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Abstract 
 

The exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the central mechanism of complex physical phe-

nomenon. More precisely, in this paper, we acquired new exact solutions to the (2+1)-dimensional cubic Klein–Gordon (cKG) and 

(3+1)-dimensional Zakharov–Kuznetsov (ZK) equations by using the modified Kudraysov method. As results, a portion of the new accu-

rate voyaging wave answers for the situations above is officially delivered. All arrangements are plotted in the perspective on three-

dimensional (3D) and two-dimensional (2D) line shape through the MATLAB programming for exploring the genuine meaning of the 

concentrated on conditions. The periodic type of solution is created using a modified Kudryashov approach, which is distinct from the 

other methods investigated. 
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1. Introduction 

Nonlinear phenomena are found in many domains of science and engineering, including fluid mechanics, plasma physics, optical fibers, 

biology, solid state physics, chemical kinematics, chemical physics, and so on. It is well acknowledged that these complex physical pro-

cesses can be described using NLEEs. So, study to find exact solutions of NLEEs is very important. A wide collection of researchers is 

eager to discover effective methods for discovering nonlinear equations analytic and numerical solutions. To find traveling wave solu-

tions to nonlinear scientific phenomena like, the Hirota’s bilinear transformation method [1], [2], the tanh-function method [3], the 

(G′/G)-expansion method [4-12], the Exp-function method [13-16], the homogeneous balance method [17], [18], the F-expansion method 

[19], the Adomian decomposition method [20], the homotopy perturbation method [21], the extended tanh-method [22], the auxiliary 

equation method [23], the Jacobi elliptic function method [24], Weierstrass elliptic function method [25], modified Exp-function method 

[26], the modified simple equation method [27-30], the extended multiple Riccati equations expansion method [31-34] they found many 

powerful and efficient methods and techniques. 

Recently, utilizing computational software packages such as Maple, Mathematica, and MATLAB, researchers were able to readily build 

and apply these strategies for minimizing computational difficulties. New traveling wave solutions are being investigated, Firstly, we 

consider the (2+1) dimensional cubic Klein-Gordon equation is given by  

 

ψxx + ψyy − ψtt + αψ + βψ3 = 0,                                                                                                                                                               (1) 

 

Where ψ = ψ(x, y, t) and α, β are non zero constants. It's a specific form of nonlinear evolution equation that can be found in a wide 

range of applications. 

Secondly, we consider the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equation is given by  

 

ψt + aψψx + ψxx + ψyy + ψzz = 0,                                                                                                                                                             (2) 

 

Where ψ = ψ(x, y, z, t). 

The major goal of this study is to use an efficient method known as the modified Kudryashov method to generate new accurate traveling 

wave solutions of the (2+1)-dimensional cubic Klein-Gordon and the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equations [10], [35], 

[36]. 

http://creativecommons.org/licenses/by/3.0/
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The remainder of this document is organized as follows: The modified Kudryashov method approach is described in Sections 2 and 3. In 

Section 3, we will use the methods described above to obtain novel accurate traveling wave solutions for the (2+1) dimensional cubic 

Klein-Gordon equation and the (3+1) dimensional Zakharov–Kuznetsov (ZK) equation. Finally, section 4 concludes with a statement 

summarizing the findings. 

2. Outline of the modified kudryashov method 

The modified Kudryashov method is a reliable problem-solving methodology that has gotten a lot of attention in the search for new exact 

solutions to nonlinear differential equations in mathematical physics. To begin, we will offer a quick overview of the modified 

Kudryashov method approach [10], which is used to find new exact solutions to a nonlinear partial differential equation. We use a non-

linear partial differential equation to achieve this goal 

 

F(u, ux, ut, uxx, uxt, utt, . . . . ) = 0,                                                                                                                                                                   (3) 

 

Where the function u = u(x, t) is unknown and F is a polynomial. The main steps are as follows:  

Step 1: Introducing the transformation u(x, t) = U(ξ) where ξ = kx + ωt, varies according to Eq. (3). This reduces to the following non-

linear ordinary differential equation 

 

P(U, U′, U′′, . . . . ) = 0,                                                                                                                                                                                     (4) 

 

Where P is a polynomial of U and its derivatives, and the superscripts denote the ordinary derivatives with respect to ξ.  

Step 2: Let us assume that the solution U(ξ) of the nonlinear Eq. (4) can be written as 

 

U(ξ) = A0 + ∑ AiQ
i(ξ)N

i=1 , AN ≠ 0,                                                                                                                                                               (5) 

 

Where Ai (i = 0,1 … N) are later determined, N is a positive integer that may be obtained using the balancing principle on Eq. (5), and 

Q(ξ) satisfies the following new equation 

 

Q′(ξ) = (Q2(ξ) − Q(ξ))ln(A),                                                                                                                                                                       (6) 

 

With the exact solution Q(ξ) =
1

1+dAξ, where A ≠ 0,1. 

Step 3: We get a system of algebraic equations in parameters Ai (i = 0,1 … N), k, and ω by inserting Eq. (5) and Eq. (6) into Eq. (4) and 

performing basic mathematical operations. By setting the obtained values in Eq. (5), finally generates new exact solutions for the Eq. (3). 

3. Mathematical analysis 

3.1. The (2+1)-dimensional cubic Klein-Gordon (cKG) equation 

By considering the following transformation: 

 

ψ(x, y, t) = U(ξ), ξ = x + y − λt                                                                                                                                                                    (7) 

 

Using Eq. (7) into the (2+1) dimensional cubic Klein-Gordon equation (1), which can be reduced to a nonlinear ordinary differential 

equation as shown below 

 

(2 − λ2)U′′ + αU + βU3 = 0                                                                                                                                                                         (8) 

 

N=1 is found using the homogeneous balancing principle. The answer to Eq. (8) then takes the form 

 

U(ξ) = A0 + A1Q(ξ)                                                                                                                                                                                       (9) 

 

By substituting Eq. (9) along with its second derivative into Eq. (8), and equating the like powers of Q(ξ), then we get in the following 

system of equations: 

 

−2 (λ2 − 2)ln(A)2A1 + βA1
3 = 0,  

 

3 (λ2 − 2) ln(A)2A1 + 3βA0A1
2 = 0,  

 

−(λ2 − 2) ln(A)2A1 + αA1 + 3βA0
2A1 = 0,  

 

βA0
3 + αA0 = 0. 

 

By solving the above system, we receive the following different solution sets: 

 

Set–I: λ =
√2 ln(A)2−2α 

ln(A)
, A0 =

√−αβ

β
, and A1 =

2α

√−αβ
. 

 

Set-I possesses the following exact solution of the (2+1) dimensional cubic Klein-Gordon equations extracted: 
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ψ1(x, y, t) =
√−αβ

β
+

2α

√−αβ(1+dA
−

√2ln(A)2−2α t
2ln(A) +x+y

)

                                                                                                                                         (10) 

 

Set–II: λ =
√2 ln(A)2−2α 

ln(A)
, A0 = −

√−αβ

β
, and A1 = −

2α

√−αβ
. 

 

Set-II possesses to the following exact solution of the (2+1) dimensional cubic Klein-Gordon equations determined: 

 

ψ2(x, y, t) = −
√−αβ

β
−

2α

√−αβ(1+dA
−

√2ln(A)2−2α t
2ln(A) +x+y

)

                                                                                                                                     (11) 

 

Set–III: λ = −
√2 ln(A)2−2α 

ln(A)
, A0 =

√−αβ

β
, and A1 =

2α

√−αβ
. 

 

Set-II possesses to the following exact solution of the (2+1) dimensional cubic Klein-Gordon equations determined: 

 

ψ3(x, y, t) =
√−αβ

β
+

2α

√−αβ(1+dA
√2ln(A)2−2α t

2ln(A)
+x+y

)

                                                                                                                                           (12) 

 

Set–IV: λ = −
√2 ln(A)2−2α 

ln(A)
, A0 = −

√−αβ

β
, and A1 = −

2α

√−αβ
. 

 

Set-II possesses to the following exact solution of the (2+1) dimensional cubic Klein-Gordon equations determined: 

 

ψ4(x, y, t) = −
√−αβ

β
−

2α

√−αβ(1+dA
√2ln(A)2−2α t

2ln(A) +x+y
)

                                                                                                                                       (13) 

 

Fig.1, Fig.2, Fig.3, and Fig.4 show the three-dimensional (3D) and two-dimensional (2D) plots of Eq. (10), Eq. (11), Eq. (12), and Eq. 

(13) correspondingly. The plots of Eqs. (10), (11), (12), and (13) appear to have a periodic characteristic that is distinct from others. 

 

 
Fig. 1: (a)-(b)-(c) 3D illustrations of the Eq. (10) for the choosing arbitrary parametr 𝐴 = −1, 𝛼 = 5, 𝛽 = 2, 𝑦 = 0, 𝑑 = 2 within −10 ≤ 𝑥 ≤ 10,  
−10 ≤ 𝑡 ≤ 10, and (d)-(e)-(f) 2D line illustrations of (a)-(b)-(c) at 𝑡 = 1 , respectively. 

 

 
Fig. 2: (a)-(b)-(c) 3D illustrations of the Eq. (11) for the choosing arbitrary parameters 𝐴 = −1, 𝛼 = 5, 𝛽 = 2, 𝑦 = 0, 𝑑 = 2 within −10 ≤ 𝑥 ≤ 10,  
−10 ≤ 𝑡 ≤ 10, and (d)-(e)-(f) 2D line illustrations of (a)-(b)-(c) at 𝑡 = 1 , respectively. 
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Fig. 3: (a)-(b)-(c) 3D illustrations of the Eq. (12) for the choosing arbitrary parameters 𝐴 = −1, 𝛼 = 5, 𝛽 = 2, 𝑦 = 0, 𝑑 = 2 within −10 ≤ 𝑥 ≤ 10,  
−10 ≤ 𝑡 ≤ 10, and (d)-(e)-(f) 2D line illustrations of (a)-(b)-(c) at 𝑡 = 1 , respectively. 

 

 
Fig. 4: (a)-(b)-(c) 3D illustrations of the Eq. (13) for the choosing arbitrary parameters 𝐴 = −1, 𝛼 = 5, 𝛽 = 2, 𝑦 = 0, 𝑑 = 2 

within −10 ≤ 𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10, and (d)-(e)-(f) 2D line illustrations of (a)-(b)-(c) at 𝑡 = 1 , respectively. 

3.2. The (3+1)-dimensional Zakharov –Kuznetsov (ZK) equation 

By introducing the following transformation: 

 

𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝜆𝑡                                                                                                                                                     (14) 

 

By employing the transformation Eq. (14) into the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equation Eq. (2) can be converted to a 

nonlinear ordinary differential equation as follows 

 

−𝜆𝑢 +
1

2
𝑎𝑢2 + 3𝑢′ = 0                                                                                                                                                                                (15) 

 

N=1 is found using the homogeneous balancing principle. Then, the solution of Eq. (15) takes the form 

 

𝑈(𝜉) = 𝐴0 + 𝐴1𝑄(𝜉)                                                                                                                                                                                    (16) 

 

By substituting Eq. (16) along with its first derivative into Eq. (15), and equating the like powers of (𝜉) , then we get in the following 

system of equations: 

 
1

2
𝐴1(𝑎 𝐴1 + 6 𝑙𝑛(𝐴)) = 0, 

 

𝐴1(𝑎 𝐴0 − 𝜆 − 3 𝑙𝑛(𝐴)) = 0, 

 
1

2
𝐴0(𝑎 𝐴0 − 2𝜆) = 0. 

 

By solving the above system, we receive the following different solution sets: 

 

Set–I: 𝜆 = −3𝑙𝑛(𝐴), 𝐴0 = 0, 𝐴1 = −
6 𝑙𝑛(𝐴)

𝑎
 

 

Set-I corresponds the following exact solution of the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equations derived: 

 

ψ1(x, y, z, t) =
6 ln (A)

a (1+dA3 ln(A)t+x+y+z)
                                                                                                                                                                (17) 

 

Set-II: λ = 3ln(A), A0 =
6 ln(A)

a
, A1 = −

6 ln(A)

a
 

 

Set-II corresponds the following exact solution of of the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equations explored: 
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ψ2(x, y, z, t) =
6 ln(A)

a
−

6 ln (A)

a (1+dA−3 ln(A)t+x+y+z)
                                                                                                                                                (18) 

 

In Fig.5 and Fig.6, the three-dimensional (3D) and two-dimensional (2D) plots of Eq. (17) and Eq. (18) are shown, respectively. The 

plots appear to have a periodic activity that is distinct from others. 

 

 
Fig. 5: (a)-(b)-(c) 3D illustrations of the Eq. (18) for the choosing arbitrary parameters A = −18, a = −7, y = 0, z = 0, d = 8  within −10 ≤ x ≤
10, −10 ≤ t ≤ 10, and (d)-(e)-(f) 2D line illustrations of (a)-(b)-(c) at y = 0, z = 0, t = 1 , respectively. 

 

 
Fig. 6: (a)-(b)-(c) 3D illustrations of the Eq. (17) for the choosing arbitrary parameters A = −18, a = −7, y = 0, z = 0, d = 8  within −10 ≤ x ≤
10, −10 ≤ t ≤ 10, and (d)-(e)-(f) 2D Line Illustrations of (a)-(b)-(c) at y = 0, z = 0, t = 1 , respectively. 

4. Conclusions 

The modified Kudraysov method is used to solve the (2+1)-D cKG and (3+1)-D ZK equations in this study as a robust strategy. A num-

ber of new accurate traveling wave solutions for the nonlinear equations are explicitly derived as a result of this work. It should be noted 

that the validity of the results presented in this study is tested by re-entering each new solution into its original equation. 
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