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Abstract 
 

In this manuscript, the main motivation is the implement of the advanced exp⁡(-ϕ(ξ)) -expansion method to construct the soliton solution, 

which contains some controlling parameters of two distinct equations via the Biswas-Arshed (BA) model and the (3+1)- dimensional 

Kadomtsev-Petviashvili (KP) equation. Here the behaviors of the solutions are presented in graphically under some condition on those 

parameters. The height of the wave, wave direction, and angle of the obtained wave are formed by substituting the particular values of the 

considerations over showing figures with control plot. With the collaboration of the advanced exp⁡(-ϕ(ξ))-expansion method, we construct 

entirely the solitary wave results as well as rogue type soliton, combined singular soliton, kink, singular kink, bright and dark soliton, 

periodic shape, double periodic shape soliton etc. Therefore, it is remarkable to perceive that the advanced exp⁡(-ϕ(ξ))-expansion method 

is easy, compatible and powerful mathematical tool to elucidation of exact results to other non-linear equivalences. 

 
Keywords: The BA Model; The (3+1)-Dimensional KP Equation; Advance Exp⁡(-Φ(Ξ))-Expansion Method; Traveling Wave Solution; Rouge Wave 

Solution; Periodic Solitons. 

 

1. Introduction 

Nonlinear partial differential equations (NLPDEs) are a significant topic, have spread widely around the world in many different types of 

dynamic structures. Many mathematicians and physicists are analyzing dynamic structures. Dynamic structures are a significant part of 

nonlinear physical simulations and it’s used in different fields of science and engineering such as electrical conduction, plasma physics, 

mathematical natural sciences, fluid mechanics, optical fiber, solid state physics, shallow water wave propagation, mathematical dynamics, 

mathematical dynamics and many others field [1-10]. Recently, many experts investigated the optical soliton solutions of the NLPDEs and 

its solutions play a momentous role in visualizing into the internal process of integrated physical phenomena. Many important approaches 

have been proposed for obtaining optical solutions of NLPDEs such as  

the modified polynomial expansion technique [11], the enhanced (G′ G⁄ )-expansion approach [12], the exp⁡(−φ(ξ))-expansion technique 

[13], the generalized Kudryashov approach [14], the new auxiliary equation technique [15], the lie symmetry approach [16], the extended 

Fan sub-equation technique [17], the complex technique [18], the improved Bernoulli sub-equation approach [19] and so on. 

We have considered the two NLPDEs via the BA and (3+1)-dimensional KP model in this manuscript. Many scholars have studied the BA 

and the (3+1)-dimensional KP models in the last few decays and found many optical solutions. In its continuity, using two distinct schemes 

in Refs [20, 21], they found the exact soliton solutions as well as the singular and dark solitons of the BA model with Kerr and power law 

in nonlinearity. The newly Φ6-model expansion technique applied to the BA model and attained the optical soliton solutions which are 

represents the dark, bright, singular, rational and periodic wave profile in Ref [22]. In addition, it has been observed that some scholars 

have found the optical solution of the BA model using the trial solution technique [23], the modified simple equation approach [24], the 

mapping technique [25], and the extended trial function approach [26], which are dark, bright, singular and periodic type wave profiles. 

On the other hand, the (3+1)-dimensional KP model was first introduced in 1970 by Soviet physicists Kadomtsev and Petviashvili which 

narrates the evolution of semi-one-dimensional shallow water waves while the effect of surface tension and viscosity is negligible [27]. 

After that many authors have studied the different form of KP model in [28, 29]. Recently, one soliton and one resonant soliton solutions 

have found from the (3+1)-dimensional KP model using consistent tanh expansion in [30]. Using Bilinear method in Ref [31], the KP 

model have explored the multiple lump solutions via 1-lump wave, 3-lump wave, 6-lump wave and 8-lump waves. In addition, the sim-

plified homogeneous balance method has been applied to the KP model and found the one single soliton and one double soliton solution 

in [32], and the Hirota bilinear transformation has been applied to the KP equation and obtained the one and two rough wave solutions in 

Ref [33].  

The purpose of the manuscript is to applying the advance exp( − ϕ(ξ))–expansion approah to the BA model and the (3+1)-dimensional 

KP model, and to find some optical soliton solutions namely w-shape, kink shape, periodic soliton solution shape, double periodic shape, 
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dark soliton shape, combined singular soliton, rogue wave profiles. Base on the above discussion in the previous literature, we can say that 

some wave profiles of the BA and (3+1)-dimensional KP models are new. Finally, it can be used to perfect water rollers of extended 

wavelength with softly non-linear repairing forces and regularity distribution and can also be used to model waves in ferromagnetic media, 

nonlinear optics, optical fiber, plasma physics.  

We have divided this article into follows, the literature review, objectives and background are discussed in section one. We talked about 

the description of the tactic in the section two. The governing equation have represented in the third section. In the fourth section, the 

propose method applied to the (3 + 1)-dimensional KP and BA model. Graphical and physical explanation have discussed in section five. 

Finally, conclusion is given in section six.  

2. The advanced 𝐞𝐱𝐩( − 𝛟(𝛏))-expansion method 

Section 2. is consisting of the summary of advance exp( − ϕ(ξ))-expansion method [34, 35]. We consider the NLPDEs which is of the 

form 

 

R(U,Ux, Uy, Ut, Uxx, Uxy, Uxt, Uyy, Uyt, Utt, …… ) = 0,⁡                                                                                                                                 (1) 

 

Where U = U(x, y, t) is the wave function which is to be determined, Ris a polynomial of U(x, y, t) and its partial derivatives. 

Step-1. First, we take a conversion variable to change all independent variables into a single variable, such as  

 

U(x, t) = u(η), η = kx + ly ± Vt.                                                                                                                                                                 (2) 

 

The wave varible mentioned in Eq. 2 turn the NLPDE (1) into an ODE as  

 

P(u, u′, u″, ⋯⋯⋯) = 0.                                                                                                                                                                               (3) 

 

Step-2. According to the advanced exp( − ϕ(ξ)-expanssion method, the exact solution of Eq. (3) is assumed to be 

 

u = ∑ ai exp( − ϕ(ξ))im
i=0                                                                                                                                                                              (4) 

 

Where a1,a2, a3…… , am; am ≠ 0, are constants to be determinted. The derivative of ϕ(ξ) satisfies the ODE in the succeeding system 

 

ϕ′(ξ) + A exp( − ϕ(ξ)) + Bexp(ϕ(ξ)) = 0,                                                                                                                                              (5) 

 

Then, the obtained results of ODE Eq. (5) are of the hyperbolic, trigonometric and the following forms: 

Case I: Hyperbolic function solution (when AB < 0): 

 

ϕ(ξ) = ln (√
A

−B
tanh( √−AB(ξ + C))),  

 

And 

 

ϕ(ξ) = ln (√
A

−B
coth(√−AB(ξ + C))).  

 

Case II: Trigonometric function solution (when AB> 0):  

 

ϕ(ξ) = ln (√
A

B
tan(√AB(ξ + C))) ,  

 

And 

 

ϕ(ξ) = ln (−√
A

B
cot( √AB(ξ + C))).  

 

Case III: When B > 0 and A = 0 

 

ϕ(ξ) = ln (
1

−B(ξ+C)
) ,  

 

Case IV: When⁡B = 0 and A ∈ ℝ 

 

ϕ(ξ) = ln(A(ξ + C)), 
 

WhereC is assimilating constants and AB < 0 or AB > 0 depends on sign of B.  

Step-3. On the substitution of Equivalence. (4) into Equivalence. (3) and making use of the Equivalence. (5), bringing together all the 

similar order of exp(ϕ(ξ)), then we acquire a polynomial form of exp(ϕ(ξ)). Equating each coefficient of this polynomial to zero, yields 

a set of algebraic system. 
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Step-4. Take up the approximation of the constants can be change to by measuring the mathematical terms come to be in step 4. Replacing 

the approximations of the constants organized with the preparations of Equivalence. (5), we will get new and far-reaching precise traveling 

wave arrangements of the nonlinear development Equivalence. (1). 

3. Governing model 

3.1. The ba model 

Recently, Biswas and Arshed [36] proposed a model with Kerr law nonlinearity, namely Biswas and Arshed (BA) model [20-26] is given 

as 

 

𝑖𝑞𝑡 + 𝑎1𝑞𝑥𝑥 + 𝑎2𝑞𝑥𝑡 + 𝑖(𝑏1𝑞𝑥𝑥𝑥 + 𝑏2𝑞𝑥𝑥𝑡)  
 

= 𝑖[𝜌(|𝑞|2𝑞)𝑥 + 𝑇(|𝑞|2)𝑥𝑞 + 𝜃|𝑞|2𝑞𝑥].                                                                                                                                                      (6) 

 

In Eq. (6), the dependent variable 𝑞(𝑥, 𝑡) signifies the wave velocity that depends upon spatial (𝑥) and temporal (𝑡) variables. First term 

portrays temporal evolution. 𝑎1 and 𝑎2 stand for the coefficient of GVD and spatio-temporal dispersion (STD); 𝑏1 and 𝑏2 represent third 

order STD and third order dispersion;𝐴 is the effect of self-steepening, 𝐵 and⁡𝜗are the effect of dispersions. 

To start integration process, let 

 

𝑞(𝑥, 𝑡) = 𝑈(𝜉)𝑒𝑖𝜂(𝑥,𝑡), 𝜉 = 𝑥 − 𝑣𝑡, 𝜂(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝑁                                                                                                                      (7) 

 

Where𝑈, 𝑣, 𝜂, 𝑘, 𝜔, and N denoted by amplitude portion of the wave, soliton speed, phase component, frequency, wave number and phase 

constant respectively. Next, put Eq. (7) into Eq. (6), the real part of Eq. (6) has the following form: 

 
(𝑎1 − 𝑎2𝑣 + 3𝑏1𝑘 − 2𝑏2𝑣𝑘 − 𝜔𝑏2)𝑈

′′  

 

−(𝜔 + 𝑎1𝑘
2 + 𝑏1𝑘

3 − 𝑎2𝜔𝑘 − 𝑏2𝜔𝑘
2)𝑈 = (𝜌 + 𝜃)𝑘𝑈3                                                                                                                          (8) 

 

And the imaginary part becomes 

 

(𝑏2𝑣𝑘
2 + 2𝑏2𝜔𝑘 − 3𝑏1𝑘

2 − 𝑣 − 2𝑎1𝑘 + 2𝑎2𝑣𝑘 + 𝑎2𝜔)𝑈
′ + (𝑏1 − 𝑏2𝑣)𝑈

′′′ = (3𝜌 + 2𝑇 + 𝜃)𝑈2𝑈′                                                   (9) 

3.2. The (3+1) dimensional KP equation 

Let us take into account the (3+1) dimensional KP equation [28-33] is in the following form: 

 

(𝑈𝑡 + 6𝑈𝑈𝑥 + 𝑈𝑥𝑥𝑥)𝑥 + 3𝑈𝑥𝑥 + 3𝑈𝑧𝑧 = 0,                                                                                                                                               (10)  

 

The dependent variable 𝑈(𝑥, 𝑦, 𝑡) represents the wave velocity.  

Using traveling wave variable 𝜉 = (𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 − 𝜔𝑡) to reduce the Eq. (10) becomes 

 

𝛼(−𝜔𝑈′ + 6𝛼𝑈𝑈′ + 𝛼3𝑈′′′)′ + 3(𝛼2 + 𝛾2)𝑈′′ = 0.                                                                                                                                (11)  

 

Eq. (11) is an assimilated equation. Then assimilate two times with the help of 𝜉 and we pursue the assimilating constant to zero. Then, we 

obtain  

 

𝛼4𝑈′′ + 3𝛼2𝑈2 + (3𝛼2 + 3𝛾2 − 𝛼𝜔)𝑈 = 0.                                                                                                                                            (12) 

 

Where 𝑈′ =
𝑑𝑈

𝑑𝜉
, 𝑈′′ =

𝑑2𝑈

𝑑𝜉2
. 

4. Applications 

4.1. For ba model 

In this segment, we applied the advanced 𝑒𝑥𝑝( − 𝜙(𝜉))-expansion method for the Eq. (8) and Eq. (9). Balancing the nonlinear terms and 

heighest order derivative terms we obtain the balance number 𝑚 = 2 for the Eq. (8) and Eq. 

So, the solution of the Eq. (8) and Eq. (9) takes the following form: 

 

𝑈(𝜉) = 𝐴0 + 𝐴1 exp(−𝜙(𝜉)) + 𝐴2 exp(−𝜙(𝜉))
2
                                                                                                                                    (13) 

 

Differentiating the Eq. (13) with respect to 𝜉 and putting the values of 𝑈,𝑈′, 𝑈″ and 𝑈‴ in Eq. (8) and Eq. (9) and equating the coefficient 

of 𝑒𝑖𝜙(𝜉)(𝑖 = 0,±1,±2. . . . . , ±𝑚) equal to zero. 

Solving those systems of equivalences, we obtain the results for real part that is Eq. (8) are as follows: 

Set one:  
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( )

3 2 2

1 2 1 2 1 2 1

2 2

6 2 21

2 2

k b k b kABb AB b k a k a ABa
v

AB kb a

   − − + + − − +
= −

+
 

 
3 2 2

1 2 1 2

0 1 2
0, , 0.

k Ab k A b k Aa kA a A
A A A

k B kB

  

 

− + − + −
= =  − =

+
 

 

Case-I: We get the following hyperbolic solutions for 𝐴𝐵 < 0, yields 

Family-1: 

 

( )
( )( )

3 2 2

1 2 1 2

1, 2
,

tanh

i

k Ab k A b k Aa kA a A

k B kB
q x t e

A
AB C

B



  

 



− + − + −
−

+
=  

− − +

 

 

( )
( )( )

3 2 2

1 2 1 2

3, 4
,

coth

i

k Ab k A b k Aa kA a A

k B kB
q x t e

A
AB C

B



  

 



− + − + −
−

+
=  

− − +

 

 

Where 

 

𝜉 = 𝑥 − 𝑣𝑡,  
 

( )

3 2 2

1 2 1 2 1 2 1

2 2

6 2 21

2 2

k b k b kABb AB b k a k a ABa
v

AB kb a

   − − + + − − +
= −

+
 

 

And 

 

𝜂(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝑁. 

 

Case-II: we get the following trigonometric solutions for 𝐴𝐵 > 0, yields 

Family-2: 

 

( )
( )( )

3 2 2

1 2 1 2

5,6
,

tan

i

k Ab k A b k Aa kA a A

k B kB
q x t e

A
AB C

B



  

 



− + − + −
−

+
=  

+

 

 

( )
( )( )

3 2 2

1 2 1 2

7,8
,

cot

i

k Ab k A b k Aa kA a A

k B kB
q x t e

A
AB C

B



  

 



− + − + −
−

+
= 

+

 

 

Where 𝜉 = 𝑥 − 𝑣𝑡, 
 

( )

3 2 2

1 2 1 2 1 2 1

2 2

6 2 21

2 2

k b k b kABb AB b k a k a ABa
v

AB kb a

   − − + + − − +
= −

+
 

 

And  

 

𝜂(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝑁  

 

Case-III and Case IV: When 𝐴 = 0 the calculated value of 𝐴0 and A2 are undefined. So, the result cannot be determined. For this reason, 

this case is discarded. Similarly, when 𝐵 = 0 the executing value of 𝐴0, 𝐴1 and A2 are undefined. So, they cannot be determined. So, this 

case also discarded. 

Again, we obtain the solutions for imaginary part that is Eq. (9) we get following set 

Set one:  

 
2

1 2 1 1 2

02

1 2 2

2 2

1 2 2 1 2 2 1 2 2 1

1 2 2 2

2 2 2 2 2 2 2

2 2

2

3 2 2 2
, 0,

2 2 1

12 12 12 12 6 6
,

2 4 3 6 2 4

6 2 2 3

0

k b k b ABb ka a
v A

k b ABb ka

k b b k b kab ka b a b b
A A

Tk b TABb k b k b AB b AB b Tka

k a k a T

A

 

 

   

   

− − + −
= =

− + −

− + − − +
=  −

− + + − − +

+ + − − −

=
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Case-I:We get the following hyperbolic solutions when 𝐴𝐵 < 0, 
Family-3: 

 

( )
( )( )

,
9,10

tanh

i
q x t e

A
AB C

B






=  

− − +

 

 

( )
( )( )

11,12
,

coth

iq x t e
A

AB C
B






=  

− − +

 

 

Where 

 
2 2

1 2 2 1 2 2 1 2 2 1

2 2 2

2 2 2 2 2 2

2 2 2

12 12 12 12 6 6

2 4 3 6 2

4 6 2 2 3

k bb k b kab ka b a b b
A

TK b TABb k b k b AB b AB b

Tka k a k a T

 

   

   

− + − − +
= −

− + + − −

+ + − − −

 

 

Where 

 

𝜉 = 𝑥 − 𝑣𝑡, 𝑣 =
3𝑘2𝑏1−2𝑘𝜔𝑏2−2𝐴𝐵𝑏1+2𝑘𝑎1−𝜔𝑎2

𝑘2𝑏2−2𝐴𝐵𝑏2+2𝑘𝑎2−1
,  

 

And 

 

⁡𝜂(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝑁.  
 

CCase-II: We get following trigonometric solution when 𝐴𝐵 > 0, 
FamilFamily-4:  

 

( )
( )( )

13,14
,

tan

iq x t e
A

AB C
B






=  

+
 

 

( )
( )( )

15,16
,

cot

iq x t e
A

AB C
B






= 

+
 

 

Where 

 
2 2

1 2 2 1 2 2 1 2 2 1

2 2 2

2 2 2 2 2 2 2

2 2

12 12 12 12 6 6

2 4 3 6 2 4

6 2 2 3

k bb k b kab ka b a b b
A

Tk b TABb k b k b AB b AB b Tka

k a k a T

 

   

   

− + − − +
= −

− + + − − +

+ + − − −

 

 

𝜉 = 𝑥 − 𝑣𝑡, 𝑣 =
3𝑘2𝑏1−2𝑘𝜔𝑏2−2𝐴𝐵𝑏1+2𝑘𝑎1−𝜔𝑎2

𝑘2𝑏2−2𝐴𝐵𝑏2+2𝑘𝑎2−1
,  

 

and 

 

⁡𝜂(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝑁.  
 

Case-III: When 𝐴 = 0 the calculated value of 𝐴0, 𝐴1 and A2 are undefined. So, the result cannot be determined. For this reason, this case 

is discarded.

 

Case-IV: When⁡𝐵 = 0 and 𝐴 ∈ ℝ 

Family-5: 

 

𝑞17,18(𝑥, 𝑡) = ±
𝛺

(𝜉+𝐶)
× 𝑒𝑖𝜂

   

Where 

 
2 2

1 2 2 1 2 2 1 2 2 1

2 2 2

2 2 2 2 2

2 2 2 2

12 12 12 12 6 6

2 4 3 6

2 4 6 2 2 3

k bb k b kab ka b a b b
A

Tk b TABb k b k b AB b

AB b Tka k a k a T

 

  

    

− + − − +
= −

− + + −

− + + + − − −

 

 

𝜉 = 𝑥 − 𝑣𝑡, 𝑣 =
3𝑘2𝑏1−2𝑘𝜔𝑏2−2𝐴𝐵𝑏1+2𝑘𝑎1−𝜔𝑎2

𝑘2𝑏2−2𝐴𝐵𝑏2+2𝑘𝑎2−1
,  

 

And 
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⁡𝜂(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝑁.  

4.2. For (3+1)-dimensional KP equation 

In this segment, we apply the advance 𝑒𝑥𝑝( − 𝜙(𝜉))-expansion approah for Eq. (12) and since here the nonlinear term is 𝑈2 and the highest 

order derivative is⁡𝑈′′. So, the balance number is 𝑚 = 2. So, the solution of the Eq. (12) takes the Eq. (13) and differentiating the Eq. (13) 

with respect to 𝜉 and putting the values of 𝑈 and 𝑈″ in Eq. (12) and equating the coefficient of 𝑒𝑖𝜙(𝜉)(𝑖 = 0,±1,±2. . . . . , ±𝑚) equal to 

zero.Solving those systems of equations, we obtain the solutions for the Eq. (12) are 

 

Set-1: 

 
4 2 2

2 2 2

0 1 2

4 3 3 2
, , , 0, 2

3

AB
A AB A A A

  
    



− − −
= = − = − = = −  

 

Set-2:  
4 2 2

2 2 2

0 1 2

4 3 3 2
, , , 0, 2

3

AB
A AB A A A

  
    



− −
= = − = − = = −  

 

Case-I:We get following hyperbolic solutions when 𝐴𝐵 < 0 

Family-6:  

 

( )
( )( )

2

2

219

2 2
,

3 tanh

AB
U x t AB

AB C





= − +

− +
 

 

( )
( )( )

2

2

220

2 2
,

3 coth

AB
U x t AB

AB C





= − +

− +
 

 

Where 

 

𝜉 = (𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 − 𝜔𝑡)  
 

And 

 

𝜔 = −
−4𝛼4𝐴𝜇−3𝛼2−3𝛾2

𝛼
. 

 

Family-7: 
 

( )
( )( )

2

2

221

2
, 2

tanh

AB
U x t AB

AB C





= − +

− +
 

 

( )
( )( )

2

2

222

2
, 2

coth

AB
U x t AB

AB C





= − +

− +
 

 

Where 

 

𝜉 = (𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 − 𝜔𝑡)  
 

And 

 

𝜔 = −
−4𝛼4𝐴𝜇−3𝛼2−3𝛾2

𝛼
. 

 

Case-II: We get following trigonometric solutions when 𝐴𝐵 > 0, 
Family-8:  
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2
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

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Family-9:  
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2
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cot
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U x t AB

AB C





= − −

+
 

 

Case-III and Case IV: When 𝐴 = 0, the calculated value of 𝐴0, 𝐴1 and A2 are undefined. So, the result cannot be determined. For this 

reason, this case is discarded. When 𝐵 = 0, the calculated value of 𝐴0 and A1 are undefined. So, the result cannot be determined. For this 

reason, this case is discarded. 

5. Physical and graphical explanations 

In this segment, we will deliberate the physical interpretation and graphical demonstration of the gained exact and solitary wave result of 

the (3+1) dimensional KP and BA Model. By applying the advanced 𝑒𝑥𝑝( − 𝜙(𝜉))-expansion method, the (3+1) dimensional KP equation 

and BA models affords the exact traveling wave solutions. The solutions 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞9, 
𝑞10, 𝑞11, 𝑞12, 𝑈19, 𝑈20, 𝑈21, 𝑈22 are all hyperbolic function solutions.The solutions 𝑞5, 𝑞6, 𝑞7, 𝑞8, 𝑞13, 𝑞14, 𝑞15, 𝑞16, 𝑈23. 
𝑈25, 𝑈26 are all trigonometric function results and the rational function solutions being 𝑞17, 𝑞18.  

According to the condition 𝐴𝐵 < 0, the soliton solution 𝑈19 represents the w-shape wave profile for selecting the free parameters 𝐴 =

−2,𝐵 = 3, 𝛼 = 0.11, 𝐶 = √−3, 𝑧 = 0 within the displacement −10 ≤ 𝑥, 𝑡 ≤ 10. The 3D plot wave structure of the solution 𝑈19 depicted 

in Fig. 1(a). It can be seen that the wave propagates along with 𝑥- and 𝑡- axes. Fig. 1(b) represents the 2D line plot of (a) at 𝑥 = −2,0,2 of 

the 𝑈19 within displacement −5 ≤ 𝑡 ≤ 5.Fig.1(c) represents density plot of 𝑈19.For inflection point we need to observe concave up and 

concave down of our desired sketch.by the observation we find that (-3,0.09) at that point sketch show concave up to concave down by 

definition of inflection point we define that point. 
According to the condition 𝐴𝐵 < 0, imaginary form the of solution 𝑈20 which represents Kink-Shape with 𝐴 = −2, 𝐵 = 3, 𝛼 = .2, 𝐶 =

√−2, 𝑧 = 0⁡within the displacements −10 ≤ 𝑥, 𝑡 ≤ 10. Fig. 2(a) represents 3D plot. Fig. 2(b) indicates the 2D line plot of (a) at 𝑥 =
−2,0,2 of the 𝑈20 within displacement −5 ≤ 𝑡 ≤ 5 and Fig.2(c) shows density plot. 

In the same way the solution 𝑈23 is a normal form and the figure indicates in normal system which represents in Fig. 3. It indications the 

Periodic Soliton solution-Shape type exact traveling wave solution 𝐴 = 3, 𝐵 = 2, 𝛼 = 10, 𝐶 = 2, 𝑧 = 0⁡within the displacements −10 ≤
𝑥 ≤ 10⁡and −10 ≤ 𝑡 ≤ 10. Fig. 3(a) show 3D plot. Fig. 3(b) shows the 2D line plot of (a) at 𝑥 = −2,0,2 of the 𝑈23 within displacement 

−5 ≤ 𝑡 ≤ 5 and Fig.3(c) shows density plot. 

The solution 𝑞9 is a complex form and the figure represents an imaginary form which represents in Fig. 4. It spectacles the singular kink-

Shape type exact traveling wave solution with ⁡𝐴 = −2, 𝐵 = 3,𝜔 = 1, 𝑏1 = 1, 𝑏2 = 1, 𝑎1 = 2, 𝑎2 = 1, 𝑘 = .005,𝑁 = 1, 𝐶 = 1, 𝜃 =

11, 𝘱 = √−2. 2⁡within the displacements −10 ≤ 𝑥, 𝑡 ≤ 10⁡. Fig. 4(a) show 3D plot. Fig. 4(b) shows the 2D line plot of (a) at 𝑥 = −2,0,2 

of the 𝑞9 within displacement −5 ≤ 𝑡 ≤ 5 and Fig.4(c) shows density plot. 

And the solution 𝑞11 is a complex form and the figure indicates in absolute system which represents in Fig. 5. It shows the Dark Soliton-

Shape kind exact traveling wave solution with ⁡𝐴 = −2,𝐵 = 3,𝜔 = 3/165, 𝑏1 = 1, 𝑏2 = 1, 𝑎1 = 2, 𝑎2 = 1, 𝑘 = 1,𝑁 = 1, 𝐶 = 1, 𝜃 =
1⁡within the displacements −10 ≤ 𝑥, 𝑡 ≤ 10⁡. Fig. 5(a) represents 3D plot. Fig. 5(b) indicates the 2D line plot of (a) at 𝑥 = −2,0,2 of the 

𝑞11 within displacement −5 ≤ 𝑡 ≤ 5 and Fig.5(c) indicates density plot. 

Again the solution 𝑞13 is a complex form and the figure in imaginary form which represents in Fig. 6. Its expressions the Double periodic-

Shape kind exact traveling wave solution with ⁡𝐴 = 3,𝐵 = 2,𝜔 = 1, 𝑏1 = 1, 𝑏2 = 1, 𝑎1 = 2, 𝑎2 = 1, 𝑘 = 1,𝑁 = 1, 𝐶 = 1, 𝜃 = 1, 𝑇 =
1, 𝘱 = 1⁡within the displacements −.5 ≤ 𝑥 ≤ 1.5 and −.4 ≤ 𝑡 ≤ 1.5. Fig. 6(a) show 3D plot. Fig. 6(b) indicates the 2D line plot of (a) at 

𝑥 = −2,0,2 of the 𝑞13 within displacement −5 ≤ 𝑡 ≤ 5 and Fig.6(c) shows density plot. 

Also the solution 𝑞17 is a complex form and sketch of absolute form and real form represented in Fig. 7 and Fig. 8 respectively. Fig. 7 

represent the Combined singular soliton –Shape and Fig. 8 represent rouge kind shape with⁡𝐴 = −2, 𝐵 = 0,𝜔 = .003, 𝑏1 = 1, 𝑏2 = 1, 𝑎1 =
2, 𝑎2 = 1, 𝑘 = 1,𝑁 = 1, 𝐶 = 1, 𝜃 = 1/20, 𝑇 = 1, 𝘱 = 2⁡within the displacements −10 ≤ 𝑥, 𝑡 ≤ 10. And also represent 2D line plot for 

𝑥 = −2,0,2 within displacement−5 ≤ 𝑡 ≤ 5 also represent the density plot.  
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Fig. 1: 3D , 2D and Density Wave Structure of the Solution 𝑈19. 
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Fig. 2: 3D, 2D and Density Structure of the Complex Part of Solution 𝑈20. 
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Fig. 3: 3D, 2D and Density Wave Structure of the Solution 𝑈23.. 
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Fig. 4: 3D, 2D and Density Structure of the Complex Part of Solution𝑞9. 
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Fig. 5: 3D, 2D and Density Wave Structure of the Solution|𝑞11|.. 
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Fig. 6: 3D, 2D and Density Structure of the Complex Part of Solution𝑞13.. 
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(C) 

 
Fig. 7: 3D, 2D and Density Wave Structure of the Solution|𝑞17|.. 

 
(A) (B) 

  
  

(C) 

 
Fig. 8: 3D, 2D and Density Wave Structure of the Real Part of Solution⁡𝑞17.. 

6. Conclusion 

In this work, the advanced 𝑒𝑥𝑝( − 𝜙(𝜉))-expansion method are explored successfully and constructing the significant shape solution with 

controlling parameters. These solutions are elaborated systematically as well as graphically with 3D, 2D and density plot. Finally, it is 

found that the advanced 𝑒𝑥𝑝( − 𝜙(𝜉))-expansion method to BAM and KP equation and such typically solutions might be beneficial to 

analyze and characterize many nonlinear phenomena in nonlinear optic, quantum field theory, solid state physics. This method offers 

solutions with free parameters that might be important to explain some intricate nonlinear physical phenomena. The obtained solutions in 

this paper reveal that the method is a very effective and easily applicable. 
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