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Abstract 
 

Tzitzeica Dodd Bullough (TDB) equation appears in the field of quantum field theory and nonlinear optics. In this article, we extracted 

abundant new soliton solutions with free choice of arbitrary parameters to the Tzitzeica-Dodd-Bullough (TDB) equation through the 

three separate methods such as the enhanced -expansion method, the improved -expansion method and the -expansion method by means 

of the wave transformation and the Painleve property. In these schemes, we formally derived some new closed form soliton solutions of 

the TDB equation through with symbolic computation package Maple. Soliton solutions are expressed by hyperbolic function, trigono-

metric function and rational function. The attained solutions are verified by symbolic computation software Maple 17. The attained solu-

tions can be demonstrated by two-dimensional (2D) and three-dimensional (3D) graphs. Finally, it can be concluded that the adopted 

methods are very effective and well-suited to find new closed-form soliton solutions to the other nonlinear evaluation equations (NLEEs) 

with integer or fractional order. 

 
Keywords: Tzitzeica-Dodd-Bullough Equation; Enhanced -Expansion Method; Improved -Expansion Method; - Expansion Method; Closed-Form Soliton 

Solution. 

 

1. Introduction 

Nonlinear evolution equations survive naturally everywhere in the world in various fields of applied mathematics, mathematical physics 

and engineering, especially plasma physics, solid state physics, plasma waves, chemical kinematics, optical fibers, fluid dynamics and 

etc. Nonlinear evolution equations (NLEEs) have a great importance to mark out complex physical phenomena in the real-world prob-

lems. Therefore, the study of solutions to NLEEs is very much important part to analyze the physical interpretations. It is a fact that, ex-

act solutions provide much physical information and help one to understand the mechanism that governs some physical models, the nu-

merical, analytical and semi-analytical treatments are involved in this regard. An analytical solution is preferred because one can get 

some insight on the physical phenomena and behaviors from it. So, it is well recognized that to looking for exact analytical solution of 

NLEEs arising in mathematical physics plays an imperative role in the study of nonlinear physical phenomena and optics. Moreover, the 

solutions of NLEEs are significantly important in field of soliton theory [1-3]. Nowadays, it is very easier to extract the exact analytical 

solutions for researcher due to rapid growth of computer algebra based symbolic computation software such as Maple, MATLAB, and 

Mathematica.  

Therefore, researchers have made a perform to ongoing research works and produce the new exact solitary wave solutions from nonlinear 

evolution equations. Accordingly, they developed numerous potential and useful techniques, such as, the homogeneous balance method 

[4], Hirota’s bilinear method [5], the trial function method [6], the tanh-function method [7], the theta function method [8,9], the extend-

ed tanh-function method [10], the modified extended tanh-function method [11], the hyperbolic function method [12], the sine–cosine 

method [13], the inverse scattering transform [14], the Jacobi elliptic function expansion [15], the Homotopy perturbation methods [16], 

the auxiliary equation method [17], the first integral method [18], the modified Kudryashov method [19], the generalized Kudryashov 

method [20], the ( )'/G G  -expansion method [21], the improved ( )'/G G  -expansion method [22] and so on. Practically, there is no inte-

grated fixed method that can be applied to handle all types of nonlinear problems. After that, many researchers tried to propose and exe-

cute distinct new method for acquiring new solutions for new nonlinear evolution equations. For further enquiry, we will apply three 

imperative methods likely the enhanced ( )'/G G  -expansion method [23], the improved ( )1/ 'G -expansion method [24, 25] and the 

( )'/ ,1/G G G -expansion method [26, 27], to examine closed form solution for NLEEs. Essentially, these ameliorate three methods can be 

thought as an extension of the basic ( )'/G G -expansion method [21]. The key plan of this article is to acquire the newer and general solu-

tions of the TDB equation with different pattern.  

Recently, Wazwaz [28] investigated the nonlinear Zhiber- Shabbat equation: 
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u pe qe re− −+ + + = ,                                                                                                                                                                                 (1) 

 

Where ,p q and r  are arbitrary constants. For choosing arbitrary constant parameters, if 0q r= = , Eq. (1) reduces to the Liouville equa-

tion. For 0, 0q r=   , Eq. (1) gives the well-known Dodd-Bullough-Mikhailov (DBM) equation and for 0, 0q r = , Eq. (1) reduces to 

the sinh-Gordon equation. Moreover, for 0, 1, 1p q r= = − = − , we obtained the Tzitzeica- Dodd- Bullough (TDB) equation as follows 

[28]: 

 
2 0u u

xt
u e e− −− − = .                                                                                                                                                                                             (2) 

 

Equation (2) plays an imperative role in many scientific applications arising in nonlinear optics, plasma physics and quantum field theory 

[28-44]. Several researchers obtained the different types of exact solutions of the Tzitzeica-Dodd-Bullough equation by applying numer-

ous analytic methods such as, the tanh method [28], [29], the modified simple equation method [30], the bifurcation method [31], the 

modified tanh-coth function method [32], the ( )'/G G -expansion method [33,34], the improved -expansion method [35], 

the -expansion method [36], the modified Kudryashov method [37], an ansatz approach with the Jacobi elliptic function 

method [38], the exponential rational function method [39], [40], the exp and double exp function method [41], [42], the direct algebraic 

method [43], the novel exponential rational function method [44], the sine-Gordon expansion method [45] and the modified version of 

the improved -expansion method [46]. Interested reader can read the other references article herein [47], [48]. However, no 

one studied the solutions to the aforesaid equation through the enhanced ( )'/G G -expansion method, the improved ( )1/ 'G -expansion 

method and the ( )'/ ,1/G G G -expansion method. In this article, we will employ first time, the enhanced ( )'/G G -expansion method, the 

improved ( )1/ 'G -expansion method and the ( )'/ ,1/G G G -expansion method to examine the closed form solitary wave solutions to the 

Tzitzeica- Dodd- Bullough (TDB) equation which is reliable and preferable to the previous basic ( )'/G G -expansion method.  

Therefore, the objective of this study is to employ the enhanced ( )'/G G -expansion method, the improved ( )1/ 'G -expansion method and 

the ( )'/ ,1/G G G -expansion method for generating the more general and newer exact solutions of the Tzitzeica-Dodd-Bullough (TBD) 

equation.  

The remainder of the paper is arranged as follows. In section 2, we describe the methodology of the three working methods. In section 3, 

we apply these methods to solve the nonlinear evaluation equations point out above. In section 4 and 5, we illustrate these methods in 

detail with TDB equation. Finally, we decorate a concluding remark in last section. 

2. A brief description of the solution procedure 

In this section, we will elaborate the algorithm of the enhanced ( / )G G -expansion method, the improved (1 / )G -expansion and the 

( / , 1/ )G G G -expansion method for investigating exact solutions of nonlinear evolution equations (NLEEs). Suppose we have NLEEs 

for ( ),u x t , in the form  

 

( ), , , , , ... 0t x xx xt ttP u u u u u u = ,                                                                                                                                                                         (3) 

 

Where, P  is a polynomial in its arguments which includes nonlinear term and height order derivatives. Combining the independent vari-

ables x  and t  into one variable , we suppose that  

 

( ) ( ), ,u x t u x wt = = − ,                                                                                                                                                                                  (4) 

 

Where  0w− is the speed of the traveling wave, permits us to transform the Eq.(3) into an ordinary differential equation (ODE) : 

 
( , , , ,....................)Q u u u u   ,                                                                                                                                                                               (5) 

 

Where the superscripts stand for the ordinary derivatives with respect to . 

2.1. The enhanced ( )/G G -expansion method 

The main steps of enhanced ( )/G G - expansion method are to seek exact solutions of nonlinear partial differential equations can be giv-

en as follows [23]: 

Step 1: Suppose the traveling wave solution of Eq. (5) can be expressed as follows:  
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Where the coefficients , ( , )i ia b n i n n−    and   are constants to be determined later, and 1, 0 =   . The positive integer n  can 

be determined by considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in Eq. (5). 

Precisely, we define the degree of ( )u   as ( ( ))D u n =  , which gives rise to a degree of another expression as follows:  

 

q

q

d u
D n q

d

 
= + 

 

, ( )

s
q

p

q

d u
D u np s n q

d

  
= + +     

 .                                                                                                                                              (7) 

 

Therefore, we can insert the value of n  in Eq. (6) after finding the value of n  form Eq. (7). 

Step-2: In this instance, ( )G G =  satisfies the following ordinary differential equation: 

 
( ) ( ) 0G G   + = ,                                                                                                                                                                                            (8) 

 

It is notable that Eq. (8) has the following general solutions: 

Type-I (Hyperbolic function solutions): When 0    

 

( )'
tanh

G
A

G
 

 
= − + − 

 
 , (9a) 

 

( )'
coth

G
A

G
 

 
= − + − 

 

 ,                                                                                                                                                                       (9b) 

 

Type-II (Trigonometric function solutions): When 0   

 

( )'
tan

G
A

G
 

 
= − 

 

 ,                                                                                                                                                                           (10a) 

 

( )'
tan

G
A

G
 

 
= + 

 
 ,                                                                                                                                                                            (10b) 

 

Step 3: After we determine the index parameter n , we substitute Eq. (6) along with Eq.(8) into Eq.(5) and collecting all the terms of the 

same power of ( )'/
i

G G  and 
( )

( )
2

'/
'/ 1

i G G
G G 



 
+ 

 
 

together, equating them to zero, we obtain a system of algebraic equations, which can 

be solved by Maple to get the values of , ( , )
i i

a b n i n n−    ,   and w  . Substituting the values of , ,i ia b   and w  into Eq. (6) along with 

general solutions of Eq. (8) into Eq. (5), then we can derive exact solutions of Eq. (5). 

2.2. Improved 
( )1/ G

- expansion method 

The main steps of this method are to seek exact solutions of nonlinear partial differential equations can be given as follows (see details 

Khater and Kumar, [25]): 

Step 1: Suppose the traveling wave solution of Eq. (5) can be expressed as follows: 

 

( ) ( )
0 1

( ) ( ) ( )
i n i ni i

i i
i i

u a m F b m F  
= = −

= =

= + + +  ,                                                                                                                                                        (11) 

 

Where, ( )( ) 1/F G =  and the coefficients (0 , )
i

a i n n   and (1 , )ib i n n    are constants to be determined and either 
n

a  or 

nb  may be zero but both 
n

a  and nb  cannot be zero simultaneously. The positive integer n can be determined by considering the 

homogeneous balance between the highest order derivatives and nonlinear terms appearing in Eq. (5). Therefore, we can find the value of 

n  from Eq. (7) in the same way of sub-section 2.1. 

Step-2: In this instance, ( )G G = satisfies the following ordinary differential equation: 

 

( ) ( ) 0G G    + + = ,                                                                                                                                                                             (12) 

 

Where,   and   are arbitrary constants.  

Since 1/F G=  , with the help of Eq. (12) we obtain, 2F F F  = +   

The general solution of Eq. (12) is 

 

1

2
( )

c
G e c


 

−= − − +                                                                                                                                                                                  (13) 

 

Where, 1c  and 
2

c  are two arbitrary constants. Then by differentiating Eq. (13) once with respect to   , we obtain the following expres-

sion: 
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1

1 1
( )

( )
F

G
c e 






−

= =


− +

                                                                                                                                                                              (14) 

 

Equation (14) can be expressed by hyperbolic functions as follows: 

 

1
( )

( ) (cosh( ) sinh( ))
F

G A




    
= =

 − + −
 , 

1
c A=                                                                                                                         (15) 

 

Step 3: After we determine the index parameter n , we substitute Eq. (11) along with Eq. (12) into Eq. (5) and collecting all the terms of 

the same power ( ( )) , 0,1, 2,.....iF i =  and equating them to zero, we obtain a system of algebraic equations, which can be solved by Maple 

to get the values of ia  ,
i

b  , m , w  and V , constant of integration. Substituting the values of
i

a , ib , m ,V and other values into Eq. (5) 

along with Eq. (12) completes the determination of the solution of Eq. (5). 

2.3. The ( / ,1/ )G G G  -expansion method 

In this sub-section, we describe the ( / ,1/ )G G G  -expansion method for finding traveling wave solutions of nonlinear evolution equa-

tions (NLEEs). Li. Et al. [26] has given ( / ,1/ )G G G -expansion method as the preparations, consider the second-order linear ordinary 

differential equation (LODE): 

 

( ) ( )'' 0G G   + − =                                                                                                                                                                                (16) 

 

And we let 

 
/G G = , 1/ G =                                                                                                                                                                                         (17) 

 

Using Eq. (16) and Eq. (17) yields 

 
2    = − + − ,   = −                                                                                                                                                                   (18) 

 

From the three cases of the general solutions of Eq. (16), we have: 

Case 1: Hyperbolic function solutions 

When 0  , the general solution of Eq. (16) is, 

 

( ) ( ) ( )sinh cosh
1 2

G A A


  


= − + − +                                                                                                                                                         (19) 

 

And we have 

 

( )2 2

2 2
2


   

  

−
= − +

+
                                                                                                                                                                          (20) 

 

Where 
1A  and 

2
A  are two arbitrary constants and 

2 2

1 2A A = −  .  

Case 2: Trigonometric function solutions 

When 0  , the general solution of Eq. (16) is, 

 

( ) ( ) ( )1 2sin cosG A A


  


= + +                                                                                                                                                   (21) 

 

And we have 

 

( )2 2

2 2
2


   
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= − +

−
                                                                                                                                                                          (22) 

 

Where 
1A  and 

2
A  are two arbitrary constants and 2 2

1 2A A = +  .  

Case 3: Rational function solutions 

When 0 =  , the general solution of Eq. (16) is, 

 

( ) 2

1 2
2

G A A


  = + +                                                                                                                                                                                    (23) 

 

And we have 
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( )2 2

2

1 2

1
2

2A A
  


= −

−
                                                                                                                                                                              (24) 

 

Where 1A  and 
2

A  are two arbitrary constants.  

In the following, we give the main steps of the ( )'/ ,1/G G G  -expansion method, which is given in detail in reference [26], [27]:  

Step 1: Suppose the traveling wave solution of Eq. (5) can be expressed by a polynomial in   and   as follows: 

 
1

0 1

( )
i n i n

i i

i i
i i

u a b   
= =

−

= =

= +                                                                                                                                                                                     (25) 

 

Where ( )G G = satisfies the Eq. (16), ( 0,..., )
i

a i n= , ( 1,..., )ib i n= , ,V  and  are constants to be determined later and the positive 

integer n can be determined from Eq. (7) , by using the same manner of sub-section 2.1. 

Step 2: Substituting Eq. (25) into Eq. (5) and using Eq. (18) and Eq. (20) (here, Case -1 is taken as an example), the left-hand side of Eq. 

(5) can be converted into a polynomial in terms of   and , in which the degree of   is not larger than 1 and the degree of   is from 

zero to an integer. Equating like power of the polynomial to zero yields a system of algebraic equations in ( 0,..., )
i

a i n= , ( 1,..., )ib i n= , 

, ( 0)w    ,  ,
1

A and
2A . 

Step 3: Solving the algebraic equation attained in Step 2 with the aid of Maple. We get the value of,
i

b , , ( 0)w    ,   , 1A  and 
2

A . 

Substituting the values ( 0,..., )ia i n= , ( 1,..., )
i

b i n= , , ( 0)w    ,  , 1A and
2

A obtained into Eq. (25), one can obtain the travelling 

wave solutions expressed by hyperbolic functions of Eq. (5). 

Step 4: Similar to Steps 3 and 4, substituting Eq. (25) into Eq. (5) and using Eq. (18) and Eq. (22) (or (18) and (24)), we obtain the 

travelling wave solutions of Eq. (5) expressed by trigonometric functions (or expressed by rational functions). 

3. Applications 

In this section, we will implement the mentioned methods described in section 2, to find the new exact solution of the Tzitzeica-Dodd-

Bullough (TDB) equation. Using the Painleave transformation, 
uv e−=  or ( )lnu v= − , Eq. (2) transforms into the following partial 

differential equation, 

 
3 4 0xt x tvv v v v v− + + =                                                                                                                                                                      (26) 

 

Utilizing the assume transformation of Eq. (4), then Eq. (26) convert into the following ordinary differential equation:  

 

( )
2'' 3 4' 0wvv w v v v− + + + =                                                                                                                                                                              (27) 

 

Where prime denotes the derivation with respect to . 

3.1. Application of the enhanced ( )/G G
-expansion method 

In this sub-section, the enhanced ( )'/G G -expansion method described in sub-section 2.1, has been implemented to derive exact solutions 

of the Tzitzeica-Dodd-Bullough (TDB) equation. Now, balancing the order of ''vv  and
4v from Eq. (27), yields 2 2 4n n+ = and we get 

1n = . So, we consider the following formal solution of Eq. (27): 
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                                                                                                       (28) 

 

Where the coefficients
1 0 1 1 0 1, , , ,  anda a b b b− −

 are arbitrary constants to be determined later. Substituting Eq. (28) into Eq. (27) along 

with Eq.(8), the left hand side of Eq. (27) becomes a polynomial in ( )'/G G  and 
( )

( )
2

'/
'/ 1

G G
G G 



 
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 
 

, setting each coefficient of this 

polynomial to zero, yields a system of algebraic equations (for simplicity, we omitted to display them) in terms of 

1 0 1 1 0 1
, , , , , ,  and a a b b b  

− −
, Solving these resulting system using the symbolic computation package, gives:  
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Set 1: 
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Set 3: 
1 0 1 1 0 1

1 1
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Set 4: 
1 0 1 1 0 1
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i i i
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Set 5: 
1 0 1 1 0 1

1 1
, , , 0, 0, , 0

2 2 2 2

i i i
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Now substituting set-1 to set-5 with the general solutions of Eq. (8) into Eq. (28), and using the transformation lnu v= − , we obtain abun-

dant travelling wave solutions of Eq. (2) as follows: 

 

Case-1 (Hyperbolic function solutions): When 0   , we get the following hyperbolic function solutions: 
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                                                                                                                  (29) 
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Case-2 (Trigonometric function solutions): When 0   , we derive the following trigonometric function solutions: 
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                                                                                                                                (49) 

3.2. Application of the improved 
( )1/ G

-expansion method 

In this section, the improved ( )1/ 'G -expansion method delineated in the sub-section 2.2 has been implemented to derive new exact solu-

tions of the Tzitzeica-Dodd-Bullough (TDB) equation. Assume the formal solution of Eq. (27) is the following form: 

 

( ) ( )
1

0 1 1( ) ( ) ( )v a a m F b m F  
−

= + + + +                                                                                                                                            (50) 

 

Where the coefficients
0, 1 1

, b  and a a m are arbitrary constants to be determined later. Substituting Eq. (50) into Eq. (27) along with Eq. (12), 

the left-hand side of Eq. (27) becomes a polynomial in ( )F  , setting each coefficient of this polynomial to zero yield a system of al-

gebraic equations of 
0 1 1
, , , , ,  and a a b m w  (for simplicity we omitted to display them). Solving these resulting systems using the symbol-

ic computation package, gives:  
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Now substituting set-1 to set-6 with Eq. (15) into Eq. (50), and using the transformation lnu v= − , we constructed abundant travelling 

wave solutions of Eq. (2) as follows: 
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                                                                                             (51) 

 

( )
( )0 0

2 0

2

0 0

1 cosh sinh

, ln

cosh sinh

t t
A x A x

u x t
t t

A x x

      
 



      
 

     
+ − + − − −     

     = − +
     

− − − − +     
     

                                                                                   (52) 

 

( )

2

3

cosh sinh

, ln

cosh sinh

t t
m mA x x

m
u x t

t t
A x x

    
  


    

 

     
− + − − − +     

−      = − −
     

− + − − −     
     

                                                                                                   (53) 
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( )

2

4

cosh sinh

, ln

t t
m A x x

m
u x t

    
 

 

     
− + − − − +     

     = − − +
 
 
 

                                                                                           (54) 

 

( )

( )

( )

2 2

1 1

1 12 2

2 2

1 1

2 2

5
2 2

2 2 2 1 1

1 2 2

cosh sinh 2

1

2 cosh sinh

, ln

cosh sinh
1

2

t t
A x A x

t t
A x A x

u x t
t t

A x A x

   
        

 

   
     

 

   
       

 



    
+ − + − − − +    

    − +
    
− + − − −    

    
= −

    
− + − + − − −    

    +

( )
2 2

1 1

1 12 2
cosh sinh 2

t t
A x A x

   
       

 

 
 
 
 
 
 
 
 
 
 
     

+ − + − − − +     
     

                                                                                (55) 

 

( )

2 2

6,7

cosh sinh 2
4 41 1

2 2
2 cosh sinh

4 4
, ln

cosh sinh
4 41

4
cosh sinh

4 4

t t
A x A x

t t
A x A x

u x t
t t

A x A x

t t
A x A x

      
 

    
 

    
 

    
 

    
− + − − − +    

    − 
    
− + − − −    

    
= −

    
− + − − −    

    
 

− + − − − 
 

2

 
 
 
 
 
 
 
 
 
   

+   
   

                                                                               (56) 

3.3. Application of the ( / ,1/ )G G G
-expansion method 

In this section, the two variables ( )'/ ,1/ 'G G G - expansion method impressed in sub-section 2.3 has been implemented to explore the 

new exact solutions of the Tzitzeica-Dodd-Bullough (TDB) equation. Therefore, the formal considered solution of Eq. (27) is the follow-

ing form: 

 

( ) ( ) ( )0 1 1
v a a b    = + +                                                                                                                                                                             (57) 

 

Where the coefficients
0, 1 1 and a a b  are arbitrary constants to be determined later. There are three cases to discuss the solutions of Eq. (27), 

as given in section 2.3. 

Case 1: When 0   (Hyperbolic function solutions) 

Substituting Eq. (57) into Eq. (27) with the help of Eq. (18) and Eq. (20), the left-hand side of Eq. (27) becomes a polynomial in 

 and    , setting each coefficient of this polynomial to zero yield a system of algebraic equations in 
0 1
, , ,  and .a a w 

 
Solving these re-

sulting systems using the symbolic computation package, gives: 

 

Set-1: ( )2 2 2 2

1 2

0 1 1

1 1 1
, , ,

2 22

A Ai
w a a b

 

 

 + − 
= − = − = =  

 
 

  

 

Set-2: 
( )2 2 2 2

1 2

0 1 1

1 1 1
, , ,

2 22

A Ai
w a a b

 

 

 + − 
= − = − = − =  

  

 

 

Set-3: ( ) ( )2 2 2 2 2 2 2 2

1 2 1 2

0 1 12
, 0, 0,

A A A A
w a a b

   

 

 + − + − 
= − = = = − 

  

  

 

Now substituting set-1 to set-3 into Eq. (57) and using the transformation ( )lnu v= − , we get 
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( )

( )

1 2

1 2

1,2

2 2 2 2

1 2

1 2

1
cosh sinh

21

2
sinh cosh

, ln

1

2
sinh cosh

i i
A ix t A ix t

i i
A ix t A ix t

u x t

A A

i i
A ix t A ix t

 
 


 

 

 


 

 

     
+ + +     

     − +
    

+ + + +    
   = −  

 
+ − 

    
 + + + +    

    

                                                                                           (58) 

 

( )

( )

1 2

1 2

3,4

2 2 2 2

1 2

1 2

1
cosh sinh

21

2
sinh cosh

, ln

1

2
sinh cosh

i i
A ix t A ix t

i i
A ix t A ix t

u x t

A A

i i
A ix t A ix t

 
 


 

 

 


 

 

     
+ + +     

     − −
    

+ + + +    
= −     

 
+ − 


    

+ + + +     
    

                                                                                                          (59) 

 

( )
( )

( ) ( )

2 2 2 2

1 2

5
2 2 2 2 2 2

2

1 22 2

, ln

sinh cosh

A A
u x t

i x i t i x i t
A A

 

       
 

   

 
 
 + −
 = − −

     − + − +
     + +

     
     

                                                        (60) 

 

Solution Eq. (58) to Eq. (60) are the generalized closed form solutions of the Tzitzeica-Dodd-Bullough equation, where 
1 2
 and A A  are 

arbitrary constants. In particular, if we set 
1 20, 0A A=   and 0 =  then from Eq. (58) to Eq. (59), we obtain a new type of solitary wave 

solutions, given in the following: 

 

( )6,7

1 1 1
, ln tanh sech

2 2 2

i i
u x t ix t ix t 

 

    
= − − + +  +    

    

                                                                                                   (61) 

 

( )8,9

1 1 1
, ln tanh sech

2 2 2

i i
u x t ix t ix t 

 

    
= − − − +  +    

    
                                                                                                                   (62) 

 

On the other hand, for
1 20, 0and 0A A  = = , from Eq. (58) – (59) we obtained the following solitary wave solutions respectively: 

 

( )10,11

1 1 1
, ln coth csch

2 2 2

i i
u x t ix t ix t 

 

    
= − − + +  +    

    
                                                                                                                 (63) 

 

( )12,13

1 1 1
, ln coth csch

2 2 2

i i
u x t ix t ix t 

 

    
= − − − +  +    

    

                                                                                                 (64) 

 

Case 2: When 0   (Trigonometric function solutions) 

Taking the same steps as for case-1 and solving the system of equations yields sets of values of arbitrary constants as follows: 

 

Set 4: ( )2 2 2 2

1 2

0 1 1

1 1 1 1
, , ,

2 4 2

A A
w a a b

 

  

 − + 
= − = − = − =  

 
 

  

 

Set 5: 
( )2 2 2 2

1 2

0 1 1

1 1 1 1
, , ,

2 4 2

A A
w a a b

 

  

 − + 
= − = − = − − =  

  

  

 

Set 6: ( ) ( )2 2 2 2 2 2 2 2

1 2 1 2

0 1 12
, 0, 0,

A A A A
w a a b

   

 

 − + − + 
= − = = = − 

  

  

 

Now substituting set- 4 to set- 6 into Eq. (57) and using the transformation ( )lnu v= − , the following general solitary wave solutions of 

Eq. (2) are obtained: 
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( )

( )

1 2

1 2

14,15

2 2 2 2

1 2

1 2

1 1 1
cos sin

21

1 12
sin cos

, ln

1

2 1 1
sin cos

A x t A x t

A x t A x t
u x t

A A

A x t A x t

 
 


 

 

 


  

 

     
− + + +     

     − +
    

+ + + +    
   = −  

 
− + 

     
 + + + +     

     

                                                                                                  (65) 

 

( )

( )

1 2

1 2

16,17

2 2 2 2

1 2

1 2

1 1 1
cos sin

21

1 12
sin cos

, ln

1

2 1 1
sin cos

A x t A x t

A x t A x t
u x t

A A

A x t A x t

 
 


 

 

 


  

 

     
− + + +     

     − −
    

+ + + +    
   = −  

 
− + 


     
 + + + +     

     

                                                                                                            (66) 

 

( )
( )2 2 2 2

1 2

18 2 2 2 2
2

1 22 2

, ln

sin cos

A A
u x t

A x t A x t

 

   
   

   

 
 

− + 
= − −     − + − + + + + +      

     

                                                                     (67) 

 

As 
1 2
 and A A  are arbitrary constants, set 

1 20, 0A A=   and 0 = , solutions Eq. (65) to Eq. (66) turn out to the following periodic wave 

solutions: 

 

( )19,20

1 1 1 1 1
ln tan sec

2 2 2
u x t x t  

 

    
= − − + +  +    

    

                                                                                                         (68) 

 

( )21,22

1 1 1 1 1
ln tan sec

2 2 2
u x t x t  

 

    
= − − − +  +    

    
                                                                                                                        (69) 

 

Alternatively, if we consider, 
1 20, 0 and 0A A  = =  , solutions Eq. (65) - (66) become 

 

( )23,24

1 1 1 1 1
, ln cot csc

2 2 2
u x t x t x t 

 

    
= − − + +  +    

    
                                                                                                                      (70) 

 

( )25,26

1 1 1 1 1
, ln cot csc

2 2 2
u x t x t x t 

 

    
= − − − +  +    

    

                                                                                                                  (71) 

 

Case 3: When 0 =  (Rational function solutions) 

Taking the same steps as for case-1 and solving the system of equations yields sets of values of arbitrary constants as follows: 

 

Set-7: 
2 2

2 1 2 1
0 1 12

2 2
, 0, 0,

A A A A
w a a b

 

 

 − −
= − = = = − 

 

  

 

Now substituting set-1 into Eq. (57), using the transformation lnu v= − , we obtain abundant travelling wave solutions of Eq. (2) as fol-

lows: 

 

( )2

2 2 1

27 2
2 2

2 22 1 2 1
1 2 1 22 2

4 2
( , ) ln

2 2
4 4

A A A
u x t

A A A A
A x t A A x t A



 


 

 
 
 −

= − − 
     − −
 + − + + − +           

                                                                                               (72) 

 

Remark 1. All solutions have been checked by putting them back to the original Eq. (2) and found them correct. 

4. Graphical representations of some of the extracted solutions 

Graph is a powerful tool for describing the physical phenomena for the created any real-world problems. Therefore, we tend to create 

some graphs of obtained solutions. In order that, the obtained solutions are demonstrates the physical significance through with 3D and 

2D graphics with the free choice of arbitrary parameters. The graphical illustrations of some extracted solutions are given in Figure.1-5 
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with the assistance of MATLAB. Three dimensional and two-dimensional snapshots of the acquired solutions for the TDB equation 

shows the kink, singular kink and periodic behavior. Figure 1, and Figs. 3-4 represent the shape of kink and singular kink. On the other 

hand, Figure. 2 and Figure. 5 illustrates the periodic wave behaviors. The remaining of the obtained solutions represents the same physi-

cal phenomena. 

 

 
Fig. 1: (A)-(B): 3D Snapshots For The Solution The Solution Of TDB Equation Extracted By The Enhanced ( )'/G G -Expansion Method For The Free 

Choice Of Arbitrary Parameters , , , And . (C)-(D): 2D Snapshots Of (A)-(B) At . 

 

 
Fig. 2: (A)-(B): 3D Snapshots For The Solution The Solution Of TDB Equation Derived By The Enhanced ( )'/G G -Expansion Method For The Free 

Choice Of Arbitrary Parameters , , And . (C)-(D): 2D Snapshots Of (A)-(B) At . 

 

 
Fig. 3: (A)-(B): 3D Snapshots For The Solution The Solution Of TDB Equation Obtained By The Improved ( )1/ 'G -Expansion Method For The Parame-

ters For The Free Choice Of Arbitrary Parameters , , , And . (C)-(D): 2D Snapshots Of (A)-(B) At . 
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Fig. 4: (A)-(B): 3D Snapshots For The Solution The Solution Of TDB Equation Produced By The ( )'/ ,1/G G G -Expansion Method For The Parameters 

For The Free Choice Of Arbitrary Parameters , , , , And . (C)-(D): 2D Snapshots Of (A)-(B) At . 

 

 
 

 
Fig. 5: (A)-(B): 3D Snapshots For The Solution The Solution Of TDB Equation Produced By The ( )'/ ,1/G G G -Expansion Method For The Parameters 

For The Free Choice Of Arbitrary Parameters , , , , And . (C)-(D): 2D Snapshots Of (A)-(B) At . 

5. Results and discussion 

In this article, the derived solution for the TDB equation is a plentiful move by means of three different approaches. Here, our derived 

solutions have three forms referred to as hyperbolic function, trigonometric function and rational function solutions. Some solutions of 

the TDB equation are new and some solutions coincide the referred literature [33, 34]. The thinking about of assuming solutions and the 

auxiliary equation are completely extensive from [33, 34] and we also claim that some of the acquired solutions have not been reported in 

the past. Using the enhanced ( )'/G G -expansion method, we derived eighteen hyperbolic function solutions and eighteen trigonometric 

function solutions for TDB. In the improved ( )1/ 'G -expansion method, we constructed seven new solutions which are not cited by the 
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past researches. In the ( )'/ ,1/G G G -expansion method, we received the not only hyperbolic, trigonometric and rational solutions but 

also linear combination of the hyperbolic and trigonometric function solutions which are generally new formation. 

From our observation, if we set 0
i

b = , 0 =  and negative the exponents of ( )'/G G  are zero in Eq. (6), then the executed method turn 

into the basic ( )'/G G  expansion method which was introduced by Wang et al. [21].Again if we substitute 0m = in Eq. (11) and omit the 

portion 
( )( )

1

n
i

i

i

b m F 
−

=

+
 then the improved ( )1/ 'G -expansion method becomes the basic ( )1/ 'G -expansion method which was intro-

duced by Yokus[24]. Similarly, if we set 0 =  in Eq. (16) and 0ib =  in Eq. (25) the ( )'/ ,1/G G G -expansion method reduces to the 

basic ( )'/G G  expansion method. Hence, the basic ( )'/G G and ( )1/ 'G -expansion method is only the particular case of our respective 

method. So, our derived solutions are quite different. In this regard, it can be shown that the obtained solution of TDB equation of Aba-

zari[33] and Borhanifar and Moghanlu [34], is only the particular case of the enhanced ( )'/G G  and the ( )'/ ,1/G G G -expansion method. 

Therefore, in this paper we found some new solutions. 

6. Conclusion 

In this work, we obtained the large number of closed form soliton solutions of the Tzitzeica Dodd Bullough (TDB) equation by applying 

the enhanced ( )'/G G -expansion method, the improved ( )1/ 'G -expansion method and the ( )'/ ,1/G G G -expansion method. The extracted 

solutions are different categories and more general from the previously obtained solutions which were presented by the other authors in 

the literature [33-34]. We observe that our results can be potentially found useful for applications in the field of nonlinear optics. All 

solutions are verified with the aid of maple packet program. The soliton solutions are expressed in terms of hyperbolic functions, trigo-

nometric functions and rational functions. Therefore, it is shown that the enhanced ( )'/G G -expansion method, the improved ( )1/ 'G -

expansion method and the ( )'/ ,1/G G G -expansion method provides a very effective and powerful mathematical tool for solving nonlin-

ear equations in mathematical physics and nonlinear optics. 
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