates
of the VIM, one can refer the reader to [26]-[28].

3. Studying perihelion precession and deflec-
tion of light by VIM

Now we are going to apply VIM for studying the orbital motion and
propagation of the light ray in the metrics mentioned above.

3.1. Schwarzschild solution

Comparing equation (15) with the geodesic equation (9) for the
Schwarzschild metric, we can write down the correct functional (16)

as follows

un+1(ϕ)= un(ϕ)+

ϕ∫
0

λϕ (φ)

[
d2un

dφ 2 +un(φ)−
kM
L2 −3Mũ2

n(φ)

]
dφ ,

(19)

where ũn(φ) is considered to be a restricted variation. By using the
stationary condition for the correct functional (17) , we get

δun+1(ϕ)= δun(ϕ)+

ϕ∫
0

δ

{
λϕ (φ)

[
d2un(φ)

dφ 2 +un(φ)−
kM
L2

]}
dφ .

(20)

From stationary conditions, δun+1(ϕ) = 0, and using integration
by parts in Eq. (20), on can obtain the following equations for the
Lagrange multiplier

λ ′ϕ (φ)|φ=ϕ −1 = 0,

λϕ (φ)|φ=ϕ = 0,

λ ′′ϕ (φ)+λϕ (φ) = 0.

(21)

These equations can be readily solved that yields the following
Lagrange multiplier

λϕ (φ) = sin(φ −ϕ). (22)

Then, according to (19) and (22), the successive approximations
un(φ) of the solution can be readily obtained upon using the obtained
Lagrange multiplier (22) and by using any appropriate function for
u0(φ).
First, we consider the orbital motion, k=1, starting with the Kepler’s
orbits

u0(ϕ) =
M
L2 (1+ ecosϕ) (23)

which is the analytical elliptical solution of (10), already found in
Newton’s gravity. Here, e is the orbital eccentricity. Inserting u0(ϕ)
from (23) and λ from (22) in equation (19), we obtain the following
first order approximation

u1(ϕ) =
M
L2 (1+ ecosϕ)− 3M3

L4

ϕ∫
0

sin(φ −ϕ)(1+ ecosϕ)2dφ ,

which gives us the approximate solution u≈ u1 of equation (9) as

u(ϕ) =
M
L2 (1+ ecosϕ)+

M3

L4

[
3+2e2 +3eϕ sinϕ

−e2 cos2
ϕ− (3+ e2)cosϕ

]
. (24)

It is interesting that this solution exactly coincides with the similar
one obtained in Ref. [8] by the Homotopy Perturbation Method.
Comparing our result (24) with the corresponding approximate for-
mula in Ref. [12], one can conclude that this solution is different
in the term −(M3/L4)(3+ e2)cosϕ . The magnitude of the shift
angle can be obtained from the condition u′(ϕ) = 0 in the perihelion,
and ϕ = 2π +∆ϕ , assuming that ∆ϕ � 1 [8]. As applied to the
approximate solution (26), this method gives the following value of
the perihelion shift

∆ϕ = 6eπ
M2

L2

[
e−3(1+ e)2 M2

L2

]−1

, (25)

which is differ from the classical ∆ϕ = 6πM2/L2 but results in the
same expression for M2/L2� 1.
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Let us consider the light propagation near the Schwarzschild black
hole according to Eq. (16) with k = 0. Now, the null approximation
is a straight line expressed in polar coordinates

u0(ϕ) =
1
l

sinϕ, (26)

where l is a constant. Substitution of (26) and λϕ (φ) (see equation
(22)) along with k = 0 into (19) yields the first approximation as
follows

u1(ϕ) =
1
l

sinϕ− 3M
l2

ϕ∫
0

sin(φ −ϕ)sin2
φdφ .

This immediately leads to the approximate solution u≈ u1 for the
light path given by

u(ϕ) =
1
l

sinϕ +
M
l2 (1− cosϕ)2, (27)

which is exactly the same as obtained in [12]. Therefore, the de-
flection angle of light β , which can be obtained from the equation
u(π +β ) = 0 and the following approximations

sin(π +β )≈−β , cos(π +β )≈−1. (28)

is as follows

β =
4M

l
, (29)

that is just the well-known deflection angle of light in Schwarzschild
spacetime.
Let us obtain a more accurate approximation for the solution of
equation (9). For this purpose, we substitute u1 from (27) into
equation (19) along with n = 1 and k = 0. As a result, we have

u2(ϕ) =
1
l

sinϕ +
M
l2 (1− cosϕ)2

−3M2

l3

ϕ∫
0

sin(φ −ϕ)
[
2sinφ(1− cosφ)2 +

M
l
(1− cosφ)4

]
dφ .

After integration, we arrive at the following approximation u≈ u2:

u(ϕ) =
1
l

sinϕ +
M
l2

(
1− cosϕ

)2

+
M2

4l3

{
2sinϕ−

[(
3cosϕ−16

)
sinϕ +15ϕ

]
cosϕ

}
+

M3

10 l4

[
166−2cos4

ϕ +15cos3
ϕ−68cos2

ϕ

−111cosϕ−105ϕ sinϕ

]
. (30)

Neglecting for simplicity the last term in equation (30), that is pro-
portional to M3/l4, one can obtain the deflection angle as

β =
4M

l
×

(
1+

15π

8
M
l

)
(

1−8
M2

l2

) ≈ 4M
l

(
1+

15π

8
M
l
+8

M2

l2

)
, (31)

which gives the extra terms of the higher order to the deflection angle
compared to (29).

3.2. Reissner-Nordström spacetime

In this case, we prefer to write down the correct functional (16) for
equation (12) as follows

un+1(ϕ) = un(ϕ)+

ϕ∫
0

λϕ (φ)

[
d2un

dφ 2 +un(φ)−
kM
L2

+k
Q2

L2 ũn(φ)−3Mũ2
n(φ)+2Q2ũ3

n(φ)

]
dφ . (32)

Comparing this equation with (19), we can conclude that the sta-
tionary condition for the correct functional (17) has the same form
(20) as it is in previous subsection. Therefore, once again we ob-
tain the same Lagrange multiplier, λϕ (φ) = sin(φ −ϕ). Using this
multiplier and the null approximation (23), one can obtain the first
approximation for the orbits (that is, k=1) from (32) as follows

u1(ϕ) =
M
L2 (1+ ecosϕ)+

ϕ∫
0

sin(φ −ϕ)

[
MQ2

L4 (1+ ecosφ)

−3M3

L4 (1+ ecosφ)2 +
2Q2M3

L6 (1+ ecosφ)3
]

dφ , (33)

which can be integrated, using the Maple package for example,
resulting in the approximate solution, u≈ u1, for equation (12) given
by

u(ϕ) =
M
L2 (1+ ecosϕ)+

M3

L4

[
3+2e2−2(1+2e2)

Q2

L2

− Q2

M2 +
(

1− Q2

L2 +
Q2

6M2 − e2 Q2

4L2

)
3eϕ sinϕ

−
(

3+ e2 +(e3−8e2−8)
Q2

4L2 −
Q2

M2

)
cosϕ

−
(

1−2
Q2

L2

)
e2 cos2

ϕ +
Q2

4L2 e3 cos3
ϕ

]
. (34)

The shift angle can be obtained from the same conditions u′(ϕ) = 0
and and ϕ = 2π +∆ϕ , applied to the approximate solution (34).
Thus, we get the following value of the perihelion shift

∆ϕ ≈ 6eπ
M2

L2

(
1+

Q2

6M2 − (4+ e2)
Q2

4L2

)[
e−3(1+ e)2 M2

L2

]−1

,

(35)

Then, we consider the light deflection near Reissner-Nordström black
hole according to Eq. (32) with k = 0. Again, the null approximation
is a straight line expressed in polar coordinates by (26).
Substituting (26) along with (22) and k = 0 into (32), one can get
the first approximation as

u1(ϕ) =
1
l

sinϕ− 3M
l2

ϕ∫
0

sin(φ −ϕ)sin2
φdφ

+
2Q2

l3

ϕ∫
0

sin(φ −ϕ)sin3
φdφ , (36)

from which we have the approximate solution u≈ u1 for the light
path given by

u(ϕ) =
1
l

sinϕ +
M
l2

(
1− cosϕ

)2

−Q2

4l3

[
(cos2

ϕ +2)sinϕ−3ϕ cosϕ

]
. (37)

From the latter, the deflection angle of light β can be obtained with
the help of approximations (28) as follows

β =
4M

l
− 3πQ2

4l2 . (38)
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It should be noted that the deflection angle (38) was obtained only
by the simple approximation (36), while a similar expression in Ref.
[12] was obtained by a further simplification of the corresponding
formula.

3.3. Spacetime of Kiselev black hole

In this case, we can write down the correct functional (16) for Eq.
(12) as follows

un+1(ϕ) = un(ϕ)+

ϕ∫
0

λϕ (φ)

[
d2un

dφ 2 +un(φ)−
kM
L2

−3Mũ2
n(φ)− k

σ(3wq +1)
2L2 ũ3wq −

3σ(wq +1)
2

ũ3wq+2
]

dφ . (39)

Unfortunately, this method has a difficult computational problem
in the case of arbitrary quintessence EOs parameter wq. Therefore,
we are going to proceed with more detail considering Kiselev black
hole with quintessential parameters wq =−1/3 when the resulting
formulae can be given in a relatively simple form. Substituting this
EoS along with k = 1 into equation (39) and comparing the latter with
(19), we again obtain the Lagrange multiplier λϕ (φ) = sin(φ −ϕ).
By means of this multiplier and the null approximation (23), one can
obtain the first approximation for the orbits followed from (39) as

u1(ϕ) =
M
L2 (1+ ecosϕ)− 3M3

L4

ϕ∫
0

sin(φ −ϕ)
[
(1+ ecosφ)2

+
σ

3
L2

M2 (1+ ecosφ)

]
dφ ,

which can be easily integrated resulting in the approximate solution,
u≈ u1, for equation (14) given by

u(ϕ) =
M
L2 (1+ ecosϕ)+

M3

L4

[
3+2e2 +σ

L2

M2 − e2 cos2
ϕ

+3e
(

1+
σ

6
L2

M2

)
ϕ sinϕ−

(
3+ e2 +σ

L2

M2

)
cosϕ

]
. (40)

The approximate magnitude of the shift angle is followed from the
condition u′(ϕ) = 0 in the perihelion, and ϕ = 2π +∆ϕ . As applied
to the approximate solution (40), this method gives the following
value of the perihelion shift

∆ϕ = 6eπ
M2

L2

(
1+

σ

6
L2

M2

)[
e− (1+ e)σ −3(1+ e)2 M2

L2

]−1

(41)

which coincides with (25) at σ = 0. Provided that σ � 1 and
(M2/L2)� 1, this equation is substantially simplified up to

∆ϕ = 6π
M2

L2 +πσ .

Hence, the presence of quintessence gives the extra angle πσ to the
perihelion shift.
Finally, let us consider the light deflection by Kiselev black hole
according to Eq. (39) with k = 0 and wq =−1/3. We again take the
straight line (26) as the initial approximation.
Substituting (26) and (22) into (39), we can obtain the first approxi-
mation,

u1(ϕ) =
1
l

sinϕ− 1
l

ϕ∫
0

sin(φ −ϕ)

(
3M

l
sin2

φ +σ sinφ

)
dφ

from which we have the approximate solution u≈ u1 given by

u(ϕ) =
1
l

sinϕ +
M
l2

(
1− cosϕ

)2
+

σ

2l
(sinϕ−ϕ cosϕ). (42)

From this equation, the deflection angle of light β can be obtained
with the help of approximations (28) as follows

β =
4M

l
+

πσ

2
. (43)

From this equation, one could conclude that an additional angle to
the deflection due to quintessence can be up to π/2 at σ → 1. Of
course, it is not true since the approximate equation (28) for the
deflection angle β is not valid in this case. Nevertheless, equation
(43) yields the general trend in the dependence of the deflection
angle regarding σ .

4. Conclusion

Thus, in this work we have considered a simple analytical computa-
tion of the perihelion precession and the deflection of light in General
Relativity with the help of Variational Iteration Method developed
by Dr. He [3]. First of all, we have studied the examples of geodesic
motion in the Schwarzschild and Reissner-Nordström metrics, in
order to approbate VIM in the problems of planetary motion and de-
flection of light, and present the main steps in solving by this method.
Then, we have applied VIM for solving the geodesic equations in
the spacetime of Kiselev black hole. As a result, we have obtained
the perihelion shift (41) and the light deflection angle (43) due to the
gravity of Kiselev black hole subject to the EoS wq =−1/3.
It is interesting that the results obtained by using VIM in most cases
coincide with the corresponding results obtained by the perturbation
theory or HPM. However, here we have avoided discussion of the
smallness of the physical parameters, the need for which may arise
only in solving the problem of convergence of the approximate
solutions. An important advantage of this method is the simplicity
of obtaining approximate solutions to the problems considered, and
also the possibility of simple obtaining the next approximation by
repeated applications of the iterative equations. We would like to
express the hope that VIM is able to find even more applications in
the field of astrophysics and cosmology than have been used here.

References

[1] S. Weinberg. Gravitation and Cosmology: Principles and Applications
of The General Theory of Relativity, John Wiley. Press, New York,
1972.

[2] G. V. Kraniotis, S. B. Whitehouse, ”Compact calculation of the Per-
ihelion Precession of Mercury in General Relativity, the Cosmolog-
ical Constant and Jacobi’s Inversion problem”, Classical and Quan-
tum Gravity, 20 (2003), 4817-4835. http://dx.doi.org/10.1088/0264-
9381/20/22/007

[3] J.-H. He, ”Homotopy perturbation technique”, Computer Meth-
ods in Applied Mechanics and Engineering, 178 (1999), 257-262.
http://dx.doi.org/10.1016/S0045-7825(99)00018-3

[4] J. H. He, ”Variational iteration method - a kind of non-linear analyti-
cal technique: some examples”, International Journal of Non-Linear
Mechanics, 34(4) (1999), 699-708. http://dx.doi.org/10.1016/S0020-
7462(98)00048-1

[5] J. H. He, ”Variational iteration method for autonomous ordinary dif-
ferential systems”, Applied Mathematics and Computation, 114(2-3)
(2000), 115-123. http://dx.doi.org/10.1016/S0096-3003(99)00104-6

[6] J. H. He, ”Variational iteration method-Some recent results and new
interpretations”, Journal of Computational and Applied Mathematics,
207(1) (2007), 3-17. http://dx.doi.org/10.1016/j.cam.2006.07.009

[7] V. Shchigolev, ”Homotopy Perturbation Method for Solv-
ing a Spatially Flat FRW Cosmological Model”, Univer-
sal Journal of Applied Mathematics, 2(2) (2014), 99-103.
http://dx.doi.org/10.13189/ujam.2014.020204

[8] V. Shchigolev, ”Analytical Computation of the Perihelion Precession
in General Relativity via the Homotopy Perturbation Method”, Uni-
versal Journal of Computational Mathematics, 3(4) (2015), 45-49.
http://dx.doi.org/10.13189/ujcmj.2015.030401

[9] V. K. Shchigolev, ”Calculating Luminosity Distance versus Red-
shift in FLRW Cosmology via Homotopy Perturbation Method”,
http://arxiv.org/abs/1511.07459

[10] F. Rahaman, S. Ray, A. Aziz, S. R. Chowdhury, D. Deb, Exact Ra-
diation Model For Perfect Fluid Under Maximum Entropy Principle,
http://arxiv.org/abs/1504.05838



International Journal of Physical Research 57

[11] Abdul Aziz, Saibal Ray, Farook Rahaman, ”A generalized model
for compact stars”, European Physical Journal C, 76 (2016), 248.
http://dx.doi.org/10.1140/epjc/s10052-016-4090-0

[12] Ya-Peng Hu, Hongsheng Zhang, Jun-Peng Hou, and Liang-Zun
Tang. ”Perihelion Precession and Deflection of Light in the
General Spherically Symmetric Spacetime”, Advances in High
Energy Physics, Volume 2014, Article ID 604321, 7 pages.
http://dx.doi.org/10.1155/2014/604321

[13] Hideyoshi Arakida, ”Note on the Perihelion/Periastron Advance Due to
Cosmological Constant”, International Journal of Theoretical Physics,
52 (2013), 1408-1414. http://dx.doi.org/10.1007/s10773-012-1458-2

[14] Christian Magnan, ”Complete calculations of the perihelion precession
of Mercury and the deflection of light by the Sun in General Relativity”,
http://arxiv.org/abs/0712.3709

[15] A.S. Fokas, C.G. Vayenas, D. Grigoriou, ”Analytical compu-
tation of the Mercury perihelion precession via the relativis-
tic gravitational law and comparison with general relativity”,
http://arxiv.org/abs/1509.03326

[16] A. G. Riess , et al. , ”Observational Evidence from Supernovae for an
Accelerating Universe and a Cosmological Constant”, Astronomical
Journal, Vol. 116 (1998), 1009. http://dx.doi.org/10.1086/300499

[17] S. Perlmutter, et al., ”Measurements of Omega and Lambda from 42
High-Redshift Supernovae”, Astrophysical Journal, Vol. 517 (1999),
565. http://dx.doi.org/10.1086/307221

[18] D. N. Spergel, et al., ”First-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Determination of Cosmological Param-
eters”, Astrophysical Jounal Supplement Series, 148 (2003), 175- 194.
http://dx.doi.org/10.1086/377226

[19] M. Tegmark, M. A. Strauss, et al., ”Cosmological parameters
from SDSS and WMAP”, Physical Review D, 69 (2004), 103501.
http://dx.doi.org/10.1103/PhysRevD.69.103501

[20] S. W. Allen, R. W. Schmidt, H. Ebeling, et al. , ”Constraints on dark
energy from Chandra observations of the largest relaxed galaxy clus-
ters”, Monthly Notices of the Royal Astronomical Society, 353 (2004),
457-467. http://dx.doi.org/10.1111/j.1365-2966.2004.08080.x

[21] V. V. Kiselev, ”Quintessence and black holes”, Classical and Quan-
tum Gravity, 20 (2003), 1187-1198. http://dx.doi.org/10.1088/0264-
9381/20/6/310

[22] Azka Younas, Mubasher Jamil, Sebastian Bahamonde, Saqib Hussain,
”Strong Gravitational Lensing by Kiselev Black Hole”, Physical Review
D, 92 (2015), 084042. http://dx.doi.org/10.1103/PhysRevD.92.084042

[23] Lei Jiao and Rong-Jia Yang, ”Accretion onto a Kiselev black hole”,
http://arxiv.org/abs/1605.02320

[24] Bushra Majeed, Mubasher Jamil, Parthapratim Pradhan, ”Ther-
modynamic Relations for Kiselev and Dilaton Black Hole”,
Advances in High Energy Physics, 2015 (2015), 124910.
http://dx.doi.org/10.1155/2015/124910

[25] Ibrar Hussain, Sajid Ali, ”Marginally Stable Circular Orbits in
Schwarzschild Black Hole Surrounded by Quintessence Matter”,
http://arxiv.org/abs/1601.01295

[26] M. Tari and M. Dehghan, ”On the Convergence of He’s Variational
Iteration Method”, Journal of Computational and Applied Mathematics,
207(1) (2007), 121-128. http://dx.doi.org/10.1016/j.cam.2006.07.017

[27] J. I. Ramos, ”On the Variational Iteration Method and Other
Iterative Techniques for Nonlinear Differential Equations,” Ap-
plied Mathematics and Computation, 199(1) (2008), 39-69.
http://dx.doi.org/10.1016/j.amc.2007.09.024

[28] Ernest Scheiber, ”On the Convergence of the Variational Iteration
Method”, http://arxiv.org/abs/1509.01779


	Introduction
	Preliminaries
	Geodesic equations
	Description of VIM

	Studying perihelion precession and deflection of light by VIM 
	Schwarzschild solution
	Reissner-Nordström spacetime
	Spacetime of Kiselev black hole

	Conclusion

