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Abstract 
 

In this research, free vibration of rectangular functionally graded (FG) plates with in-plane exponentially non-homogeneous material is 

investigated. Young’s modulus and mass density are assumed to vary between a metal-rich and a ceramic-rich zone along one in-plane 

direction of the plate. 

The governing differential equation is derived for the case, and a truncated Taylor series expansion technique is utilized to calculate natu-

ral frequencies. A Levy-type solution is obtained for plates having two simply supported edges parallel with the material gradient direc-

tion. Results for normalized natural frequency are compared with the 4th order Runge-Kutta method, and when possible with exact solu-

tion, showing an accurate agreement. Furthermore, a comprehensive parametric study is carried out to determine the effects of different 

boundary conditions, aspect ratios, and material variations on the free vibration of FGM plates. 

 

Nomenclature 
𝑐1, 𝑐2: non-homogeneity parameters of module of elasticity and density, respectively. 

C, F, S: Clamped, free, and simply supported edges of the plate, respectively. 

𝐷(x), 𝐸(x), 𝜌(x): flexural rigidity, module of elasticity and density of the material. 

𝐷0, 𝐸0, 𝜌0: Reference values of D(x), E(x) and ρ(x) at x = 0, respectively. 

N: number of terms in the truncated Taylor series expansion. 

𝑋(x); Displacement (shape) function along x. 

�̅�, �̅�, �̅�: Non-dimensional x and y direction, and deflection of the plate along z direction, respectively. 

𝜔, 𝛽: Natural frequency and normalized natural frequency, respectively. 

𝑎, 𝑏, 𝜆, ℎ: Length along x and y direction, aspect ratio, and thickness of the plate, respectively. 

 
Keywords: FGM Plate; In-Plane Inhomogeneity; Free Vibration; Semi-Analytical Solution. 

 

1. Introduction 

Composite materials are manufactured based on different industri-

al needs to optimize the response to external loads and reduce the 

residual and thermal stresses at desired regions of structures. 

Functionally graded materials (FGMs) are a class of composites 

with spatially continuous variation of mechanical properties along 

one or more directions. This has been achieved by gradually 

changing the composition of the constituent materials, usually 

ceramics and metals. Therefore, dealing with interfacial stress 

concentrations can be avoided. Due to their applicability, FGMs 

have garnered the attention of many researchers in different struc-

tures such as beams [1–3] and plates [4–6]. 

Vibration analysis of structures with directionally – but not 

through the thickness – FGM structures is of significance im-

portance. This has been addressed by in [7–9] for axially graded 

Euler-Bernoulli and Timoshenko beams. It has also been fully 

discussed for radially FGM circular plates by Sahraee [10], Shari-

yat and Alipour [11] and Hosseini-Hashemi et al. [12], [13]. How-

ever, information about rectangular plates with in-plane inhomo-

geneity is very limited.  

Fundamental frequencies of FGM rectangular plates with in-plane 

material inhomogeneity was studied by Liu et al. [14] using the 

Fourier series expansion and an integration technique. Uymaz et 

al. [15] presented natural frequencies for classical and higher order 

plates by the Ritz method. Both studies are limited to assuming a 

power form of the in-plane direction for changes in material prop-

erties. Therefore, due to lack of a wide range of data for in-plane 

inhomogeneous plates, it is needed to thoroughly investigate this 

problem from other aspects. 

In this paper, we investigated vibration characteristics of a rectan-

gular FGM plate with in-plane exponentially non-homogeneous 

material. Section 2, introduces the theory and methodology of the 

problem. The equation of motion for the exponentially FGM plate 

with in-plane exponentially non-homogeneous material is also 

derived in this section. Results are provided, and the accuracy of 

the method is investigated in section 3. Thereafter, a parametric 

study is performed to analyze the effects of different parameters 

including boundary conditions, material inhomogeneity and aspect 
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ratios on the frequency of the plate. Finally, the authors draw a 

conclusion based on the most important results. 

2. Theory and methodology 

In this section the theory and boundary conditions of the problem 

is explained. 

2.1. Finite Taylor series expansion technique 

The present method is a semi-analytical technique based on the 

truncated Taylor series expansion, with a recursive formulation 

resulting in reduction of time calculation. Based on the truncated 

Taylor series expansion, a function 𝑓(𝑥)  can be approximately 

replaced by Eq. (1) near a point x = x0: 

 

𝑓(𝑥) = ∑ (𝑥 − 𝑥0)𝑘𝐹(𝑘)𝑁
𝑘=0                                                         (1) 

 

Where F(k) is referred to the kth order differential transform of the 

function 𝑓(𝑥) and is defined as: 

 

𝐹(𝑘) =
1

𝑘!
[

𝑑𝑘𝑓

𝑑𝑦𝑘
]

𝑥=𝑥0

                                                                     (2) 

 

 

Accordingly, the inverse transform of Eq. (2) is expressed as Eq. 

(1), where uppercase and lowercase letters indicate the trans-

formed function 𝐹(𝑘) and the original function 𝑓(𝑥), respectively. 

Equation (1) is approximately true, if the terms ∑ (𝑥 −∞
𝑘=𝑁+1

𝑥0)𝑘𝐹(𝑘) become negligible. The appropriate value of N in Eq. 

(1) depends on the rate of convergence of the series and the de-

sired accuracy. 

 

Table 1 presents fundamental relations derived directly from the 

definition of the Taylor series expansion [16,17]. 

 
Table 1: Basic Rules for Transforming of Functions by Taylor Series 

Expansion 

Original Function Transformed Function 

𝒇(𝒙) = 𝜶𝒖(𝒙) ± 𝜷𝒗(𝒙) 𝑭(𝒌) = 𝜶𝑼(𝒌) ± 𝜷𝑽(𝒌)  

𝒇(𝒙) = 𝒖(𝒙)𝒗(𝒙)  𝑭(𝒌) = ∑ 𝑼(𝒏)𝑽(𝒌 − 𝒏)𝒌
𝒏=𝟎   

𝒇(𝒙) =
𝒅𝒎𝒖(𝒙)

𝒅𝒙𝒎
  𝑭(𝒌) = (𝒌 + 𝟏)(𝒌 + 𝟐) … (𝒌 + 𝒎)𝑼(𝒌 + 𝒎)  

𝒇(𝒙) = 𝒙𝒎  𝜹(𝒌 − 𝒎)  

𝒇(𝒙) = 𝒆𝒙𝒑 (𝝀𝒙)  
𝝀𝒌

𝒌!
  

2.2. Plate constitutive equation 

The constitutive equation of motion of a plate can be written as: 

 

𝐷(𝛻4𝑊) + 2
𝜕𝐷

𝜕𝑥

𝜕

𝜕𝑥
(𝛻2𝑊) + 2

𝜕𝐷

𝜕𝑦

𝜕

𝜕𝑦
(𝛻2𝑊) + (𝛻2𝐷)(𝛻2𝑊) −

(1 − 𝜈) (
𝜕2𝐷

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2 − 2
𝜕2𝐷

𝜕𝑥𝜕𝑦

𝜕2𝑊

𝜕𝑥𝜕𝑦
+

𝜕2𝐷

𝜕𝑦2

𝜕2𝑊

𝜕𝑥2 ) +  

𝜌ℎ 
𝜕2𝑊

𝜕𝑡2 = 𝑓(𝑥, 𝑦, 𝑡)                                                                      (3) 

 

In which 𝐷 =
𝐸ℎ3

12(1−𝜈2)
 is the flexural rigidity, and ℎ, 𝐸, 𝜌, 𝜈  are 

thickness, Young's modulus, density and Poisson's ratio of the 

material, respectively. For harmonic free vibration of the plate one 

can set 𝑊(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦) 𝑠𝑖𝑛(𝜔𝑡) , where  𝜔  is the natural 

frequency. Therefore for free vibration analysis, Eq. (3) can be 

reduced to: 

 

𝐷(𝛻4𝑤) + 2
𝜕𝐷

𝜕𝑥

𝜕

𝜕𝑥
(𝛻2𝑤) + 2

𝜕𝐷

𝜕𝑦

𝜕

𝜕𝑦
(𝛻2𝑤) + (𝛻2𝐷)(𝛻2𝑤) −

(1 − 𝜈) (
𝜕2𝐷

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2 − 2
𝜕2𝐷

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝜕2𝐷

𝜕𝑦2

𝜕2𝑤

𝜕𝑥2 ) − 𝜌ℎ𝜔2𝑤 = 0         (4) 

 

In this study, a plate with in-plane non-homogeneous material was 

investigated. Changing along only one direction was taken into 

account in order to consider limitations of construction. Without 

loss of generality, we assumed 𝐸 and 𝜌 change along the 𝑥 direc-

tion (see Fig. 1), and based on exponential functions as: 

 

𝐸 = 𝐸(𝑥) = 𝐸0𝑒𝑐1𝑥      𝜌 = 𝜌(𝑥) = 𝜌0𝑒𝑐2𝑥 .                               (5) 

 

Here, 𝐸0  and 𝜌0  are reference values of 𝐸 , 𝜌 at 𝑥 = 0. A metal-

rich or ceramic-rich region can be obtained by properly setting 

values of 𝐸0, 𝜌0, 𝑐1 and 𝑐2 in Eq. (5). This method is adopted and 

fully discussed by Li et al. [18] for beams. Therefore flexural ri-

gidity, 𝐷, is also a function of 𝑥, with constant 𝐷0 as a reference 

value at 𝑥 = 0 as: 

 

𝐷 = 𝐷0𝑒𝑐1𝑥   and  𝐷0 =
𝐸0ℎ3

12(1−𝜈)2
 .                                              (6) 

 

 
Fig. 1: Changes of Material Properties along One in-Plane Direction. 

 

Variations of 𝜈 are usually negligible, and it can be considered as 

constant [19]; hence for an FGM plate with in-plane inhomogenei-

ty, Eq. (4) can be simplified as: 

 

𝐷(𝑥)(𝛻4𝑤) + 2𝑐1𝐷(𝑥)
𝜕

𝜕𝑥
(𝛻2𝑤) + 𝑐1

2𝐷(𝑥)(𝛻2𝑤) −

(1 − 𝜈)𝑐1
2𝐷(𝑥)

𝜕2𝑤

𝜕𝑦2
− 𝜌(𝑥)ℎ𝜔2𝑤 = 0                                       (7) 

 

It should be mentioned that the neutral plane location is different 

from the mid plane location in plates with material changes along 

the thickness [20,21], the thing which is not true for plates with in-

plane changes. 

2.3. Normalization 

Introducing the following non-dimensional parameters 

 

�̅� = 𝑥 𝑎⁄     �̅� = 𝑦 𝑏⁄      �̅� = 𝑤 ℎ⁄     𝜆 = 𝑎 𝑏⁄                               (8) 

 

Eq. (7) can be rewritten as: 

 

𝐷0𝑒𝑐1𝑎�̅� (
ℎ

𝑎4

𝜕4�̅�

𝜕�̅�4 + 2
ℎ

𝑎2𝑏2

𝜕4�̅�

𝜕�̅�2𝜕�̅�2 +
ℎ

𝑏4

𝜕4�̅�

𝜕�̅�4 ) +

2𝐷0𝑐1𝑒𝑐1𝑎�̅� (
ℎ

𝑎3

𝜕3�̅�

𝜕�̅�3 +
ℎ

𝑎𝑏2

𝜕3�̅�

𝜕�̅�𝜕�̅�2) + 𝐷0𝑐1
2𝑒𝑐1𝑎�̅� (

ℎ

𝑎2

𝜕2�̅�

𝜕�̅�2 +

ℎ

𝑏2

𝜕2�̅�

𝜕�̅�2) − (1 − 𝜈)𝐷0𝑐1
2𝑒𝑐1𝑎�̅� ℎ

𝑏2

𝜕2�̅�

𝜕�̅�2 − 𝜌0𝑒𝑐2𝑎�̅�ℎ2𝜔2�̅� = 0       (9) 

 

Where 𝜆, 𝑎 and 𝑏 are aspect ratio, length and width of the plate, 

respectively. The governing equation for free vibration of FG 

plates with in-plane material inhomogeneity can be simplified to a 

non-dimensional form as: 

 

(
𝜕4�̅�

𝜕�̅�4 + 2𝜆2 𝜕4�̅�

𝜕�̅�2𝜕�̅�2 + 𝜆4 𝜕4�̅�

𝜕�̅�4 ) + 2𝑐1𝑎 (
𝜕3�̅�

𝜕�̅�3 + 𝜆2 𝜕3�̅�

𝜕�̅�𝜕�̅�2) +

𝑎2 (𝑐1
2 𝜕2�̅�

𝜕�̅�2 + 𝜈𝜆2 𝜕2�̅�

𝜕�̅�2 ) −  𝛽2�̅� = 0                                          (10) 

 

Where 

 

𝛽2 =
12(1−𝜈)2𝑎4𝜌0𝜔2

𝐸0ℎ2 .  

 

Considering two opposite edges, �̅� = 0 and  �̅� = 1, simply sup-

ported (Levy-type solution), one can write 

 

�̅�(�̅�, �̅�) = 𝑋(�̅�)𝑠𝑖𝑛(𝑚𝜋�̅�). 

 

In the remaining of the paper the bar ( )̅ symbol will not be shown 

for the sake of simplicity. Equation (10) can then be simplified as: 
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𝑋(4) + 𝐴1𝑋′′′ + 𝐴2𝑋′′ + 𝐴3𝑋′ + [𝐴4 − 𝛽2𝑒−𝑎𝑥(𝑐1−𝑐2)]𝑋 = 0 (11) 

 

Where 

 

𝐴1 = 2𝑐1𝑎   ,𝐴2 = 𝑎2𝑐1
2

− 2(𝑚𝜋𝜆)2 

 

𝐴3 = −2𝑐1𝑎(𝑚𝜋𝜆)2  , 𝐴4 = (𝑚𝜋𝜆)4 − 𝜈(𝑐1𝑎𝑚𝜋𝜆)2 

 

Applying the differential transform method presented in subsec-

tion 2.1 ‎0to Eq. (11) gives the following relation. 

 

(∏ (𝑘 + 𝑖)4
𝑖=1 )𝛸(𝑘 + 4) + 𝐴1. (∏ (𝑘 + 𝑖)3

𝑖=1 )𝛸(𝑘 + 3) +

𝐴2. (∏ (𝑘 + 𝑖)2
𝑖=1 )𝛸(𝑘 + 2) + 𝐴3. (𝑘 + 1)𝛸(𝑘 + 1) + 𝐴4𝛸(𝑘) −

𝛽2 ∑
[𝑎(𝑐2−𝑐1)]𝑛

𝑛!
𝑘
𝑛=0 𝛸(𝑘 − 𝑛) = 0                                              (12) 

 

Therefore, a recursive formula can be obtained by rearranging the 

above equation. 

 

𝛸(𝑘 + 4) = −
𝐴1

(𝑘+4)
𝛸(𝑘 + 3) −

𝐴2

(𝑘+4)(𝑘+3)
𝛸(𝑘 + 2) −

𝐴3

(𝑘+4)(𝑘+3)(𝑘+2)
𝛸(𝑘 + 1) −

𝐴4

∏ (𝑘+𝑖)4
𝑖=1

𝛸(𝑘) +

𝛽2

∏ (𝑘+𝑖)4
𝑖=1

∑
[𝑎(𝑐2−𝑐1)]𝑛

𝑛!
𝑘
𝑛=0 𝛸(𝑘 − 𝑛)                                             (13) 

 

Solving the problem depends on the recursive formula of Eq. (13) 

for 𝑘 = 0 or (4). Two of the four terms 𝑋(0) , 𝑋(1), 𝑋(2)  and 

𝑋(3) are given by boundary conditions, and the two remaining 

terms form a matrix. Setting the determinant of the coefficients to 

zero gives the natural frequency, 𝛽. 

3. Results and discussion 

In this section, validation of the model and results are presented. 

3.1. Validation 

For the situation where non-homogeneity parameters (𝑐1, 𝑐2)  in 

Eq. (13) are set to zero, analytical solutions are available. In Table 

2, a comparison was made between the DTM, 4th order Runge-

Kutta and those from analytical solution by Leissa [22]. 

It can be seen from Table 2 that the present method is precise in 

calculating frequencies, while RK4 demonstrates some small vari-

ations. Moreover, it is worth mentioning that obtaining more accu-

rate results from the RK4 took a few days, while DTM results 

were easily achievable in a few hours on the same computer. 

Table 2: Natural Frequencies of Homogeneous Square Plates 

B.Cs. method 
Mode  

1st 2nd 3rd 

SCSC 
Exact 28.9509 54.7431 69.3270 
DTM 

RK4 

28.9509 

28.9695 

54.7430 

54.7531 

69.3270 

69.7485 

SCSS 
Exact 23.6463 51.6743 58.6464 
DTM 

RK4 

23.6463 

23.6530 

51.6743 

51.6790 

58.6463 

58.8883 

SSSS 
Exact 19.7392 49.3480 49.3480 
DTM 

RK4 

19.7392 

19.7415 

49.3480 

49.3503 

49.3480 

49.4791 

SCSF 

Exact 12.6874 33.0651 41.7019 

DTM 

RK4 

12.6874 

12.6875 

33.0651 

33.0926 

41.7019 

41.7220 

SFSS 

Exact 11.6845 27.7563 41.1967 

DTM 

RK4 

11.6845 

11.6845 

27.7563 

27.7687 

41.1966 

41.1966 

SFSF 

Exact 9.6314 16.1348 36.7256 

DTM 

RK4 

9.6313 

9.6313 

16.1348 

16.1351 

36.7256 

36.7648 

 

The present method is semi-analytical, and results are dependent 

on the number of terms, N, in finite Taylor series expansion of 

Eq.(1). Here, Fig. 2 and Fig. 3 are presented to check the conver-

gence of solutions. They consider three different values for 𝑐1 and 

𝑐2 for FG plates with SCSC and SFSF boundary conditions, re-

spectively. Convergence diagrams for other boundary conditions 

are the same and have not been presented. 

In addition, They show that for larger values of non-homogeneity 

parameters, 𝑐1 and 𝑐2, more terms should be considered to obtain 

desired accuracy. For instance if the first natural frequency is con-

sidered, 𝑁 = 20 is a proper value for (𝑐1, 𝑐2) = (0,0) --Fig. 2-a 

and Fig. 3-a -- but it is not sufficient when (𝑐1, 𝑐2) = (1, 0.5), see 

Fig. 2-b and Fig. 3-b. Moreover as it is expected, obtaining higher 

natural frequencies needs consideration of higher values of 𝑁. 

3.2. Parametric studies 

In Table 3 to Table 8, the first three natural frequencies of FGM 

plates are presented for SSSS, SCSC, SFSF, SCSS, SFSS, and 

SCSF boundary conditions for three different aspect ratios and 

with non-zero values of 𝒄𝟏 and 𝒄𝟐. Changes in natural frequency 

versus aspect ratio, in-plane non-homogeneous parameters and 

different boundary conditions are presented for the first three vi-

brational modes of the plate in these tables. 

 

 

 

 
Fig. 2: Convergence of the First Three Natural Frequencies vs. N, Number of Terms, for FGM SCSC Plate for (𝑐1, 𝑐2)= A: (0, 0), B: (1, 0.5), C: (-1, -0.5). 
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Fig. 3: Convergence of the First Three Natural Frequencies vs. N, Number of Terms, for FGM SFSF Plate for (𝑐1, 𝑐2)= A: (0, 0), B: (1, 0.5), C: (-1, -0.5). 

 
Table 3: 1st Three Frequency Parameters of the FGM SSSS Plate 

 𝜆 = 1  𝜆 = 1.5  𝜆 = 2  

(𝑐1, 𝑐2) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) 

𝜔1 19.739 22.425 17.465 32.076 36.399 28.347 49.348 55.870 43.512 

𝜔2 49.348 55.947 43.572 61.685 69.959 54.484 78.957 89.571 69.758 

𝜔3 49.348 55.947 43.572 98.696 111.198 86.601 128.305 145.402 113.239 

 
Table 4: 1st Three Frequency Parameters of the FGM SCSC Plate 

 𝜆 = 1  𝜆 = 1.5  𝜆 = 2  

(𝑐1, 𝑐2) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) 

𝜔1 28.951 32.897 25.620 39.089 44.339 34.531 54.743 61.987 48.276 

𝜔2 54.743 61.987 48.276 79.525 90.176 70.229 94.585 107.223 83.505 

𝜔3 69.327 78.641 61.246 102.216 115.358 89.841 154.776 175.370 136.578 

 
Table 5: 1st Three Frequency Parameters of the FGM SFSF Plate 

 𝜆 = 1  𝜆 = 1.5  𝜆 = 2  

(𝑐1, 𝑐2) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) 

𝜔1 9.631 10.980 8.551 21.095 23.932 18.638 37.958 42.010 32.718 

𝜔2 16.135 18.419 14.344 25.311 28.800 22.429 40.866 47.702 37.151 

𝜔3 36.726 41.716 32.488 45.646 51.643 40.220 60.104 67.840 52.834 

 
Table 6: 1st Three Frequency Parameters of the FGM SCSS Plate 

 𝜆 = 1  𝜆 = 1.5  𝜆 = 2  

(𝑐1, 𝑐2) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) 

𝜔1 23.646 26.543 21.175 35.051 39.822 30.929 51.674 58.865 45.298 

𝜔2 51.674 58.865 45.298 69.913 78.986 61.973 86.134 97.669 76.069 

𝜔3 58.646 65.939 52.241 100.270 113.874 87.455 140.846 159.367 124.473 

 
Table 7: 1st Three Frequency Parameters of the FGM SFSS Plate 

 𝜆 = 1  𝜆 = 1.5  𝜆 = 2  

(𝑐1, 𝑐2) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) 

𝜔1 11.685 13.121 10.539 22.582 24.935 20.592 39.075 42.145 36.495 

𝜔2 27.756 31.735 24.415 38.252 44.171 33.096 54.195 62.551 46.741 

𝜔3 41.197 44.670 37.889 72.718 83.234 63.490 88.553 101.554 77.102 

 
Table 8: 1st Three Frequency Parameters of the FGM SCSF Plate 

 𝜆 = 1 𝜆 = 1.5 𝜆 = 2 
(𝑐1, 𝑐2) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) (0,0) (1, 0.5) (-1, -0.5) 

𝜔1 12.687 14.569 11.199 22.958 26.829 19.771 39.246 47.069 32.955 

𝜔2 33.065 36.921 29.777 42.516 47.185 38.265 57.508 63.887 51.507 

𝜔3 41.702 49.495 35.103 82.289 92.003 72.271 97.028 108.494 86.628 

 

4. Conclusion 

In this research, the formulation for plates with exponential gradi-

ent of the material and having levy-type boundary conditions was 

derived. A semi-analytical solution, truncated Taylor series expan-

sion technique, was employed to obtain approximate but highly 

accurate solution for free vibration of the FGM rectangular plate. 

A number of comparisons were made with the fourth order Runge-

Kutta method and those available in the literature, showing an 

excellent agreement. Finally, the dependency of the free vibration 

of plates on in-plane FG properties, boundary conditions and as-

pect ratios were investigated. All semi-analytical results presented 

in this paper may serve to validate other analytical and numerical 

methods. In addition and in the light of results the following con-

clusions can be drawn: 
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 Natural frequency is directly related to the value of non-

homogeneous parameters, 𝑐1  and 𝑐2 , and increases with 

their increment; 

 Larger number of terms, N, in the finite Taylor series ex-

pansion should be taken for higher values of non-

homogeneous parameters, 𝑐1 and 𝑐2, which is also directly 

proportioned to the desired vibrational modes; 

 Natural frequency has a direct relation with aspect ratio for 

all in-plane non-homogeneous parameters. 
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