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Abstract

In this paper, we investigate some innovative and exact travelling wave solutions to the time-fractional phi-four equation and the (2+1)
dimensional Calogero-Bogoyavlanskil schilf (CBS) equation using the (G'/G?)-expansion method. Periodic solutions are displayed in
hyperbolic, trigonometric, and rational function solutions. Subsequently, we construct some new solutions connecting the free parameters
of the phi-four equation and the CBS equation, which are characterized into three complete forms: rational function, trigonometric func-
tion, and hyperbolic functions. Graphical representations of some attained solutions are also presented in this article. Hence, this study
shows the efficiency and the easiness of the (G'/G?)-expansion technique with the assistance of emblematically computational software
MATLAB and Mathematica.
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1. Introduction

In engineering, fluid dynamics, plasma physics, applied mathematics, and mathematical physics, nonlinear fractional partial differential
equations (FPDEs) model significant phenomena and applications. To obtain some new analytical solutions, many authors absorbed en-
hanced new approaches or adjustments to standing systems. To find traveling wave solutions, efforts have increased in the literature of
practical mathematics. It is broadly used to perceive the complex physical amplification of mathematical physics, nuclear physics, plas-
ma physics, solid-state physics, statistical physics, astrophysics, mechanical engineering, fractional dynamics, biomechanics, strong state
material science, neural material science, fluid mechanics, geo-optical filaments, stochastic dynamics, nonlinear optics, etcetera, etc. [1].
Thus, many influential and effective approaches have been established to find analytical solutions for traveling waves, such as the modi-
fied extended tanh-function technique, [2]-[4], the advanced exp(—¢(¢))-expansion technique, [5],[6], the (G'/G, 1/G)-expansion tech-
nique, [7],[8], method of characteristics, [9], the variational iteration process, [10]-[12], the improved simple equation system, [13], the
novel exponential rational function technique, [14], the multiple Exp-function system, [15],[16], the improved tan(db(8) / 2) and
tanh(¢ (%) / 2)-expansion approaches, [17],[18], the Darboux transform process, [19], the exponential rational function technique, [20],
extended simple equation method, [21], the updated simple equation method, [22], the Hirota bilinear method, [23], the first integral
method, [24], the expanded trial equation method, [25], symbolic computations, [26],[27], a transformed rational function technique,
[28], the ansatz structure, [29], the sine-cosine system, [30], the new extended direct algebraic scheme, [31], the (G'/G?)-expansion
technique, [32], the (G’ /G)-expansion technique, [33], etc.

The goal of this study is to develop precise travelling waves analysis using the (G’/G?)-expansion technique to better understand the
physical meaning of a diversity of the phi-four and CBS equations. The unique solutions eliminated by the (G’/G?)-expansion approach
is articulated by the arrangement of the sinh, cosh, sin, and cos functions. Specify periodic waves solutions when creating joint solutions.
The remainder of the paper is prepared in the following manner. The (G’/G2)-expansion approach is briefly designated in Section 2. In
Section 3, the mathematical formulation of the phi-four and CBS equations is provided, as well as its application using the (G'/G?)-
expansion technique. Section 4 is where this paper's findings are drawn.

2. Explanation of the (G’ /G?)-expansion technique

In this part, the (G’ /G?)-expansion technique is discoursed and assessed using the recommended methodology.
Suppose a nonlinear FDE presumed by

F(u, D{u,DYu, D}u,DYD{u, D{DYu,DD}u) = 0,0 <y < 1. (2.1)
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In the previous FDE, u(x, y, t) is an enigmatic purpose, and F is a polynomial of u and partial fractional derivatives.
By disbursing the complex fractional transformation, we acquire.

u(x,t) = U(Y),
& ooz v
qj_pv+qv+rv Sy

Where p, g, r, and s are nonzero constants. Equation (2.2) can be distorted into an ODE of the form:
Q,u,u”,u",.....) =0,

The formula explanation of ODE can be written as:

U(W) = Ap + Xy [Ak (g_;)k + Bi (g_;)_k]'

Where, A # 0, and Ay, Ay, Br(k = 1,2,3, ... ... ,N) are constants to be determined.
Based on the general solutions to equation (2.5), the ratio (%) can be separated into three cases as follows:

Case-1. Hyperbolic function solution, when (uA < 0)

G_’ _ IuAl[a sinh (2 /uA§)+a cosh (2 /pA §)+b
G? A |asinh (2 /uAy)+a cosh (2 /puA)-bf’

Case-I1. Rational function solution, when (uA = 0)

G/

a
&= Traemy h=0A#0,

Case-111. Trigonometric function solution, when (uA > 0)

G _ \/E [a cos (yYrAY)+bsin (YuAy)
G? A [b cos (VrAw)-a sin (ury)[

Where a,b # 0 for all three cases.

3. Applications of the (G'/G?)-expansion technique
3.1. The nonlinear time-fractional Phi-four equation

The Phi-four equation is a specific form of the Klein-Gordon equation.
D —uy +BPu+yud =0,y>0,0<6<1

Where B and y are real numbers.
Employing the following travelling wave transformation

u(x,t) = U(Y), where ¢ = gqx — p%.

On Eq. (3.1), we get

(p? = q®)U"” + p2U +yU3 =0,

22)

2.3)

(2.4)

(2.5)

(2.6)

@.7)

2.8)

@1

32

With the asset of homogeneous balancing of the highest order derivative term U’ and nonlinear term U3 in Eq. 3.2, we find that N = 1.

Thus, our recommended technique allows us to use the auxiliary equation of the form:

3.3)

U(IIJ) = Ao + A10( + B10(_1,
Now putting the value of U and U" in Eq. (3.2), we get,
B2A, + YAZ + GB2A, + 2G3p2A2A; — 2G3q2A2A, + 2Gp?ApA; — 2GqPApA, + 3GyA2A, + 3G2yA A2 + G3yAS + % + 2"2% -

2g°AuB; | 2p*p’B;  2g*p’B, + 3YA}B,

3yA.B% n 3yA;B} n ¥Bi _ 0
G G3 G3 G

+ 6YAOA1B1 + 3GYA%B1 + G2 G B

Compeering the coefficients of like power of a from both sides of the above equation, we get the following SAE:
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B2A, + A3 + 6yAgA,B; = 0,

B2A; + 2p2AuA; — 2q%ApA; + 3yAZA, + 3yA%B, = 0,

B%B; + 2p?AuB; — 2q%AuB; + 3yA%B; + 3yA;B? =0,

3yA,A2 = 0, (3.4)
3yAoB? = 0,

2p?A%A; — 2q%A%A, +yAS =0,

2p*u?B; — 2q*?B; +YB} = 0,

Solving the SAE Eq. (3.4) for p, Ay, A1, By We get several solutions sets as follows:

= g VB g8, =28 g =,

1= T 53w *mw B =
_ o VB*+zp*ap _ _ _ 4 BV
Q=2 522 A0 =0,A =0,B, = J_rﬂ_
_ \-BP+4piap _ _ iBVA _ iBVi
1=t =Gmm A =0A=-Fan B = —5R%
B ot YT N SN 110 _ _iBVH
1= nm 20 T UM T BEw L T Ba

_ o JBP+8pPAp _ _ B2 _ Bvm
Q=572 A= 0,A =~ =, By = 5 2

JBZ+8p2A BVA BVH
4=+ Ao = 0A = 350 B = — 5

Towve YT 2
Expending these solution sets, we build the solutions to Eq. (3.1) as follows:

When pA < 0, we obtain the following hyperbolic function solutions:

Ui, (at) = 48 1Aul [ b + aCosh[2\Aup] + aSinh[2\Auy] | M pi' it (8% ¥ 2p%7u
e YAk |=b + aCosh[2/Zup] + aSinh[2Aup]| NN N

—b + aCosh[2\/Aup] + aSinh[2,/Aup]| P 0 .\ [B% + 2p?2u
b+ aCoshlzyaup] + asm[zamy] | 0 PO 1T avava

ul
Uz (x,t) =%
3,4-( ) ﬁ ]/|l[l|

, —[ b+ aCosh[2Aup] + aSink[2/Zuy] |
¥ (“ i [—b+aCosh [2/ ] + aSinh[2/Aup]

,Zyul/lu [ b + aCosh[2\/au| + aSinh[2/Aup]
b + aCosh[2\/aup] + aSinh[2,/Aup]

tf + V—B% + 4p?au

s V=qx—p—;q==
tl)quq NN

U5,6(x' t) = i

\/— b+ aCosh[Z\/_lp] + aSinh 2\/_1/1
</1 [ b+aCosh[2\/_1/)]+aSmh 2\/_111 ) B tg_ _+m
W[ b + aCosh[2/Aup] + aSinh[2J2uyp] | VP S R e
4 -b + aCosh[me] + aSinh[Z\/A_mp]

When uA > 0, we obtain the following trigonometric function solution

Usyg(x,t) =

Voo (a6 = + [aCos[\/_lp]+bSm[\/_1p] qx—pi- - [B? + 2p2Au
10 W Y |bCos[JAup] — aSin[\Jauyp]|’ 0’ T2V
Ui12(x,t) = £ [bCOS[\//l_#llJ] — aSl:n[\/mlll]]; Y =qx— Pii q= iw
\/_ aCos|[\[aup] + bSin|/Auy] 0 V2vayi

. aCos[\/l_;up] + bSin[\/l_yllJ] ?
v (“ * [bc s[ymp] = aSin[yZwy] )
aCos[\/_lp] + bSln[\/_IIJ]
M\/Z_ [bCOS[\/_IIJ] - aSln[\/_lll]

tf J—B% + 4p?p
Y =qx-—piq=t—————
2Vl

U t) ==
13,14(x ) 9




International Journal of Physical Research 101

\/—aCos\/—t,b +b5m[\/—1,b]

<H [bC [\/—lp]—aSln\/—lp]> t? \/m
aCos|/Aup] + bSin[\/2uy] ,lp—qx—pg;qzi 2V2VAu
bCos\/—lp —aSln\/—IlJ

3.2. The nonlinear time-fractional CBS equation

Uss6(x, t) =

2y [

Consider the subsequent generalized (2+1)-dimensional CBS circumstances:

ue + p(wWuy, = 0,¢(w) = 07 + au + bu,d;?, (3.5)
Or homogeneously,

Up + Uyyy + autty + b, 0 vy, = 0, (3.6)
Where 51 = [ fdx and a, b are constraints. Eq. (3.6) can be characterized in the probable time-fractional form of CBS equation.>%

U DE Oy + Auylyy + 2UpeUy + Urny = 0,6 > 0,%,Y ER, (3.7)

Where0 < 6 < 1.
Employing the following travelling wave transformation

u(e,y,t) = UG and = x+y —p 38)
On Eq. (3.7), we get,
pU' +(EY) Wy +ur =0 (3.9)

With the asset of homogeneous balancing of the highest order derivative term U’ and the nonlinear term (U’)? in Eq. (3.9), we find that
N = 1. Thus, our recommended technique allows us to use the auxiliary equation of the form:

U@) = Ay + Aja + Bia™, (3.10)
From Eq. (3.9) and (3.10) we get,

—G?pAA; + 6G* A — puAy + 8G2 A, + 202 Ay +5 G BAPAZ + Gy A2AS + G2 BApAL + GPyAuA? + - BuPA? + S yuP A% +

2 3 2 2
pABy + e — 202up, — PR SR _ G222 A\ By — G2YA* AL By — 2BAuAs By — 2yAuA, By — EEStE _YES 4 2 pa2p2
1 .2p2 , BAuB | vAuBY | BuBf | vu?B}
—)//1 Bl + 2 + 2 + 4 i
2 G G 2G 2G

Compeering the coefficients of like power of @ from both sides of the above equation, we get the following SAE:

—puA; + 2002 A1+ BuPA? + Syp? A2 + pABy — 2A2uBy — 2PAuA; By — 2yMuA By + 5 BA?BE + Sy B = 0,

—pAA; + 8A%uA, + BAUA? + yAuA? — BA?AB; —yA*A.B; =0,

puB;y — 8Au*By — Bu?A By — yuP A By + BAuB? + yAuBf =0, (3.11)
6134, + % BA2A? + %y/leZ =0,

—6u3By + 3 BuB + S yu?Bi = 0,

Solving the SAE Eq. (3.11) for p, Ay, A;, B; We get several solutions sets as follows:

Set-1.

121
p=—42Ag=0,A; = -2 B; = 0.
Set-I11.

12
p=—4Au,Ay =04, =0,B; = BT!:/
Set-11l.

- _ = = _124 L
p=-16Ap, A4y =0,4; = B+Y'Bl Bty

Expending these solution sets, we build the solutions to Eq. (3.7) as follows:
When ud < 0, we obtain the following hyperbolic function solutions:
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2,/1ul [b+aCosh[zJ_w]+asth [2y/Auy)

B+y b+aCosh[2J_¢]+aSlnh ZJ_lp] Y=x+ Y- p 6

1
U7 (x,y,t) =

__12pa —b+aCosh[2m¢]+a5inh[2m¢]] L o t®
UlS(x' Y, t) - B+y/lAul [b+aCosh[2m¢]+aSinh[2mlp] ’ 1/) =Xx+y-p 6

,—[ b+aCosh|[2/Auy]+aSinh[2y2uy] B
_ 12(_’“' |/wl b+aCosh[2\/iw]+aSmh[2\/iw] ) _ t
Uo(x,y,t) = m b+aCosh[z/Aupl+asinnz/Aup] | ' Yp=x+y- Py
B+ [ b+aCosh[2Aup]+aSinh[2y2up]]

When uA = 0, we obtain the following rational function solutions:

12al tf

Uzo(x,y,0) = Gipibray’ Y=x+y-py
Uy ( £ = 12(a®A-pA[b+apl®) ., _ ty_ t?
210y == aran Y =X TY TP

When pA > 0, we obtain the following trigonometric function solutions:

122 acos[Aup]+bsin[aup] _ 0
Va0 = _ﬂ+V\[[bCos[\/_w] asin J_w] b=xty-ry
12 bCos[/Auy]-asin[{Auy]
Uzs (3, ) = ﬁ‘:’f [aCos[J_w +bSin J_¢]] Yp=x+ty- p )

_ ulaCos[yAup)+bSin[yAuyp]
12(” A et et sl >

t
Va3, ) ==~ 1 LBl e b=x+y-ry
2bcosl Awpl-asinl 2]

4. Graphical representation

This section presents the graphical illustration of phi-four and CBS equations. Using the computational software MATLAB, we represent
a combinedly 3D surface and contour plot view of some solutions. All the attained solutions except U,q (x, y,t) and U, (x, y, t)represent
periodic wave solutions. Uy, (x, y, t) and U, (x, y, t) are rational function solutions. Each periodic wave is presented for different values
of 6. Figure 1-4 represents the periodic waves for phi-four, and CBS equations and Figure 5 represent the rational function solution for
the CBS equation. Figures 1-4 are represented for 6 = 0.3, 0.6, and 1, respectively.

U7(x,t)
U7(x,t)

I
|
|
|
|
|
|
|
\

TN
,\’

Fig. 2: Periodic Wave of Us(x, t) for the Parametersa = 1,b = 1,p = —0.5,A =1,y =1, = 0.5,y = 0.5 and 8 = 0.3,0.6 and 1 Respectively.
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Fig. 5: Rational Function Solution of U, (x, y, t) for the Parametersa = 1,b =1,A=1,u =0,y =0, =0.5,y =05and 6 = 1.
5. Conclusion

In this article, we investigated the periodic wave analysis of phi-four and CBS equations using the (G’ /G?)-expansion method. Using the
mentioned method, we found the exact travelling wave solutions of the phi-four and CBS equations and see that most of the solutions are
periodic wave solutions by the hyperbolic function sinh, cosh, and trigonometric function sin and cos. Also, we have some rational func-
tion solutions only for the CBS equation. Moreover, we analyzed the periodic wave solutions and the rational function solution for dif-
ferent fractional values of 6, and we found no change of wave characteristics for the change of the fractional value of 8. Eventually, it is
noticed that the employed method and the relevant traveling transformation are more realistic, effective, and efficient than the other
forms and that they may be used in future productive investigations in mathematical physics and engineering to understand long-wave
phenomena.
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