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Abstract 
 

In this paper, the -expansion method has been applied to find the new exact traveling wave solutions of the nonlinear evaluation equations 

(NLEEs) by utilizing 3rd-order Klein–Gordon Equation (KFGE). With the collaboration of symbolic commercial software maple, the 

competence of this method for inventing these exact solutions has been more exhibited. As an upshot, some new exact solutions are 

obtained and signified by hyperbolic function solutions, different combinations of trigonometric function solutions, and exponential func-

tion solutions. Moreover, the -expansion method is a more efficient method for exploring essential nonlinear waves that enrich a variety of 

dynamic models that arises in nonlinear fields. All sketching is given out to show the properties of the innovative explicit analytic solutions. 

Our proposed method is directed, succinct, and reasonably good for the various nonlinear evaluation equations (NLEEs) related treatment 

and mathematical physics also. 
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1. Introduction 

Physical phenomena and processes that occurred in nature generally have tangled nonlinear features. Nonlinear problems (NLPs) are of 

interest to engineers, biologists, physicists, mathematicians, and many other scientists because most systems are inherently nonlinear in 

nature. From there nonlinear evaluation equations have been the topic of concern in different branches of nonlinear sectors such as physics, 

optical fibers, plasma physics, neural physics, solid-state physics, propagation of shallow water wave, mathematical fluid dynamics, elec-

tromagnetism, signal processing, chaos, viscoelasticity, heat flow and wave propagation phenomena, applied mathematics, protein chem-

istry, geochemistry, chemical kinematics, chemically reactive materials and meteorology, etc. That is why the exploration of traveling 

wave solutions is becoming a matter of concerning issue day by day. 

Our proposed Klein-Fock-Gordon equation (KFGE) is an important class of NLEEs that arise in the theory of relativity, relativistic quantum 

mechanics and quantum field theory, which is also of great significance for the high energy particle physics and is applied to model various 

types of matter, including the spread of deviation in crystals and the properties of elementary particles. Sometimes it is defined as the 

equation of relativistic wave related to Schrodinger equation. 

Herewith the Klein-Fock-Gordon equation (KFGE) [32] is defined as the form 
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In this work, we mainly study a special case of nonlinear Klein–Fock-Gordon equation by using 3m =  in Eq. (1).This thm Order Klein–

Fock-Gordon equations Eq. (1) has an thm  order source term, a linear source term, and a 2nd order derivative in the initial value variable 

and spatial variables. When 2m=  the equation is called the 2nd order or quadratic Klein–Fock-Gordon equation and when 3m =  the 

equation is tern into the cubic or 3rd order Klein–Fock-Gordon equation.  

The main goal of this article is to apply the ))(exp( − -expansion method to find the exact solutions of nonlinear 3rd order Klein–Fock-

Gordon equation. 

Nowadays, the exact traveling wave solution for nonlinear evaluation equations (NEEs) has been explored by many authors and they have 

been used many powerful methods. Many powerful method have been presented such as Hirota’s bilinear transformation method [1], [2], 

The ))(exp( − -expansion method[3-5], The exp-function expansion method [6], The Extend ))(exp( − -expansion method [7], [8], 

The extended tanh-function method [9], [10], Lie symmetry method [11-14], The modified simple equation method [15], [16], The complex 

hyperbolic function method [17], The Bernoulli's Sub-ODE method [18], The extended sinh-cosh and sin-cos methods [19], The (G'/G)-
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expansion method [20-22], The enhance (G'/G)-expansion method [23], The Jacobi elliptic function method [24], Homogeneous balance 

method [25, 26], He's polynomial [27], Asymptotic methods and Nano mechanics [28], The extended multiple Riccati equations expansion 

method [29], The variational iteration method [30] and so on. 

M.G. Hafez [31] explored the coupled Klein–Gordon–Zakharov equation using ))(exp( − -expansion method but he didn’t discuss the 

3rd-Order or cubic Klein– Fock-Gordon equations. For this, we firmly intended our self to solve the 3rd-Order or cubic Klein–Fock-Gordon 

equations for the better solution of mathematical and physical treatment. 

The rest of this article is prepared as follows: In section 2, the ))(exp( − -expansion method has been discussed. In section 3, we applied 

this method to the proposed nonlinear evolution equations pointed out above. In section 4, we provide some graphical representations 

among the obtained solutions. Finally, conclusions are given in section 5. 

2. Formation of the ))(exp( − -expansion method: 

In this section, we will describe ))(exp( − -expansion method by term. Let us consider a nonlinear partial differential equation in the 

following form, 

 

.0),,,,,,( = xttxyxxxzxx UUUUUU                                                                                                                                                                    (2) 

 

Where ),,,( tzyxUU =  is an unknown function,   is a polynomial ofU and its different type partial derivatives, in which the nonlinear 

terms and the highest order derivatives are involved. 

Step-1. Now we consider a transformation variable to convert all independent variable into one variable, such as )(),( utxU = , 

 

.Vtmzlykx ++=                                                                                                                                                                                    (3) 

 

By implementing this variable Eq. (3) permits us reducing Eq. (2) in an ODE for ( ) )(, utxu =  

 

0),,,( = uuuP                                                                                                                                                                                  (4) 

 

Step-2. Suppose that the solution of ODE Eq. (4) can be expressed by a polynomial in ))(exp( − as follows 
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Where the derivative of )(  satisfies the ODE in the following form 
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Then the solutions of ODE Eq. (7) are  

Case I: 

Hyperbolic function solution (when 0,042 −  ): 
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Case II: 

Trigonometric function solution (when 0,042 −  ): 
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Case III: 

Exponential function solution (when 0,042 =−  ): 
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Case IV: 

Rational function solution (when 0,0,042 =−  ): 
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Case V: 

Other solution (when 0,042 ===−  ): 

).ln()( C+=   

Where m,,0;,, =iVai  and   are constants to be determined later. The positive integer m  can be determined by considering the 

homogeneous balance between the highest order derivatives and nonlinear terms appearing in ODE (3). 

Step-3. By substituting Eq. (5) into Eq. (4) and using the ODE (6), collecting all same order of ))(exp( −  together, then we execute an 

polynomial form of ))(exp( − . Equating each coefficients of this polynomial to zero, yields a set of algebraic system for

m,,0;,,  =iVai  and  . 

Step-4. Assuming that the constants m,,0;,,  =iVai   and   can be obtained by solving the algebraic system, since the general 

solutions of the auxiliary ODE (6) have been well known for us, then substituting m,,0;,  =iVai , and the general solutions of Eq.(5) 

into Eq.(6). Thus we attain exact and explicit traveling wave solutions of nonlinear partial differential equation (2). 

3. Application of the suggested method 

In this section we apply our proposed ))(exp( − -expansion method to find the exact solution of cubic Klein–Fock-Gordon equation. 

Here for our convenient we consider 3=m  to the thm order Klein–Fock-Gordon equation [31]. 

 

( ),,3 txfuuuu xxtt =+++                                                                                                                                                                       (7) 

 

where  ,, are nonzero constants. 

The travelling wave equation is of the form 

 

( ) ( ) ( ) ( ).,,,,,  utxuuubtmxtxuu ==−==                                                                                                                                       (8) 

 

Using travelling wave equation Eq. (8) and integrating Eq. (7) with respect to , we obtain the following ordinary differential equation. 
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Now considering the homogeneous balance between the highest order derivative u  and nonlinear term ,3u  then we get .1=n Therefore, 

our suggested method allows us to use the auxiliary solution in the following form: 
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Where 0A  and 1A are arbitrary constant to be determined such that ,01 A  while , are arbitrary constants. 

Now differentiating Eq. (10) and using Eq. (6) we get 

 

( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )( ) ( )( )  −−+−++− ++−−= expexpexpexpexpexpexp1Au  

 

( )( ) ( )( )( ) ( )( ).expexpexp
2

1  −++−+ A  

 

And also calculate ( )
( )( ) ( )( )( ) ( )( )( )

.
expexp

3

exp

3
3

3
1

2

2
101

2
03

0
3




AAAAA
Au +++=  



International Journal of Physical Research 17 

 
Now putting the value of 3,, uuu  in Eq. (9) and coefficient of ( ) ,2,1,0, =iei  ,  to zero, we get 
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Solving the polynomial (11)-(14) by using maple we get the following sets: 

Set-1: 
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Set-2: 
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Where  and   are arbitrary constants.  

Now substituting the values of 10,,, AAmb into Eq. (10) we get 
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Case-I: (when 0,042 −  ) we get following hyperbolic solution 
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( )
( ) ( )( )

,

4
2

1
tanh4

4
22

4
4

22

2

2

2

2,1
















−







+−−−

−
−

+

−
−−

=

C

u
 

 

( )
( ) ( )( )

,

4
2

1
tan4

4
22

4
4

22

2

2

2

4,3
















−







++−+−

−
−

+

−
−−

=

C

u
 

 

Where, ,
4

24
2

222

mxt
mm

+
−

−−
−−=




  and C  is an arbitrary constant. 

 
Case-II: (when 0,042 −  ) get following trigonometric solution 

Family-2 
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Case-III: (when 0,0,042 =−  ) we get following exponential solution 

Family-3 
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Case IV & Case V: 

When ,042 =−   the executing value of 0A  is undefined. So the solution cannot be obtained. For this purpose Case IV is rejected. 

Similarly when 0,0,042 ===−   the executing value of 10 , AA  are undefined. So the solution cannot be obtained. So Case V is 

also rejected. 

4. Results and discussions 

4.1. Physical explanation 

In this part, we discus about the physical depiction of obtained and solitary wave solutions for the Klein–Fock-Gordon equation with 

respect to the ))(exp( − -expansion method. Obviously the 3rd order Klein–Fock-Gordon equation has solitary wave solutions that have 

exponentially decaying wings. There is difference type of traveling wave solutions that one of special interest in solitary wave theory. For 

some different physical parameters, solitary wave solutions are developed from the acquired exact solutions. Figure 1 represents Bright 

kink shape solution of 1u for the parameters 2,3,2,1,2,2,2 ===−==−=−=  mC within the interval 10,10 − tx . Figure 2 

represents the Dark kink shape solution of 
2u for the parameters ,2,1,2,2,2 =−==−=−= mC  2,3 ==  within the interval

.10,10 − tx  Figure 3 represents the Singular kink shape solution of 
3u for the parameters 

2,3,2,1,1,2,2 ===−==−=−=  mC  within the interval 10,10 − tx . Figure 4 represents the Periodic shape solution of 
6u

for the parameters 6,3,2,1,1,3,4 ===−==−=−=  mC within the interval 10,10 − tx  and Figure 5 represents the Soliton 

shape solution of 
10u for 0,2,2,1,1,2,2 ===−=−=−==  mC  within the same interval .10,10 − tx  

4.2. Graphical explanation 

This sub-section represents the graphical representation of 3rd order Klein-Fock-Gordon equation. By using mathematical software Maple 

18, Contour, 3D and 2D plots of some achieved solutions have been shown in Fig.-1-Fig.-5 to envisage the essential instrument of the 

original equations. 

 

  
Fig. 1: Bright Kink Shape Solution of 1u  For 2,3,2,1,2,2,2 ===−==−=−=  mC  within 1010 − x and .1010 − t  the Left Figure 

Shows the 3D Plot and the Right Figure Shows the 2D Plot for 1=x . 
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Fig. 2: Dark Kink Shape Solution of 2u For 2,3,2,1,2,2,2 ===−==−=−=  mC . the Left Figure Shows the 3D Plot and the Right Figure 

Shows the 2D Plot for 1=x . 

 

 

 
Fig. 3: Singular Kink Shape Solution of 

3u For 2,3,2,1,1,2,2 ===−==−=−=  mC . the Left Figure Shows the 3D Plot and the Right Figure 

Shows the 2D Plot for 1=x . 

 

 
Fig. 4: Periodic Shape Solution of 

6u for 6,3,2,1,1,3,4 ===−==−=−=  mC . the Left Figure Shows the 3D Plot and the Right Figure Shows 

the 2D Plot for 1=x . 

 

Fig. 5: Soliton Shape Solution of 
10u for 0,2,2,1,1,2,2 ===−=−=−==  mC . 

5. Conclusion 

In this study, the ))(exp( − -expansion has been successfully applied to find new traveling wave solutions for nonlinear wave equation 

of 3rd-Order Klein-Fock–Gordon equation (KFGE). We get some new traveling wave solutions including hyperbolic function solutions, 

trigonometric function solutions and exponential solutions. Therefore, we successfully got the Bright kink shape solution, Dark kink shape 

solution, Singular kink shape solution, Periodic shape solution and other Soliton shape solution which has given the proper geometrical 

explanation. The results is clear to us that our proposed method is reliable, effective and reasonable good for nonlinear evolution equations. 
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Likewise, the solutions of the proposed nonlinear evolution equation in this paper have numerous potential applications in engineering 

field. 
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