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Abstract 
 

The flow of fluids with pressure-dependent viscosity in free-space and in porous media is considered in this study. The interest is to employ 

the physical model of flow through a porous layer down an inclined plane in order to derive velocity expressions that can be used as entry 

conditions in the study of two-dimensional flows through free-space and through porous channels. The generalized equations of Darcy, 

Forchheimer and Brinkman are used in this work. 
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1. Introduction 

The realization that viscosity of a fluid depends on pressure can be traced back to the nineteenth century and works of Stokes, [1] and 

Barus, [2], [3]. Dependence of viscosity on pressure has been argued to be exponential in nature, as proposed by Barus [2], [3], but many 

other forms, including linear and polynomial expressions, have been proposed and used in the literature (cf. [4 - 7]). 

Flow of fluids with pressure-dependent viscosity has been of interest due to its applications in lubrication theory, [8,9,10]. The past quarter 

of a century, however, has witnessed an increasing interest in this type of flow through porous media. This stems from the many applications 

in enhanced oil recovery and carbon sequestration, [11], [12], in filtration problems, [13], and in the pharmaceutical industry [14]. These 

and many other applications emphasize the need to accurately model flow of fluids with pressure-dependent viscosities and to obtain 

solutions to initial and boundary value problems.  

In seeking solutions to initial and boundary value problems in fluid dynamics, the use of one- and two-dimensional flow configurations are 

popular idealizations of the general three-dimensional flow problems as they provide us with valuable information and better understanding 

of the flow properties and the effects of fluid, flow and domain parameters. Typically, flow between parallel plates and flow in pipes and 

two-dimensional channels, and flow over circles provide us with the necessary benchmarks to better understand the full three-dimensional 

flow. 

In the through two-dimensional channels and through domains with constrictions or over obstacles, for instance, velocity entry conditions 

are important, especially when the problem involves flow of viscous fluids. Uniform flow assumptions might no longer be valid as entry 

conditions to a porous channel bounded by solid walls, and the popular parabolic entry profiles of the Navier-Stokes equations are approx-

imations at best in flow of fluids with pressure-dependent viscosities through porous channels. These situations provide us in part with 

motivations for this work in which we derive and document expressions for the entry conditions into two-dimensional channels when the 

flow is that of a pressure-dependent viscosity, and the channel is either free-space (as in the case of Navier-Stokes flow) or filled with a 

porous material. Entry conditions to channels when the flow is that of a fluid with constant viscosity have been discussed by Hamdan [15]. 

In order to achieve our objective of deriving entry profile expressions for the velocity into a two-dimensional channel, this work is organized 

as follows. In Section 2, we discuss equations governing the flow of a fluid with pressure-dependent viscosity both in free-space and in 

porous media, and make the necessary assumptions on the flow. In Section 3, we discuss the flow configutation and obtain velocity ex-

pressions. In Section 4, we consider a dozen popular viscosity-pressure relations and derive appropriate channel entry conditions. Finally, 

we provide concluding remarks and plans for future work. 

2. Governing equations 

The steady flow of a viscous, incompressible fluid is governed by two conservation principles, namely conservation of mass, which is 

expressed as an equation of velocity continuity of the form, [14]: 

 

∇ ∙ ν⃗  =  0                                                                                                                                                                                                      (1) 
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And conservation of linear momentum, given by the Navier-Stokes equations, namely: 

 

ρ(v⃗ ∙ ∇)v⃗ = −∇p + ∇ ∙ μ(∇v⃗ + (∇v⃗ )T) + ρg⃗                                                                                                                                                 (2) 
 

Where ν⃗  is the velocity vector field, ρ is the fluid density, p is the pressure, μ is the fluid viscosity, g⃗  is the gravitational acceleration, ∇ is 

the gradient operator and ∇2 is the Laplacian. The Navier-Stokes equation are partial differential equations which describe the microscopic, 

local motion of viscous fluid flow in space. The term μ∇2ν⃗  is the viscous shear term and (ν⃗ ∙ ∇)ν⃗  is the convective acceleration. 

Equations (1) and (2) represent an underdetermined system of four equations in the five unknowns ν⃗ = (u, v,w), p and μ. In the absence 

of additional conservation principles to provide an additional equation, it has long been recognized that viscosity can be expressed as a 

function of pressure to provide an additional condition to render the governing system of equations determinate. Barus, [2], [3], provided 

the following relation between viscosity and pressure: 

 

μ = μ0e
α(p−p0)                                                                                                                                                                                             (3) 

 

Where μ is fluid viscosity, p is pressure, μ0 is a reference viscosity at reference pressure p0 , and α > 0 is a constant. Equations (1), (2) 

and (3) now represent a determinate system of five scalar equations in five unknowns. 

In flow through porous media, equations governing the flow of a fluid with pressure-dependent viscosity through a porous structure are 

continuity equation, of the form of equation (1), and a balance of momentum equation that takes different forms depending on the porous 

structure, the speed of the flow and the presence or absence of macroscopic boundaries. Generalized equations of flow through porous 

media have been derived in [4 – 7], [12], [16 - 20] using mixture theory, thermodynamic balance, or otherwise homogenization. They are 

summarized in what follows. 

The generalized Darcy’s equation has been reported as, [20]: 

 

λ(p, x⃗ )u⃗ + ∇p = ρg⃗                                                                                                                                                                                         (4) 

 

Where  

 

λ(p, x⃗ ) =
μ(p)

k(x⃗ )
=

μ0

k(x⃗ )
. exp[βB(p − p0)]                                                                                                                                                         (5) 

 

The function λ(p, x⃗ ) is the Darcy drag, which is a function of pressure and position, k(x⃗ ) is the permeability function and βB is the (exper-

imental) Barus coefficient. 

The generalized Forchheimer’s equation has been reported as, [20]: 

 

∇p + {
μ0

k(x⃗ )
. exp[βBp] + βf ρ‖u⃗ ‖} u⃗ = ρG⃗⃗                                                                                                                                                       (6) 

 

Where  

 

λ(u⃗ , p, x⃗ ) =
μ(p)

k(x⃗ )
+ βf‖u⃗ ‖ =

μ0

k(x⃗ )
. exp[βBp] + βf ρ‖u⃗ ‖                                                                                                                                 (7) 

 

And βf is the Forchheimer drag coefficient. It is customary to write βf =
Cf

√k(x⃗ )
, where Cf is the Ergun coefficient with value between 0.375 

and 0.5. 

The Darcy and Forchheimer generalized equations are characterized with the absence of viscous shear term (laplacian), hence not compat-

ible with the presence of solid boundaries on which a no-slip condition is imposed. 

The generalized Brinkman’s equation can be written in the following form, [4], [7], [16], [19]: 

 

ρ(v⃗ ∙ ∇)v⃗ = −∇p + ∇ ∙ 2μD(v⃗ ) − λ(p)v⃗ + ρg⃗                                                                                                                                                (8) 

 

Where 

 

D(v⃗ ) =
1

2
(∇v⃗ + (∇v⃗ )T)                                                                                                                                                                                  (9) 

 

Where λ(p) denotes the pressure-dependent drag coefficient and ρ is the density of the fluid. Subramanian and Rajagopal [19] rightfully 

state that the viscosity μ(p) is a “measure of the frictional resistance in between fluid layers” while λ(p) is a “measure of the friction 

between the fluid and the solid, at the pore”. Clearly, μ(p) and λ(p) control variations in viscosity due to pressure, and variations in pres-

sure due to variations in porous parameters.  

Equation (8) does not explicitly take into account the porous medium microstructure or permeability of the medium, nor does it distinguish 

between one porous medium and another, or between a porous medium with constant permeability and one with a variable permeability. 

Kannan and Rajagopal [7] proposed and tested various forms of μ(p) and λ(p), including exponential, linear and polynomial forms. 

Alzahrani et.al. [23], considered the flow down an inclined plane through a porous medium with variable permeability, using model equa-

tions (8). It is worth noting that flow through variable permeability porous material is realistic since the pore structure is arbitrary, porosity 

in natural media is a variable, hence one expects permeability to depend on position in much the same way as velocity and pressure.  

3. Problem formulation and solution 

In order to derive entry conditions to a channel of with h, we assume the channel is inclined at an angle ϑ to the horizontal, where 0 ≤ ϑ <
π

2
. If ϑ = 0, then the channel is horizontal. The flow configuration is illustrated in Fig. 1 which shows the orientation of the coordinate 
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system used. It is assumed that the channel is bounded by impermeable, solid walls on which the no-slip condition is applied. Furthermore, 

if the channel is horizontal, ϑ = 0, then p = p(x, y) and the flow is driven by gravity and by a constant pressure gradient, 
dp

dx
= constant <

0. If 0 < ϑ <
π

2
, we assume that the flow is driven by gravity and take 

dp

dx
= 0, hence p = p(y). We discuss in this work flow through an 

inclined channel, and leave flow through a horizontal channel for future work. 

For the unidirectional flow at hand, continuity equation (1) implies that u = u(y). We assume that the pressure function also varies with 

the lateral coordinate, k = k(y). Introducing the dimensionless quantities y∗ =
y

h
;  u∗ =

u

U
;  k∗ =

k

h2
 , where U is a characteristic velocity, 

then the channel is of dimensionless width of unity, the permeability function and velocity are dimensionless. Conditions on velocity, 

permeability and pressure, after dropping the asterisks “*”, are as follows: 

 

u(0) = k(0) = 0                                                                                                                                                                                         (10) 

 

u(1) = k(1) = 0;  p(1) = p0                                                                                                                                                                      (11) 

 

Where p0 is a prescribed pressure, such as atmospheric pressure. 

 

 
Fig. 1: Representative Sketch. 

 

Flow in the above domain is governed by the equation of continuity (1) and one of the momentum equations (2), (4), (6) or (8), discussed 

in Section 2, above. If we write these equations in components’ forms, then in each case the pressure can be determined from: 

 

−
𝑑𝑝

𝑑𝑦
− 𝜌𝑔ℎ𝑐𝑜𝑠𝜗 = 0                                                                                                                                                                                   (12) 

 

Whose solution satisfying (11) is given by: 

 

𝑝 = 𝑝0 + (1 − 𝑦)𝜌𝑔ℎ𝑐𝑜𝑠𝜗 = [𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗] − 𝜌𝑔ℎ𝑐𝑜𝑠𝜗 𝑦                                                                                                                  (13) 

 

Momentum equations (2), (4), (6) and (8) are discussed in the following subsections. 

3.1. Navier-stokes flow 

Equation (2) takes the following form: 

 
𝑑2𝑢

𝑑𝑦2 +
1

𝜇

𝑑𝜇

𝑑𝑦

𝑑𝑢

𝑑𝑦
+

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇
= 0                                                                                                                                                                       (14) 

 

Substituting (3) in (14), with 𝑝 − 𝑝0 = 𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦) from (13), we can write (14) as 

 
𝑑2𝑢

𝑑𝑦2 − 𝐴1
𝑑𝑢

𝑑𝑦
+ 𝐴3𝑒

− 𝐴1(1−𝑦) = 0                                                                                                                                                                 (15) 

 

Where 

 

𝐴1 = 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗                                                                                                                                                                                          (16) 

 

𝐴3 =
𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0 
                                                                                                                                                                                              (17) 

 

Solution to (15) satisfying the no-slip conditions (10) and (11) takes the form: 

 

𝑢(𝑦) = −𝐴3𝑒
𝐴1(𝑦−1) [

𝑦

𝐴1
−

1

(𝐴1)
2] + 𝐴3 [

1

(𝐴1)
2𝑒𝐴1

−
1

𝐴1(1−𝑒𝐴1)
] 𝑒𝐴1𝑦  

+𝐴3[
1

(1−𝑒𝐴1)
−

2

(𝐴1)
2𝑒  𝐴1

]                                                                                                                                                                               (18) 

 

This represents the entry velocity profile into a free-space channel.  
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3.2. Darcy flow 

Equations (4) and (5) yield the following generalized Darcy equation for the configuration at hand, where we have used 𝑝 − 𝑝0 =
𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦): 

 
𝜌𝑔ℎ2

𝑈
𝑠𝑖𝑛𝜗 − {

𝜇0

𝑘(𝑦)
. 𝑒𝑥𝑝 [𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦)]}𝑢 = 0                                                                                                                                 (19) 

 

Equation (19) gives the velocity profile  

 

𝑢(𝑦) =
𝜌𝑔𝑘(𝑦)ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0
 𝑒𝑥𝑝 [−𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦)]                                                                                                                                      (20) 

 

Darcy’s equation is not compatible with the presence of solid walls on which a no-slip condition is imposed. However, in equation (20), if 

permeability is a variable function of 𝑦 and is chosen such that 𝑘(0) = 𝑘(1) = 0, then 𝑢(0) = 𝑢(1) = 0. If permeability is constant, say 

𝑘0, then the slip velocities at the lower and upper walls are given, respectively, by 

 

𝑢(0) =
𝜌𝑔𝑘0ℎ

2𝑠𝑖𝑛𝜗

𝑈𝜇0
 𝑒𝑥𝑝 [−𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗]                                                                                                                                                     (21) 

 

And 

 

𝑢(1) =
𝜌𝑔𝑘0ℎ

2𝑠𝑖𝑛𝜗

𝑈𝜇0
                                                                                                                                                                                        (22) 

3.3. Forchheimer flow 

Equations (6) and (7) yield the following generalized Forchheimer equation for the configuration at hand, where we have used 𝑝 − 𝑝0 =
𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦): 

 

𝜌ℎ2𝐵𝑓𝑈𝑢2 + {
𝜇0

𝑘(𝑦)
. 𝑒𝑥𝑝[𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦)]} 𝑢 =

𝜌𝑔ℎ2

𝑈
𝑠𝑖𝑛𝜗                                                                                                                  (23) 

 

Solving (23) algebraically for 𝑢(𝑦), we obtain: 

 

𝑢(𝑦) =
−{

𝜇0
𝑘(𝑦)

.𝑒𝑥𝑝[𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1−𝑦)]}+√{
𝜇0

𝑘(𝑦)
.𝑒𝑥𝑝[𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1−𝑦)]}

2
+4𝜌2ℎ4𝑔𝐵𝑓𝑠𝑖𝑛𝜗

2𝜌ℎ2𝐵𝑓𝑈
                                                                                            (24) 

 

Forchheimer’s equation is not compatible with the no-slip condition on solid walls. The slip velocities at the lower and upper walls are 

obtained from (24), respectively, as: 

 

𝑢(0) =
−{

𝜇0
𝑘(𝑦)

.𝑒𝑥𝑝[𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗]}+√{
𝜇0

𝑘(𝑦)
.𝑒𝑥𝑝[𝛽𝐵𝜌𝑔ℎ𝑐𝑜𝑠𝜗]}

2
+4𝜌2ℎ4𝑔𝐵𝑓𝑠𝑖𝑛𝜗

2𝜌ℎ2𝐵𝑓𝑈
                                                                                                             (25) 

 

𝑢(1) =
−

𝜇0
𝑘(𝑦)

+√{
𝜇0

𝑘(𝑦)
}
2
+4𝜌2ℎ4𝑔𝐵𝑓𝑠𝑖𝑛𝜗

2𝜌ℎ2𝐵𝑓𝑈
                                                                                                                                                              (26) 

3.4. Brinkman flow 

Equation (8) yields the following generalized Brinkman’s equation for the configuration at hand: 

 
𝑑2𝑢

𝑑𝑦2 +
1

𝜇

𝑑𝜇

𝑑𝑦

𝑑𝑢

𝑑𝑦
+

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇
−

ℎ2𝜆(𝑝)𝑢

𝜇
= 0                                                                                                                                                       (27) 

 

In their elegant and thorough analysis of (27), Kannan and Rajagopal [7] provided solutions using Maple for various choices of 𝜇(𝑝) and 

𝜆(𝑝) that include combinations of 𝐴𝑒𝛼𝑝 and 𝐵(
𝑝

𝑝0
)𝑛, where 𝐴 and 𝐵 are positive constants. Pažanin et.al. [21] employed expressions of the 

forms Many other forms 𝜆(𝑝) = 𝜆0𝑒
𝜂𝑝, and 𝜇(𝑝) = 𝜇0𝑒

𝜂𝑝, where 𝜆0, 𝜇0, 𝜂 > 0. 

In the current work, we assume that 𝜇(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0) and 𝜆(𝑝) = 𝜆0𝑒

𝛾(𝑝−𝑝0), where 𝛼, 𝛾, 𝜇0, 𝜆0 > 0, and 𝑝 − 𝑝0 = 𝜌𝑔ℎ𝑐𝑜𝑠𝜗(1 − 𝑦). 

Equation (27) thus takes the form: 

 
𝑑2𝑢

𝑑𝑦2 − 𝐴1
𝑑𝑢

𝑑𝑦
+ 𝐴3𝑒

− 𝐴1(1−𝑦) − 𝐴2𝑒
𝐴4(1−𝑦)𝑢 = 0                                                                                                                                       (28) 

 

Where 𝐴1 and 𝐴3 are as given by (16) and (17), and 

 

𝐴2 =
ℎ2𝜆0

𝜇0
                                                                                                                                                                                                     (29) 

 

𝐴4 = (𝛾 − 𝛼)𝜌𝑔ℎ𝑐𝑜𝑠𝜗                                                                                                                                                                                (30) 
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Interpretations of 𝐴1 , 𝐴2, 𝐴3, 𝑎𝑛𝑑 𝐴4 have been provided by Kannan and Rajagopal [7], which we directly quote so that we do not inad-

vertently alter the meanings, as follows: 

𝐴1 “is a measure of the effect of gravity versus the effect of the pressure on the viscous dissipation within the fluid”, 

𝐴2 “is concerned with the relative magnitudes of the rates of dissipation within the fluid due to its viscosity versus that due to drag at the 

pores”,  

𝐴3 ”compares the relative effects of gravity and viscosity”, and  

𝐴4 “is a measure of gravity versus the relative effects of the viscosity and the drag at the pores”. 

In order to solve (28) analytically, we consider the special case of 𝛾 = 𝛼. This case is based on selection of viscosity and drag forms by 

Pažanin et.al. [21]. Equation (28) reduces to: 

 
𝑑2𝑢

𝑑𝑦2
− 𝐴1

𝑑𝑢

𝑑𝑦
− 𝐴2𝑢 = 𝐴3𝑒

− 𝐴1(1−𝑦) = 𝐴3𝑒
− 𝐴1𝑒  𝐴1𝑦                                                                                                                                  (31) 

 

Solution to (31) satisfying (9) is given by 

 

𝑢 = 𝑐1𝑒𝑥𝑝 [
𝐴1

2
+

1

2
√(𝐴1)

2 + 4𝐴2] 𝑦 + 𝑐2𝑒𝑥𝑝 [
𝐴1

2
−

1

2
√(𝐴1)

2 + 4𝐴2] 𝑦 −
𝐴3

𝐴2
𝑒𝐴1(𝑦−1)                                                                            (32) 

 

Where 

 

𝑐1 =
𝐴3

𝐴2
{

𝑒𝑥𝑝(−
1

2
√(𝐴1)

2+4𝐴2−𝑒
𝐴1
2

𝑒𝐴1[(𝑒𝑥𝑝(−
1

2
√(𝐴1)

2+4𝐴2)−(𝑒𝑥𝑝(
1

2
√(𝐴1)

2+4𝐴2)]
}                                                                                                                                    (33) 

 

𝑐2 =
𝐴3

𝐴2
{

𝑒
𝐴1
2 −(𝑒𝑥𝑝(

1

2
√(𝐴1)

2+4𝐴2)

𝑒𝐴1[(𝑒𝑥𝑝(−
1

2
√(𝐴1)

2+4𝐴2)−(𝑒𝑥𝑝(
1

2
√(𝐴1)

2+4𝐴2)]
}                                                                                                                                    (34) 

 

Taking 𝛾 = 𝛼 in (28) results in 𝐴4 = 0. This has the effect of increasing the velocity and bringing the velocity profile closer to that of a 

Brinkman velocity profile when viscosity is constant. 

4. Other forms of viscosity and drag 

There exists a large number of choices for viscosity as a function of pressure, the most popular of which are exponential, linear, and 

polynomial forms. Some of these are discussed in the next subsection. For the drag function, however, it is not obvious what 𝜆(𝑝) should 

be, except possibly trying different forms. Unlike Brinkman’s equation with constant viscosity and a Darcy resistance proportional to 

viscosity, the case of generalized Brinkman’s equation possesses a drag function that seems independent of shear viscosity. It is a function 

of pressure, however. So is shear viscosity. In addition, for a given porous medium, it is not obvious how the drag function should be 

chosen so that one distinguishes between one porous medium or another, or between a porous medium with variable permeability and one 

with constant permeability.  

To circumvent, we propose here to approximate 𝜆(𝑝) by constructing a function of pressure and position that is the ratio between the 

pressure-dependent viscosity 𝜇(𝑝(𝑦))and the permeability function 𝑘(𝑦). This idea is not strange since it appears in the velocity-independ-

ent drag term of the generalized Darcy’s equation. 

If we assume that 𝜇 = 𝜇(𝑝) = 𝑓(𝑦) and 𝜆(𝑝) =
𝜇(𝑝)

𝑘(𝑦)
=

𝑓(𝑦)

𝑘(𝑦)
 , where 𝑘(𝑦) is the dimensionless permeability function, then equation (27) 

takes the form  

 
𝑑2𝑢

𝑑𝑦2 − 𝜌𝑔ℎ𝑐𝑜𝑠𝜗 
𝑓′(𝑝)

𝑓(𝑝)

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝑓(𝑝)
                                                                                                                                              (35) 

 

Equation (35) is a general differential equation that governs the flow of a fluid with pressure-dependent viscosity through a porous domain 

down an inclined plane. Given 𝑓(𝑝) and 𝑘(𝑦), we obtain specific forms of (35). 

4.1. Forms of 𝒇(𝒑): 

The literature reports on many popular forms of 𝑓(𝑝), where 𝜇0 > 0, 𝑝0 > 0, 𝛼 > 0, 𝑏 > 0 and 𝑛 is a positive integer. Some of these 

forms are: 

i) 𝜇(𝑝) = 𝑓(𝑝) = 𝛼𝑝  

ii) 𝜇 = 𝑓(𝑝) = 𝛼𝑝𝑛  

iii) 𝜇(𝑝) = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝) 

iv) 𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼𝑝 

v) 𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0) 

vi) 𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝑏𝑒𝑎𝑝) 

vii) 𝜇(𝑝) = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝𝑛) 

viii) 𝜇(𝑝) = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)
𝑛] 

ix) 𝜇(𝑝) = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)]
𝑛 

x) 𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)
 

xi) 𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)𝑛

 

xii) 𝜇 = 𝑓(𝑝) = 𝜇0(𝑝/𝑝0)
𝑛 

Upon substituting the above forms of viscosity in (35), the following differential equations are obtained and tabulated in Table 1. 
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Table 1: Pressure-Viscosity Relations and Associated Differential Equations 

Form of Variable Viscosity Governing Differential Equation 

𝜇 = 𝑓(𝑝) = 𝛼𝑝  𝑑2𝑢

𝑑𝑦2
− 

𝜌𝑔ℎ𝑐𝑜𝑠𝜗

𝑝

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝛼𝑝
   

𝜇 = 𝑓(𝑝) = 𝛼𝑝𝑛  𝑑2𝑢

𝑑𝑦2
− 

𝑛𝜌𝑔ℎ𝑐𝑜𝑠𝜗

𝑝

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝛼𝑝𝑛
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝)  𝑑2𝑢

𝑑𝑦2
− 

𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗

(1+𝛼𝑝)

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0(1+𝛼𝑝)
   

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼𝑝  𝑑2𝑢

𝑑𝑦2
− 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0𝑒𝛼𝑝
   

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0)  𝑑2𝑢

𝑑𝑦2
− 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0𝑒𝛼(𝑝−𝑝0)
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝑏𝑒𝛼𝑝)  𝑑2𝑢

𝑑𝑦2
− 

𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗𝑏𝑒𝛼𝑝

(1+𝑏𝑒𝛼𝑝)

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0(1+𝑏𝑒𝛼𝑝)
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝𝑛)  𝑑2𝑢

𝑑𝑦2
− 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

𝑛𝑝𝑛−1

(1+𝛼𝑝𝑛)

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0(1+𝛼𝑝𝑛)
   

𝜇(𝑝) = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)
𝑛]  𝑑2𝑢

𝑑𝑦2
− 

[𝑛𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗(𝑝−𝑝0)
𝑛−1]

[1+𝛼(𝑝−𝑝0)
𝑛]

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0[1+𝛼(𝑝−𝑝0)
𝑛]
   

𝜇 = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)]
𝑛  𝑑2𝑢

𝑑𝑦2
− 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

𝑛

[1+𝛼(𝑝−𝑝0)]

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝜇0[1+𝛼(𝑝−𝑝0)]𝑛
  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)
  

𝑑2𝑢

𝑑𝑦2
− 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

1 

𝑝0

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0𝑒
𝛼(

𝑝
𝑝0

)
  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)𝑛

  
𝑑2𝑢

𝑑𝑦2
− 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

(𝑝)𝑛−1

(𝑝0)
𝑛

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0𝑒
𝛼(

𝑝
𝑝0

)𝑛
  

𝜇 = 𝑓(𝑝) = 𝜇0(𝑝/𝑝0)
𝑛  𝑑2𝑢

𝑑𝑦2
− 𝜌𝑔ℎ𝑐𝑜𝑠𝜗 

𝑛

𝑝

𝑑𝑢

𝑑𝑦
−

𝑢

𝑘(𝑦)
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0(𝑝/𝑝0)𝑛
  

 

In order to cast the equations of Table 1 in more recognizable differential equations, we provide a change of variables by letting 

 

𝑌 = 𝑝 = 𝑝0 + 𝛽(1 − 𝑦)                                                                                                                                                                              (36) 

 

𝛽 = 𝜌𝑔ℎ𝑐𝑜𝑠𝜗                                                                                                                                                                                              (37) 

 

Where 

 
𝑑𝑌

𝑑𝑦
= −𝛽                                                                                                                                                                                                       (38) 

 
𝑑

𝑑𝑦
=

𝑑

𝑑𝑌

𝑑𝑌

𝑑𝑦
= −𝛽

𝑑

𝑑𝑌
                                                                                                                                                                                     (39) 

 
𝑑2

𝑑𝑦2
= 𝛽2 𝑑2

𝑑𝑌2
                                                                                                                                                                                                (40) 

 

The following table of transformed governing equations is obtained, wherein: 

 

𝛿 = 𝜌𝑔ℎ2𝑠𝑖𝑛𝜗                                                                                                                                                                                             (41) 

 
Table 2: Transformed Governing Differential Equations 

Form of Variable Viscosity Governing Differential Equation 

𝜇 = 𝑓(𝑝) = 𝛼𝑝  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 

𝛽2

𝑌

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝛼𝑌
   

𝜇 = 𝑓(𝑝) = 𝛼𝑝𝑛  𝛽2 𝑑2𝑢

𝑑𝑌2
+

𝑛𝛽2

𝑌

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝛼𝑌𝑛
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝)  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝛽2

(1+𝛼𝑌)

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0(1+𝛼𝑌)
   

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼𝑝  𝛽2 𝑑2𝑢

𝑑𝑌2
+  𝛼𝛽2 𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0𝑒𝛼𝑌
   

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0)  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 𝛼𝛽2  

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0𝑒𝛼(𝑌−𝑝0)
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝑏𝑒𝛼𝑝)  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝑏𝛽2𝑒𝛼𝑌

(1+𝑏𝑒𝛼𝑌)

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0(1+𝑏𝑒𝛼𝑌)
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝𝑛)  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝑛𝛽2𝑌𝑛−1

(1+𝛼𝑌𝑛)

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0(1+𝛼𝑌𝑛)
   

𝜇(𝑝) = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)
𝑛]  

 
𝛽2 𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝑛𝛽2(𝑌−𝑝0)
𝑛−1]

[1+𝛼(𝑌−𝑝0)𝑛]

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0[1+𝛼(𝑌−𝑝0)𝑛]
   

𝜇 = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)]
𝑛  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 

𝑛𝛼𝛽2

[1+𝛼(𝑌−𝑝0)]

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝜇0[1+𝛼(𝑌−𝑝0)]𝑛
  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)
  

𝛽2 𝑑2𝑢

𝑑𝑌2
+ 𝛼𝛽2  

1 

𝑝0

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0𝑒
𝛼(

𝑌
𝑝0

)
  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)𝑛

  
𝛽2 𝑑2𝑢

𝑑𝑌2
+ 𝛼𝛽2  

(𝑌)𝑛−1

(𝑝0)𝑛

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0𝑒
𝛼(

𝑌
𝑝0

)𝑛
  

𝜇 = 𝑓(𝑝) = 𝜇0(𝑝/𝑝0)
𝑛  𝛽2 𝑑2𝑢

𝑑𝑌2
+ 𝛽2  

𝑛

𝑌

𝑑𝑢

𝑑𝑌
−

𝑢

𝐾(𝑌)
= −

𝛿

𝑈𝜇0(𝑌/𝑝0)𝑛
  

 

Solutions to the equations of Table 2 depend on the form of 𝐾(𝑌). While we can always rely on a numerical solution, we will make the 

following assumption so that we can obtain closed form solutions to the equations of Table 2. 

Hamdan and Kamel [22] introduced a permeability function for Brinkman’s equation and showed that a quadratic velocity profile is tiled 

to a quadratic permeability. This translates into a proportionality between the variable permeability and velocity. We can then write 𝐾(𝑌) =
𝑘0𝑢, where 𝑘0 is a reference constant permeability. 

Accordingly, equations of Table 2 are transformed into the following forms: 
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Table 3: Final Form of Governing Differential Equations 

Form of Variable Viscosity Governing Differential Equation 

𝜇 = 𝑓(𝑝) = 𝛼𝑝  
𝑑2𝑢

𝑑𝑌2
+ 

1

𝑌

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝛼𝛽2𝑌
   

𝜇 = 𝑓(𝑝) = 𝛼𝑝𝑛  
𝑑2𝑢

𝑑𝑌2
+

𝑛

𝑌

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝛼𝛽2𝑌𝑛
   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝)  
𝑑2𝑢

𝑑𝑌2
+ 

𝛼

(1+𝛼𝑌)

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝜇0𝛽
2(1+𝛼𝑌)

   

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼𝑝  

𝑑2𝑢

𝑑𝑌2
+  𝛼

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝜇0𝛽
2𝑒𝛼𝑌

   

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0)  

𝑑2𝑢

𝑑𝑌2
+ 𝛼 

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝜇0𝛽
2𝑒𝛼(𝑌−𝑝0)

   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝑏𝑒𝛼𝑝)  
𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝑏𝑒𝛼𝑌

(1+𝑏𝑒𝛼𝑌)

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝜇0𝛽
2(1+𝑏𝑒𝛼𝑌)

   

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝𝑛)  
𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝑛𝑌𝑛−1

(1+𝛼𝑌𝑛)

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝜇0𝛽2(1+𝛼𝑌𝑛)
   

𝜇(𝑝) = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)
𝑛]  

𝑑2𝑢

𝑑𝑌2
+ 

𝛼𝑛(𝑌−𝑝0)
𝑛−1]

[1+𝛼(𝑌−𝑝0)
𝑛]

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝑈𝜇0𝛽2[1+𝛼(𝑌−𝑝0)
𝑛]
   

𝜇 = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)]
𝑛  

𝑑2𝑢

𝑑𝑌2
+ 

𝑛𝛼

[1+𝛼(𝑌−𝑝0)]

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝜇0𝛽2[1+𝛼(𝑌−𝑝0)]𝑛
  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)
  

𝑑2𝑢

𝑑𝑌2
+ 

𝛼 

𝑝0

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝛽2𝑈𝜇0𝑒
𝛼(

𝑌
𝑝0

)
  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)𝑛

  

𝑑2𝑢

𝑑𝑌2
+ 𝛼 

(𝑌)𝑛−1

(𝑝0)𝑛

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝛽2𝑈𝜇0𝑒
𝛼(

𝑌
𝑝0

)𝑛
  

Solution to this equation will not be provided in Table 4. 

𝜇 = 𝑓(𝑝) = 𝜇0(𝑝/𝑝0)
𝑛  

𝑑2𝑢

𝑑𝑌2
+ 

𝑛

𝑌

𝑑𝑢

𝑑𝑌
=

1

𝛽2𝑘0
−

𝛿

𝛽2𝑈𝜇0(𝑌/𝑝0)𝑛
  

4.2. Solutions to governing equations 

In order to solve the governing equations in Table 3, we use the method of reduction of order by letting 𝑍 =
𝑑𝑢

𝑑𝑌
 and 

𝑑𝑍

𝑑𝑌
=

𝑑2𝑢

𝑑𝑌2. Each of the 

differential equations is reduced to a first order, linear ODE of the form: 

 
𝑑𝑍

𝑑𝑌
+ 𝑓1(𝑌)𝑍 = 𝑓2(𝑌)                                                                                                                                                                                   (42) 

 

Equation (42) can be solved using integrating factor method. Solutions for the velocity distributions are shown in Table 4, below, where 

𝑐1 and 𝑐2 are arbitrary constants to be determined using the no-slip conditions of (10) and (11). 

 
Table 4: General Solutions to the Governing Differential Equations 

Form of Variable Viscosity Governing Differential Equation 

𝜇 = 𝑓(𝑝) = 𝛼𝑝  𝑢 =
𝑌2

4𝛽2𝑘0
−

𝛿𝑌

𝑈𝛼𝛽2
+ 𝑐1𝑙𝑛𝑌 + 𝑐2  

𝜇 = 𝑓(𝑝) = 𝛼𝑝𝑛  𝑢 =
𝑌2

2(𝑛+1)𝛽2𝑘0
−

𝛿𝑌2−𝑛

𝑈𝛼𝛽2(2−𝑛)
+

𝑐1𝑌1−𝑛

1−𝑛
+ 𝑐2;  𝑛 ≠ 2  

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝)  𝑢 =
𝑌2

4𝛽2𝑘0
+ [

1

2𝛼𝛽2𝑘0
−

𝛿

𝛼𝑈𝜇0𝛽2
] [𝑌 −

1

𝛼
𝑙𝑛(1 + 𝛼𝑌)] +

𝑐1

𝛼
𝑙𝑛(1 + 𝛼𝑌) + 𝑐2  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼𝑝  𝑢 =

𝑌

𝛼𝛽2𝑘0
+

𝛿𝑒−𝛼𝑌

𝑈𝜇0𝛽2
[
𝑦

𝛼
+

1

𝛼2
] −

𝑐1𝑒−𝛼𝑌

𝛼
+ 𝑐2  

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0)  𝑢 =

𝑌

𝛼𝛽2𝑘0
+

𝛿𝑒−𝛼𝑌

𝑈𝜇0𝛽2𝑒−𝛼𝑝0
[
𝑦

𝛼
+

1

𝛼2
] −

𝑐1𝑒−𝛼𝑌

𝛼
+ 𝑐2  

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝑏𝑒𝛼𝑝)  𝑢 =  
[

𝑌

𝛽2𝑘0
−

𝛿𝑌

𝑈𝜇0𝛽2+
𝑏𝑒𝛼𝑌

𝛼𝛽2𝑘0
]

[1+𝑏𝑒𝛼𝑌]
+

𝑐1

[1+𝑏𝑒𝛼𝑌]
  

𝜇 = 𝑓(𝑝) = 𝜇0(1 + 𝛼𝑝𝑛)  
Take n=2 

𝑢 =
𝑐1

√𝛼
𝑡𝑎𝑛−1(√𝛼𝑌) + [

1

2𝛼𝛽2𝑘0
−

𝛿

2𝛼𝑈𝜇0𝛽2
] 𝑙𝑛|1 + 𝛼𝑌2| +

1

3𝛽2𝑘0
[𝑌 −

1

2𝛼
𝑙𝑛|1 + 𝛼𝑌2|] + 𝑐2  

𝜇(𝑝) = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 −
𝑝0)

𝑛]  

Take n=2 

𝑢 =
𝑐1

√𝛼
𝑡𝑎𝑛−1 (√𝛼(𝑌 − 𝑝0)) + [

1

2𝛼𝛽2𝑘0
−

𝛿

2𝛼𝑈𝜇0𝛽2
] 𝑙𝑛|1 + 𝛼(𝑌 − 𝑝0)

2| +
1

3𝛽2𝑘0
[(𝑌 − 𝑝0) −

1

2𝛼
𝑙𝑛|1 +

𝛼(𝑌 − 𝑝0)
2|] + 𝑐2  

𝜇 = 𝑓(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)]
𝑛  𝑢 =

𝑌(1−𝛼𝑝0)+𝛼
𝑌2

2

𝛽2𝑘0𝛼(𝑛+1)
−

𝛿

𝜇0𝛽2
{
[1+𝛼(𝑌−𝑝0)]2−𝑛

𝛼2(2−𝑛)
+ (𝑝0 −

1

𝛼
)

[1+𝛼(𝑌−𝑝0)]1−𝑛

𝛼(1−𝑛)
} + 𝑐1 

[1+𝛼(𝑌−𝑝0)]1−𝑛

𝛼(1−𝑛)
; 𝑛 ≠ 1, 2. 

𝜇 = 𝑓(𝑝) = 𝜇0𝑒
𝛼(

𝑝

𝑝0
)
  𝑢 =

𝑌

𝛽2k0
α 

p0

−
δ

β2Uμ0
[

Y
−α 

p0

−
(p0)2

α2
]e

−α 

p0
Y
+

c1e
−α 
p0

Y

−α 

p0

+ c2  

μ = f(p) = μ0(p/p0)
n  u =

Y2

2β2k0(n+1)
−

δ(p0)n

β2Uμ0(2−n)
Y2−n +

c1Y1−n

1−n
+ c2;  n ≠ 1, 2  

 

Table 4 represents the entry profile to a porous channel the flow through which is governed by the generalized Brinkman’s equation. For 

the case of μ = f(p) = μ0e
α(

p

p0
)n

, the resulting differential equation needs to be solved numerically. For the eleven other popular expres-

sions for viscosity in terms of pressure, we have provided a closed-form profile for the entry velocity. 

5. Conclusion 

In this work, we considered flow of a pressure-dependent viscosity fluid down an inclined porous plane with the objective of deriving entry 

velocity profiles to either a free-space channel or porous channel. This work is important in the study of two-dimensional flow through 

channels when the fluid is of a pressure-dependent viscosity. To achieve the said objective, we considered Navier-Stokes equations with 
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pressure-dependent viscosity, and the generalized forms of Darcy, Forchheimer and Brinkman equations. We derived entry velocity ex-

pressions for a dozen cases of viscosity-pressure relations. From the above work, we can highlight the following findings. 

a) In using the Barus viscosity-pressure relation, one needs an experimental Barus coefficient, βB. 

b) Generalized Darcy’s and Forchheimer’s equations are not compatible with the presence of solid walls on which a no-slip velocity is 

imposed. In this work, we derived expressions for the slip velocities at the walls. 

c) In using the generalized Brinkman’s equation, a closed-form solution might not readily avail itself, depending on the form of vis-

cosity and drag function in terms of pressure. 

d) Generalized Brinkman’s equation does not explicitly provide information on how to distinguish between one porous medium or 

another. In this work, we provided a methodology in which we tied the drag function to the medium variable permeability and 

obtained velocity expressions for a dozen viscosity-pressure relations. 

The main emphasis in this work has been on flow through an inclined channel. We leave for future work to consider flow through a 

horizontal channel. 
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