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Abstract 

 

This paper summarizes a numerical study of double-diffusive natural convection in square inclined cavity filled with 

fluid saturated porous media. Transverse gradients of heat and solute are applied on the two horizontal walls of the 

cavity, while the other two walls are impermeable and adiabatic. The Darcy model with the Boussinesq approximation 

is used to solve the governing equations. The flow is driven by a combined buoyancy effect due to both temperature and 

concentration variations. A finite volume approach has been used to solve the non-dimensional governing equations. 

The results are presented in streamline, isothermal, iso-concentration, Nusselt and Sherwood contours for different 

values of the non-dimensional governing parameters. 
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1. Introduction 

The study of double-diffusive natural convection in fluid-saturated porous media has been motivated by its wide range 

of applications in many engineering fields such as the migration of moisture through air contained in fibrous insulations 

and the underground spreading of chemical contaminants through water-saturated soil. A comprehensive review of the 

natural convection due to combined thermal and solutal driving forces was conducted by Nield and Bejan [1], Ingham 

and Pop [2]. Most of the existing studies in the literature on double diffusive convection are concerned with rectangular 

cavities where the temperature and concentration gradients are either vertical or horizontal. The mass transfer resulting 

from high convection in a porous medium heated from below has been studied analytically and numerically by Trevisan 

and Bejan [3], they indicate the existence of different scaling laws for the dependence of the Nusselt number versus the 

Rayleigh and Lewis numbers. Mamou and Vasseur [4] studied numerically and theoretically the thermo-solutal 

bifurcation phenomena in porous enclosures subject to vertical temperature and concentration gradients. Numerical 

results of thermo-solutal natural convection have been reported by Bourich et al. [5] in the case of a horizontal porous 

cavity partially heated from below and differentially salted. It was found that multiple solutions are possible in pure 

thermal convection vanishes in the presence of horizontal solutal gradients when critical conditions, depending on the 

Rayleigh and Lewis number, are reached. Double diffusive convection in a porous enclosure submitted to cross 

gradients of temperature and concentration has been studied by the same author [6], the effects of the governing 

parameters on the flow structure and heat and mass transfer are analyzed. It is demonstrated that the solutal buoyancy 

force induced by horizontal concentration gradients eliminates the multiplicity of solutions obtained in pure thermal 

convection when N exceeds some critical value, which depends on Le and Ra. 

Mohamad and Bennacer [7] studied numerically the existence of multiple solutions in a horizontal porous enclosure 

heated horizontally and salted from the bottom. It was demonstrated that the multiplicity of solution obtained when Grm 

(modified Grashof number) =1000 and N varying in the range 0.8≤N≤1. It was observed that the bifurcation from 

monocellular dominating flow to bicellular dominating flow in this range of N, and in the case of thermally driven flow 

the concentration gradient reversal was possible. The onset of double diffusive convection in a horizontal porous cavity 

is studied numerically by Mahidjiba et al. [8] using linear stability analysis. Mixed boundary conditions for heat and 

solute are specified on the horizontal walls of the enclosure while the two vertical ones are impermeable and adiabatic. 
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It is shown that there exists a supercritical Rayleigh number for the onset of the supercritical convection and an over 

stable Rayleigh number, at which over stability may arise. The over stable regime is shown to exist up to a critical 

Rayleigh number at which the transition from the oscillatory to direct mode convection occurs. The existence of 

multiple steady-state solutions, for a given set of the governing parameters, was demonstrated by Kalla et al. [9] in a 

numerical and analytical study of double-diffusive natural convection within a horizontal porous layer, where the 

vertical and the horizontal walls are submitted respectively to uniform heat and mass fluxes. Costa [10] studied 

numerically the double-diffusive natural convection problem in parallelogrammic enclosures filled with fluid-saturated 

porous media.  Vertical walls are maintained at constant deferent levels of temperature and concentration, and the 

inclined walls are adiabatic and impermeable. It is shown that in terms of flow structure, temperature levels and 

concentration levels, strong changes occur in the parallelogrammic enclosure when changes are made on the Darcy-

modified Rayleigh number, on the inclination angle and on the aspect ratio of the enclosure. Very different behaviors 

are obtained for the combined or opposite global heat and mass flows that cross the parallelogrammic enclosure. 

A literature review shows that relatively little work is available on the case of natural convection in inclined enclosures. 

Therefore, the present paper investigates numerically double diffusive natural convection within a porous inclined 

cavity with localized heating and salting from below. The complete system of governing equations is solved 

numerically and results are obtained for a large range of the governing parameters. The global Nusselt and Sherwood 

numbers dependence on the dimensionless governing parameters and boundary conditions is explored in detail. 

2. Mathematical formulation 

The studied configuration, depicted in Fig.1, is a square-saturated porous cavity with length H. The cavity is tilted at an 

angle  with respect to the horizontal plane. The wall at Y=H represents the low-temperature (Tl) and low-concentration 

(Sl) boundary, and the wall at Y = 0 denotes the high temperature (Th) and high concentration (Sh) boundary. The other 

two walls are regarded as being insulated and impermeable. It is assumed that the third dimension of the cavity is large 

enough so that the fluid flow and heat and mass transfer can be considered two-dimensional. Hypotheses of 

incompressible and laminar flow are considered, and the saturated porous medium is assumed isotropic and 

homogeneous with constant thermo physical properties. Interaction between the thermal and concentration gradients, 

(Soret and Dufour effects) are neglected. The binary fluid that saturates the porous matrix is modeled as a Boussinesq 

incompressible fluid whose density variation can be expressed as: 
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The dimensionless governing equations, based on the above definitions, are as follows: 
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The dimensionless boundary conditions are: 
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From the dimensionless equations it is seen that the present problem is governed by three dimensionless parameters:  

the buoyancy ratio N, the Lewis number Le and the thermal Rayleigh number RaT defined as:
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Fig. 1: Physical Model And Geometry 

 

The average values of Nusselt and Sherwood numbers, evaluated on the bottom wall are given by: 
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3. Numerical solution 

The numerical solution of governing equations (4)–(7) with specified boundary conditions equations (8) is obtained 

using the volume finite method described by Patankar [11]. The computation domain is divided into rectangular control 

volumes with one grid located at the centre of the control volume that forms a basic cell. The set of conservation 

equations are integrated over the control volumes, leading to a balance equation for the fluxes at the interface. 

The iterative process, employed to find the stream function, temperature and concentration fields, was repeated until the 

following convergence criterion was satisfied  
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Where Φ stand for Ψ, T and S. The subscripts i and j denote grid locations in the (x, y) plane. A further decrease of the 

convergence criteria 10
−6

 does not cause any significant change in the final results. Numerical tests, using various mesh 

sizes, were done for the same conditions in order to determine the best compromise between accuracy of the results and 

computer time. A mesh size of 61 ×61 was adopted. The accuracy of the code was checked, modifying the thermal and 

solutal boundary conditions, to reproduce the results reported in 6. Good agreement can be seen from Table 1 with a 

maximum deviation of about 3.4%. 

 
Table 1: Validation of the Numerical Code, for =0, Ra = 200, N = 0, 3 and Various Le, in Terms of  Max, Nu and Sh 

Le max Nu Sh 

 Present work Ref.[6] Present work Ref.[6] Present work Ref.[6] 

0.1 11.625 11.706 4.484 4.633 1.209 1.221 

1 9.505 9.609 4.130 4.276 4.840 5.086 

10 9.104 9.171 3.983 4.078 15.870 17.02 

4. Results and discussion 

4.1. Considered situations 
 

There are four parameters governing the problem under analysis: Le, N, Ra, . All the presented results refer to moist 

air saturating the porous medium, with a low concentration of water vapor, thus fixing Le = 0.8. Many values for N, Ra 

and  in this work being taken N=(5, 2, 0.5 and 0), Ra = (100 and 50) and  = ( 0°, 30°, 45°, 60° and 90°). 

 

4.2. Flow structure, temperature and concentration fields, and heat and mass transfer 

visualization. 
 

An obvious characteristic of convection in the porous material is the appearance of single or multiple cell flows. The 

physical notion of a cell is associated with an identifiable body of fluid rotating in the same sense. Therefore, it has to 

be bounded by a closed streamline within which the vortices are of the same sign. Positive and negative streamlines Ψ 

correspond to counter clockwise and clockwise circulations, respectively. The convective motion will be referred to as 
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natural flow whenever the fluid is ascendant above the heated element. On the other hand the convective pattern will be 

called anti natural when the fluid is descendant above the heated element. 

Depending on the tilt angle () and the Darcy-Rayleigh number (Ra), single or multiple cell convection was found. For 

N = 0 (In the case of no solute transfer) and in the ranges 0° 90° and Ra < 100 the single cell mode was obtained. 

An example of this flow is given in Fig. 2 where the streamlines and isotherms are shown. 

The stream function shows a single extremum value whose magnitude becomes larger as Ra increases, indicating a 

more vigorous motion, as expected. As a function of the tilt angle, the  extremum value presents a maximum around 

45°. 

Results for = 30°, Ra=100 and combined global heat and mass flows are presented in Fig.3a for N = 2 and in Fig. 3b 

for N = 5. Main changes from Fig. 2 to 3 are due to the increase on the buoyancy term. Flow is more intense, the 

temperature and concentration gradients are higher near the horizontal walls and heat and mass transfer increases as N 

increases. As N increases, heat flows in a narrow region close to the right wall of the enclosure. In what concerns 

temperature and concentration fields, as Le = 0, 8 ~ 1, there are no major differences on these fields. 

 

 
A 

 
B 

    

 
c 

Fig. 2: Isotherms and Streamlines and For N = 0 (A) Ra=100,  = 0, Ψmin = −2.702, Ψmax= 2.713, (B)  =0, Ra = 50, Ψmin =0, Ψmax = 2.037, (C) 

 = 30°, Ra = 100, Ψmin =0, Ψmax = 6.59. 
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Fig. 3: Isotherms, Isoconcentration and Streamlines for Combined Global Heat and Mass Flows, Le = 0, 8,  = 30, Ra = 100, for (A) N = 2, Ψmin =0, 

Ψmax = 14.48, (B) N = 5, Ψmin =0, Ψmax = 21.98. 

 

4.3. Heat and mass transfer parameters 
 

Global Nusselt number for the situation of no solute transfer (N=0) is presented in Fig. 4, as function of the inclination 

angle  for Darcy-modified Rayleigh numbers of 50 and 100. The Nusselt number for Ra=100 being always greater 

than for Ra =50. For low values of  (    ) and high values of  (     ) the global Nusselt number is nearly the 

same. When        ) the Nusselt number increases for any value of Ra. It is observed the existence of a 

maximum Nusselt number for  near 45° and a minimum for  near 0°. A physical explanation can be given for the 

thermal diode effect. The hot fluid moves upwards and reaches the right wall, which has a favorable inclination, 

allowing some tangentiality to the flow flowing along the wall towards the cold wall. The same applies also for the 

descending cold fluid on the neighboring of the opposite horizontal wall. The flow is intense and the thermal gradients 

near the horizontal walls are high, thus resulting into high global heat transfer rates. 
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Fig. 4: Global Nusselt Number versus Inclination Angle  and For the Situation of Non-Solute Transfer (N=0) for Ra = 50 And 100. 

 

Results for combined global heat and mass flows and N =0.5, 2 and 5 are presented in Fig. 5a-b and c respectively for 

the same values of Ra of 50 and 100. In general terms, it can be observed that as Le =0.8  , there are no significant 

differences between the behavior and the numeric values of the global Nusselt and Sherwood numbers. The highest heat 

and mass transfer parameters occurring for the range         ) and the minimum Nusselt and Sherwood numbers 

correspond to     . It is also observed that the increasing of the buoyancy ratio, always leads to increases on the heat 

and mass transfer performances of the enclosure. 

 

  

  
Fig. 5: Global Nusselt Number Versus Inclination Angle  and for Ra = 50 and 100 (A) N=0.5, (B) N=2, (C) N=5. 
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5. Conclusion 

In terms of flow structure, temperature levels and concentration levels, strong changes occur in the square enclosure 

when changes are made on the Darcy-modified Rayleigh number and on the inclination angle of the enclosure. 

Increasing the source term of the vertical momentum equation, by increasing the Darcy-modified Rayleigh number or 

by increasing the buoyancy ratio, always leads to increases on the heat and mass transfer performances of the enclosure. 

Very different behaviors are obtained for the combined global heat and mass flows that cross the enclosure. In what 

concerns the heat and mass transfer performances of the square enclosure, some main aspects should be mentioned. 

Selected combinations of the buoyancy ratio and inclination angle can lead to considerably high heat and mass flows 

through the enclosure, and some combinations of these parameters can even lead to the maximum allowable heat and 

mass transfer. It is thus present a maximum transfer performance, which is of crucial importance when the enclosure is 

to be used as a transfer promoter. However, other selected inclination angles from the foregoing ones, can lead to 

essentially unchanged poor transfer performances of the enclosure. 
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