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Abstract 

 

Background: Metabolic syndrome is a collection of ailments resulting in a higher risk of cardiovascular disease and type II diabetes 

mellitus. It also results in prolonged endothelial dysfunction which promotes hypertension.   

Objective: The current study examines the acute effect of carbon monoxide (CO) inhibition and nitric oxide (NO) stimulation in septal 

coronary arteries.  

Methods: These studies were conducted in inactin anesthetized obese and lean Zucker rats (13-14 weeks of age). Coronary arteries were 

isolated from obese and lean Zucker rats and in vitro experiments were conducted.  Isolated coronary arteries were pre-treated with 

chromium mesoporphyrin (CrMP) which is a heme oxygenase inhibitor and L-arginine, a NO precursor.  

Results: Blood pressure, non-fasting blood glucose, HBCO, CO levels and Arginase I expression were higher in obese Zucker rats (ZR) 

as compared to the lean (L) group. Obese ZR had higher body, kidney and heart weights as compared to the LZR. Acetylcholine induced 

vasodilation was greatly attenuated in Obese ZR compared to the lean group. No differences in the diameters of the septal coronary ar-

tery were observed in both groups when treated with CrMP. However, pretreatment with L-arginine, abolished the differences between 

the groups.  

Conclusion: This study demonstrates the potential of NO induction to improve coronary blood flow during metabolic syndrome induced 

endothelial dysfunction, where alterations in CO levels appeared to have no significant coronary effects. 
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1. Introduction 

Metabolic syndrome continues to be a global problem with high 

prevalence in the United States. It is estimated that in USA about 

40% of adults have metabolic syndrome by the time they reach 60 

years of age (Ford et al. 2002, Ford et al. 2010). Metabolic syn-

drome contains a cluster of various risk factors which include 

atherogenic dyslipidemia, elevated blood pressure, endothelial 

dysfunction (Alessi & Juhan 2008) and arterial stiffness 

(Stehouwer et al. 2008). Taking together these factors increase the 

risk of developing cardiovascular disease and type II diabetes 

mellitus.  

 

Obese Zucker rats (ZR) are a mutant rat model, which replicates 

obese humans by sharing the symptoms of type II diabetes. Obese 

ZR is the result of a spontaneous mutation of autosomal recessive 

(fa) gene on chromosome 5. They have hyperphagia, insulin re-

sistance (Kasiske et al. 1992), mild glucose intolerance, hyper-

lipidemia (Kaiske et al. 1992), hyperinsulinemia, moderate hyper-

tension (Frisbee & Stepp 2001, Durham & Truett 2006, Shafrir & 

Ziv 2009), early onset of obesity and metabolic syndrome along 

with mild hyperglycemia. They act as an excellent model of hu-

man obesity and type II diabetes which are both associated with 

hyperlipidemia and hypertension (Srinivasan & Ramarao 2007).  

 

 

CO is formed endogenously in the body by the enzymatic degra-

dation of heme by the enzyme heme oxygenase (HO) (Jarmi & 

Agarwal 2009) and other non-enzymatic degradations (Tenhunen 

et al. 1969). Metabolism of heme also results in the production of 

biliverdin which upon action of biliverdin reductase is converted 

to bilirubin (Tenhunen 1976). There are two major active isoforms 

of HO (i) the inducible HO–I and (ii) the constitutive HO–II 

(Maines 1997). Several stimuli such as hypoxia, oxidative stress, 

endotoxin, ischemia, hypertension and oxidants induce HO–I, 

which is otherwise expressed at low concentrations under normal 

conditions (Abraham & Kappas 2005). Unlike HO–I, HO–II is 

constitutively expressed. Emerging evidence demonstrates the 

beneficial actions of HO on the cardiovascular system which in-

cludes attenuation of hypertension and the prevention of athero-

sclerosis and myocardial infarctions (Sabaawy et al. 2001, Juan et 

al. 2001, and Tang et al. 2005) as it was demonstrated that CO can 

relax vascular smooth muscles (Furchgott & Jothianandan 1991, 

Stec et al. 2008). Previous studies demonstrated that increased CO 

formation from heme in obese ZR contributed to hypertension and 

endothelial dysfunction in resistance vessels (Durante & Schafer 

1998, Johnson et al. 2006).  Therefore, we hypothesized that inhi-

bition of CO restores coronary arterial endothelial function in 

obese ZR. 
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The endothelium which is the interface between blood and the 

vessel wall plays a crucial role in vascular homeostasis. Endothe-

lial cells produce potent vasoactive substances including nitric 

oxide (NO) and endothelin-1 which are vasodilatory and vasocon-

strictor substances respectively (Perticone et al. 2001). The patho-

logical condition resulting due to imbalance between vasodilatory 

and vasoconstrictive substances is characterized as endothelial 

dysfunction (Andreas et al. 2010). To date many cardiovascular 

abnormalities have been attributed to endothelial dysfunction. 

Endothelial dysfunction is a key factor promoting microvascular 

disease in resistance vessels, contributing to hypertension and 

metabolic syndrome (Johnson et al. 2006, Shatsila et al. 2013). 

 

Alternatively, previous literature demonstrated that CO promotes 

endothelium dependent vasoconstriction by inhibiting endothelial 

NO formation (Johnson & Johnson 2003) thus attenuating the 

vasodilatory effects of the nitric oxide system (White & Marletta 

1992, Thorup et al. 1999). Taken together, this suggests that CO 

and NO play crucial roles as regulators of normal vascular tone.  

 

 
Fig. 1: L-Arginine, common substrate for both arginase and nitric oxide 

synthase. L-Arginine is converted to urea and L-ornithine by the arginase 
enzyme along with nitric oxide and L-citrulline by nitric oxide synthase. 

 

NO acts as an important signaling molecule exhibiting a wide 

range of biological effects such as vasodilation, anti-platelet activ-

ity, anti-inflammatory actions, cardio-protection, and anti-

hypertrophy (Strijdom et al. 2009). NO is endogenously biosyn-

thesized by many cells from the amino acid L-arginine by the 

enzymatic action of nitric oxide synthase (NOS). NOS are signifi-

cantly expressed in nervous and cardiovascular systems among a 

variety of tissues throughout the body. There is significant evi-

dence which demonstrates that a decrease in bioavailability of NO 

results in various cardiovascular diseases and disorders 

(Vanhoutee & Gao 2013, Sarkozy et al. 2013). The limiting factor 

for NO production is the availability of the substrate L-arginine. 

Previous studies have shown that arginase, which is an enzyme in 

the urea cycle, reduces NO production by competing with NOS 

which also has L-arginine as a substrate (Ming et al. 2004) (Fig. 

1). Thus, we alternatively hypothesized that L-arginine would 

restore coronary arterial endothelial function in obese ZR. 

2. Methods 

2.1. Chemicals 

Chromium mesoporphyrin (CrMP) was purchased from Frontier 

Scientific (Logan, UT, USA); Inactin (thiobutabarbital sodium), 

L-arginine and Acetylcholine (ACh) were obtained from Sigma 

(St. Louis, MO, USA). 

2.2. Animals 

Male lean (Fa/Fa or Fa/fa, n=52) and obese (fa/fa, n=62) ZR (Har-

lan, Indianapolis, IN, USA) at 13 to 14 weeks of age were used for 

the experiments. Rats were housed in a controlled environment 

and had free access to a standard rodent diet (Harlan Teklad, Mad-

ison, WI, USA) and tap water. All procedures were approved by 

the University of Louisiana at Monroe Institutional Animal Care 

and Use Committee. 

2.3. Determination of Carboxyhemoglobin (HbCO) lev-

els 

Small blood samples (0.05ml) were drawn from obese and lean 

ZR. Blood was analyzed on a pH/blood gas & electrolyte analyzer 

for carboxyhemoglobin concentration (Bayer Rapid Lab 865, Di-

amond Diagnostic, Holiston, MA, USA).   

2.4. Determination of CO excretion 

Matched awake lean and obese ZR were placed in an acrylic air-

tight chamber with the outflow leading to a solid phase gas chro-

matography unit (custom design, Peak, Mountain view, CA,USA) 

for the determination of endogenous CO concentration as previ-

ously described (Vreman et al. 2009, Jackson et al. 2011) . Briefly, 

the chamber was continuously purged with purified air. Outflow 

was sampled at 2 minutes intervals and the average of four meas-

urements was used to calculate the CO excretion rate for the 

whole animal after a 30 min equilibration period. This is an estab-

lished model for measuring CO production (Johnson et al. 2006, 

Vreman et al. 2005). 

2.5. Blood pressure measurements 

Rats were anesthetized with a single injection of thiobutabarbital 

sodium (120 mg/kg ip) and a tracheal tube was inserted to main-

tain an open airway. A catheter (PE-50 tubing filled with hepa-

rinized saline) was implanted into a carotid artery to measure 

mean arterial pressure (MAP)/heart rate (HR). The arterial cathe-

ter was connected to a pressure transducer (model TSD104A, 

Biopac Systems, Santa Barbara, CA, USA) and MAP/HR was 

recorded on a computer. 

2.6. Measurement of diameter in isolated septal coro-

nary artery 

The septal coronary artery was isolated, removed and placed into a 

dish containing ice-cold Krebs buffer. It was allowed to equili-

brate for 15 min. It was then transferred to a water-jacketed vessel 

chamber containing Krebs buffer at room temperature and two 

glass micropipettes filled with Krebs buffer. After the artery was 

mounted on the proximal micropipette and secured with a ligature, 

the lumen was flushed to remove residual blood and the other end 

of the artery was mounted on the distal micropipette (Sun et al. 

1994). For internal diameter measurements, the vessel chamber 

was mounted on a stage of an inverted microscope (Nikon TS 100 

F) fitted with a CCD video camera. Silicone tubing was used to 

connect the proximal micropipette to a pressure servocontroller 

(model/CH/200/Q, Living systems instrumentation, Burlington, 

VT, USA) and the distal pipette to a stopclock. Continuous 

nonrecirculating superfusion with Krebs buffer, bubbled with 95% 

O2 -5% CO2 was then started while the lumen was perfused. After 

several minutes of perfusion, the distal stopcock was closed and 

the intraluminal pressure was allowed to increase to 80 mm Hg 

(Kozma et al. 1999). After a 60 min stabilization period, the HO 

inhibitor, CrMP, the NOS substrate, L-Arginine or vehicle was 

included in the superfusion buffer, 20 min before the experiment. 

This treatment regime was continued throughout the experiment. 

After the pre-treatment period, increasing concentration of the 

endothelium dependent vasodilator ACh was added to the 

superfusion buffer. Each concentration was tested for 5 min; inter-

nal diameter was recorded every minute, and the average of the 

last two measurements was used to determine the response.  

2.7. Plasma nitrite levels 

Plasma nitrite levels were measured using a colorimetric assay kit 

(Cayman chemicals, Ann Arbor, MI, USA). 
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2.8. Western blot analysis 

The tissue homogenates were assayed for arginase I protein by 

western blot analysis as previously described (Berkowitz et al. 

2003).  

2.9. Statistics 

Data were expressed as mean ± SE. Data were analyzed by repeat-

ed measure analysis of variance (ANOVA) followed by orthogo-

nal contrast when appropriate (Sigma stat 3.0). P < 0.05 was ac-

cepted as statistically significant. Bonferroni correction was em-

ployed in the final analysis of completed series (α = 0.05).  

 
Table 1: Various metabolic parameters: Mean Arterial Pressure (MAP), 

Heart rate, carboxyhemoglobin and blood glucose of obese Zucker rats 
were higher than lean ZR (*P<0.05). Values are expressed as mean ± SE. 

Variable Lean Zucker Rat Obese Zucker  Rat 

MAP (mmHg) 121 ± 4 154 ± 3* 

Heart Rate (bpm) 353 ± 10 386 ± 7 
HbCO% 3.0 ± 0.1 3.9 ± 0.1* 

Blood Glucose (mg/dL) 140 ± 3 186 ± 7* 

             
Fig. 2: Respiratory Carbon monoxide excretion: Expired carbon monoxide 

was measured in obese and lean ZR. It was higher in awake obese ZR 

compared to the lean group (*P<0.05). Values are expressed as mean ± SE. 

3. Results 

3.1. Blood pressure and CO excretion with glucose 

measurements 

Obese ZR had elevated blood pressures, HbCO (Table 1) and 

endogenous CO levels (Fig. 2) as compared to lean ZR. Non fast-

ing blood glucose was higher in obese ZR compared to lean ZR 

(Table 1). 

3.2. Body and organ weight measurement 

Table 2 summarizes the body, kidney and heart weights of lean 

and obese ZR. Obese ZR had higher body weights, as well as kid-

ney and heart weights, when compared with lean ZR. The charac-

teristics of elevated blood pressure and increased body weight 

demonstrate that obese ZR is an excellent model to represent obe-

sity and hypertension. 

 
Fig. 3: Plasma nitrite levels: Nitrites are the breakdown products of nitric 
oxide. The nitrite levels in plasma are decreased in obese ZR (*P<0.05). 

Values are expressed as mean ± SE. 

 

Table 2: Physical Measurements of Lean and Obese ZR: Body, kidney 

and heart weights were higher in obese ZR as compared to lean ZR 

(*P<0.05). Values are expressed as mean ± SE. 

Variable Lean Zucker Rat Obese Zucker  Rat 

Body Weight (g) 309±14 551±13* 

Kidney Weight (g) 1.03±0.04 1.38±0.04* 

Heart Weight (g) 0.87±0.08 1.15±0.04* 

3.3. Plasma nitrite levels 

There was a significant decrease in plasma nitrite levels in obese 

ZR as compared to lean ZR (Fig. 3). 

3.4. Isolated pressurized septal coronary artery meas-

urements 

The septal coronary artery was isolated from obese and lean ZR. 

Obese ZR arteries had larger internal diameters. An endothelium-

dependent vasodilator, ACh, promoted concentration-dependant 

vasodilation in arteries isolated from lean and obese ZR (Fig. 4). 

ACh induced vasodilation was greatly attenuated in obese ZR 

compared to the lean group (Fig. 4). Twenty minute pretreatment 

with the HO inhibitor, CrMP (Fig. 5), promoted no significant 

difference in diameters compared to that of vehicle (Fig. 4) in both 

groups.  

 

              
Fig. 4: Vessel Diameter: Concentration dependent change in internal di-

ameter of septal coronary arteries in response to the endothelium depend-

ent vasodilator, ACh. ACh induced vasodilation was greatly attenuated in 
obese ZR compared with the lean group (*P<0.05). Values are expressed 

as mean ± SE. 

 

3.5. Aortic Arginase I expression and L-arginine pre-

treatment 

The negative results from the CrMP studies lead to us to examine 

the alternate hypothesis that differences in endothelial function in 

obese ZR and lean ZR could be produced by elevations in 

arginase, which promotes a decrease in NO availability via a de-

crease in L-Arginine substrate (Fig. 1). From the western blot 

analysis, there was approximately a two fold increase in Arginase 

I expression in obese ZR than in lean ZR (Fig. 6). Acute in vitro 

pretreatment with L-arginine, common substrate for NOS and 

arginase (Fig. 1), enhanced the maximal responses in obese ZR 

arteries as compared to vehicle treatment (Fig. 7). Furthermore, 

acute in vitro pretreatment with L-arginine abolished the differ-

ence between the lean and obese groups (Fig. 8).  

4. Discussion 

It was previously documented that obese ZR have increased en-

dogenous CO production, resulting in endothelial dysfunction and 

hypertension, which ultimately promotes metabolic syndrome 

(Johnson et al. 2006). Similarly, in the present study, we observed 

some of the common characteristics of metabolic syndrome name-

ly, increased body weight, elevated blood glucose and hyperten-

sion. 

Lean Obese
0.3

0.4

0.5

0.6

*

C
O

 E
x
c
re

ti
o

n
 R

a
te


m

o
l/
h

r

Lean Obese
0.0

0.2

0.4

0.6

0.8

*

N
O

2
-  L

e
v

e
ls

 (


m
o

l/
L

)

Change in Diameter Vehicle

-10 -9 -8 -7 -6 -5

-10

0

10

20

30

40
Lean n=10

Obese n=10

[ACh] (log M)

C
h

a
n

g
e
 i

n
 D

ia
m

e
te

r 
(µ

m
)

***
*

*
*



International Journal of Medicine 11 

 
Emerging evidence demonstrates that increased HO-derived CO 

production may result in hypertension in obese ZR. It was previ-

ously reported that, in isolated gracilis muscle arterioles, exoge-

nously and endogenously formed CO promoted endothelium-

dependent vasoconstriction which attenuated NO mediated vasodi-

lation leading to hypertension (Johnson & Johnson 2003).    Given 

the established role of CO in peripheral arteries, the present study 

focused on the role of CO in the cardiovascular system wherein 

we  tested  the  hypothesis that inhibition of CO restores  coronary  

 
Fig. 5: Vessel Diameter: Concentration dependent change in internal di-
ameter of septal coronary arteries in response to endothelium dependent 

vasodilator, ACh during pretreatment with an inhibitor of heme 

oxygenase, chromium mesoporphyrin (CrMP). ACh induced vasodilation 
was greatly attenuated in obese ZR compared with lean group. No signifi-

cant difference was observed in CrMP treated and vehicle treated groups 

(*P<0.05). Values are expressed as mean ± SE. 

 

 
Fig. 6: Arginase I expression: Western blot analysis of Arginase 1 expres-

sion in coronary arteries. A significant increase in aortic arginase levels 
was observed in obese ZR compared to lean ZR (*P<0.05). Values are 

expressed as mean ± SE. 

 

 
Fig. 7: Vessel Diameter: Concentration dependent change in internal di-
ameter of septal coronary arteries in response to endothelium dependent 

vasodilator, ACh and when treated with vehicle and L-arginine, substrate 

for nitric oxide in obese ZR. Vasodilation was observed in L-arginine 
treated group compared to vehicle treated (*P<0.05). Values are expressed 

as mean ± SE. 

arterial endothelial function in obese ZR. However in the present 

study, there were no significant changes in dilation of septal coro-

nary arteries when treated with CrMP compared to vehicle. Thus it 

appears that the role of CO in controlling vascular tone is more 

prominent in periphery arteries than in the coronary arteries. 

 

NO is an important mediator of endothelium dependent vasodila-

tion, therefore NO plays a significant role in regulating vascular 

tone. It was observed that obese ZR have lower nitrite levels indi-

cating the presence of lower nitric oxide concentration. This was 

in turn supported by the presence of higher arginase-I concentra-

tions in obese ZR. As previously described, arginase reduces NO 

production from L-arginine by competing with NOS. Thus, sug-

gesting that there is a decrease in NO bioavailability due to an 

increase in arginase competition for NOS. 

 

Previously it was reported that low concentrations of CO promote 

vasodilation, on the other hand at physiological concentrations CO 

inhibited NOS in isolated renal resistance vessels (Johnson & 

Johnson 2003). It was also previously documented that, in isolated 

gracilis muscle arterioles, CO-induced vasoconstriction was abol-

ished by L-arginine pretreatment suggesting the protective role of 

L-arginine.  However, to examine the prominent role of NO in 

coronary vessels, we proposed an alternative hypothesis that L-

arginine restores coronary arterial endothelial function in obese 

ZR. 

 

L-arginine is a semi essential amino acid, which plays a prominent 

role in numerous physiological processes. L-arginine acts as a 

common substrate for arginase as well as for NOS, which produc-

es the signaling molecule NO. NO plays a significant role in vari-

ous physiological processes which include decreasing vascular 

tone, endothelial cell death, extracellular matrix deposition, 

smooth muscle cell proliferation, platelet and leucocyte activation. 

NO deficiency results in various pathological disorders including 

hypertension, atherosclerosis, diabetes and ischemia–reperfusion 

injury (Durante et al. 2007). Various clinical studies suggested 

that L-arginine exhibits endocrine actions in regulating insulin 

sensitivity and vasodilator function. It was previously documented 

that in vivo L-arginine supplementation, enhances endothelial 

NOS (Kohi et al. 2004). 

 
Fig. 8: Vessel Diameter: Concentration dependent change in internal di-

ameter of septal coronary arteries in response to endothelium dependent 
vasodilator, ACh during pretreatment with L-arginine, substrate for NOS. 

This treatment with L-arginine abolished the differences between lean and 

obese ZR. 

 

In the present study, acute administration of L-arginine to isolated 

coronary arteries produced an increase in NO levels and abolished 

the vasodilatory differences between obese and lean ZR. In addi-

tion, long term administration of L-arginine also had a favorable 

effect on the endothelium (Cylwik et al. 2005). 

 

In summary, we conclude that the coronary endothelial dysfunc-

tion observed in obese ZR could not be abolished via inhibition of 

HO. Consequently, L-arginine treatment could abolish the differ-

ence between lean and obese ZR. Thus presenting a chief role for 
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NO in maintaining the vascular tone in the cardiovascular system, 

unlike the periphery where CO appears to have a major role.  
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