Impact of Sky Conditions on The Performance of The Solar Still

Authors

  • Traore Damus Abdoul Aziz

    Renewable Thermal Energy Laboratory, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
  • Dianda Boureima

    Research Institute of Applied Sciences and Technologies, National Center for Scientific and Technological Research, ‎Ouagadougou, Burkina Faso
  • Combari Pagou Hartwig

    Renewable Thermal Energy Laboratory, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
  • Bamogo Kombassé

    Renewable Thermal Energy Laboratory, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
  • Ouedraogo Maneg-Sanga Pélagie Rosina

    Renewable Thermal Energy Laboratory, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

How to Cite

Abdoul Aziz , T. D. ., Boureima , D. ., Hartwig , C. P. ., Kombassé, B. . ., & Rosina , O. M.-S. P. . (2025). Impact of Sky Conditions on The Performance of The Solar Still. International Journal of Engineering and Technology, 14(2), 1-9. https://doi.org/10.14419/1m7cbq60

Received date: June 17, 2025

Accepted date: July 18, 2025

Published date: July 24, 2025

DOI:

https://doi.org/10.14419/1m7cbq60

Keywords:

Distiller; Concentration; Sunshine; Sky Conditions; Performance

Abstract

As part of improving the performance of active stills, we numerically studied the effects of sunlight on a concentrating still. ‎This is a double-slope solar still under which a parabolic trough concentrator was placed. We were particularly interested in the ‎impact of sky conditions on productivity, overall and internal efficiency, and exergy efficiency. Applying the energy balance ‎method to the different components of the still allowed us to calculate the productivity and the various efficiencies of the system. ‎Our system was simulated for the climatic conditions of the city of Ouagadougou (located at 12.35 North latitude and 1.32 ‎West) and for April. These results show that the nature of the sky has a significant impact on the operating ‎characteristics of the still. Indeed, the productivity, the overall, internal, and exergy efficiency of the distiller are a function of the ‎sunshine and therefore depend on the nature of the sky. These characteristics improve with the increase in sunshine. The best ‎operating characteristics are obtained for a clear sky because the sunshine is higher. We have a maximum overall radiation of ‎‎936.504 W/m² for a clear sky against 866.24 W/m² and 755.69 W/m² for a sky with normal atmospheric conditions and a ‎polluted sky. For a clear sky, we obtained a maximum productivity of 0.0014 kg/'s against 0.0011 kg/s and 0.0007 kg/s for a ‎sky with normal atmospheric conditions and for a polluted sky. It was concluded that productivity, the different efficiencies ‎are strongly affected by sunshine. The higher the radiation intensity, the better the productivity of the distiller‎.

References

  1. S.A. Kalogirou, « Solar thermal collectors and applications», Progr. Energy Combustion Sci, p. 231‑295, 2004.‎ https://doi.org/10.1016/j.pecs.2004.02.001.
  2. ‎H.J. Mosleh, S.J. Mamouri, M.B. Shafii, A.H. Sima, «A new desalination system using a combination of heat pipe, ‎evacuated tube and parabolic trough collector», Energy Convers. Manag. 99, p. 141‑150, 2015.‎ https://doi.org/10.1016/j.enconman.2015.04.028.
  3. Hossein Amiri , Mohammad Aminy , Marzieh Lotfi , Behzad Jafarbeglo, « Energy and exergy analysis of a new solar ‎still composed of parabolic trough collector with built-in solar still », p. 465‑479, 2021.‎ https://doi.org/10.1016/j.renene.2020.09.007.
  4. ‎A. Dubey, Samsher, et A. Kumar, «Energetic and exergetic study of dual slope solar distiller coupled with evacuated ‎tube collector under force mode », Mater. Today Proc., vol. 47, p. 5800‑5805, janv. 2021, https://doi.org/10.1016/j.matpr.2021.04.135.
  5. ‎M. R. Rajamanickam, P. Velmurugan, A. Ragupathy, et E. Sivaraman, «Use of thermal energy storage materials for ‎enhancement in distillate output of double slope solar still », Mater. Today Proc., vol. 34, p. 416‑419, janv. 2021, https://doi.org/10.1016/j.matpr.2020.02.203.
  6. ‎V. S. Vigneswaran et al., «Energy, Exergy, and Economic analysis of low thermal conductivity basin solar still ‎integrated with Phase Change Mate-rial for energy storage », J. Energy Storage, vol. 34, p. 102194, févr. 2021, https://doi.org/10.1016/j.est.2020.102194.
  7. F. T. Jodah, W. H. Alawee, H. A. Dhahad, et Z. M. Omara, Comparative analysis of design parameters impacting the ‎performance of pyramidal and spherical solar stills: A review », Desalination Water Treat., vol. 319, p. 100545, juill. 2024, https://doi.org/10.1016/j.dwt.2024.100545.
  8. S. Diarra, O. Sow, S. Faye, et S. M. Sokhna, « Experimental study of a mobile wick solar distiller with a passive ‎external capacitor », vol. 92, 2025.‎
  9. ‎Badran OO, Abu-Khader MM, « Evaluating thermal performance of a single slope solar still. », Heat Mass Transf ‎Stoffuebertragung, vol. 43, p. 985‑95, 2007.‎ https://doi.org/10.1007/s00231-006-0180-0.
  10. El-Sebaii AA, « Effect of wind speed on some designs of solar stills », 2000, https://doi.org/10.1016/S0196-8904(99)00119-3.
  11. Ghoneyem A, Ileri A., « Software to analyze solar stills and an experimental study on the effects of the cover. », ‎Desalination, p. 37‑44, 1997.‎ https://doi.org/10.1016/S0011-9164(97)00152-5.
  12. D. Mevada, H. Panchal, et K. K. Sadasivuni, « Investigation on evacuated tubes coupled solar still with condenser and ‎fins: Experimental, exergo-economic and exergo-environment analysis », Case Stud. Therm. Eng., vol. 27, p. 101217, oct. 2021, ‎ https://doi.org/10.1016/j.csite.2021.101217.
  13. A. Deliou, N. Bessas, Z. Belgroun, H. Aburideh, A. Lounis, et A. Chikouche, « Experimental study of the ‎characteristics of a greenhouse solar dis-tiller », Renew. Energy Rev. CICME, vol. 8, p. 109‑118, 2008.‎
  14. Mandi Benaissa, « Thermo energetic analysis of a solar seawater desalination process », Master, Universite tlemcen ‎aboubekr belkaid, Algerie, 2012.‎
  15. ‎E. A. Almuhanna, « Evaluation of single slop solar still integrated with evaporative cooling system for brackish water ‎desalination », J. Agric. Sci., vol. 6, no 1, p. 48, 2014.‎ https://doi.org/10.5539/jas.v6n1p48.
  16. A. S. Nafey, M. Abdelkader, A. Abdelmotalip, et A. A. Mabrouk, « Parameters affecting solar still productivity », ‎Energy Convers. Manag., vol. 41, no 16, p. 1797‑1809, 2000.‎ https://doi.org/10.1016/S0196-8904(99)00188-0.
  17. A. Rahmani, F. Khemmar, et Z. Saadi, « Experimental investigation on the negative effect of the external condenser on ‎the conventional solar still performance », Desalination, vol. 501, p. 114914, avr. 2021, https://doi.org/10.1016/j.desal.2020.114914.
  18. Mokhtar Noman Qasem Mohammed, « Design, Development, and Optimization of a New Device of Concentration-‎based Solar Distiller for Desal-ination », PhD Thesis, Université Mohammed V de Rabat, 2024. Avaible on ‎https://ensias.um5.ac.ma/sites/ensias.um5.ac.ma/files.
  19. TRAORE Damus Abdoul Aziz, DIANDA Boureima, INAME Allassane, et BAMOGO Kombassé, OUEDRAOGO ‎Maneg-Sanga Pélagie Rosina, « Numerical study of a distiller », Am. J. Energy Res., vol. 13, no 2, p. 65‑71, jun 2025, https://doi.org/10.12691/ajer-13-2-2.
  20. ‎R.Menina, « Experimental study of the effect of preheating on the productivity of a solar distiller (Type : Hot - Box), » ‎Rev. Energ. Ren. : Journées de Thermique:11th International thermal day.2001.‎
  21. ‎KREITH f, Heat transmission and thermodynamics, p 484-488, 1967 edition‎.
  22. John A. Duffie and William A. Beckman, Solar engineering of thermal processes, John wiley&Sons, 2 nd ed. New york. ‎‎1991.‎
  23. Michel Dagnet, Solar dryers theory and pratice, Unisco, Paris, 1985 R.N. Morse, W.R.W. Read. Rational basis for ‎engineering. ‎
  24. R.V. DUNKLE, « « The Roof Type Still and a multiple diffusion Still », Commonwealth scientific and industrial ‎research organization, Victoria, Australia, p. 895‑902.‎
  25. G.N. Tiwari, S.K. Shukla, I.P. Singh, « Computer Modeling of Passive/Active Solar Stills by Using Inner Glass ‎Temperature. », Desalination, 154, p. 171‑185, 2003.‎ https://doi.org/10.1016/S0011-9164(03)80018-8.
  26. M. a. S. Malik, G. N. Tiwari, A. Kumar, et M. S. Sodha, « Solar distillation (a practical study of a wide range of stills ‎and their optimum design, construction, and performance) », jan. 1982, Avaible on: ‎https://www.osti.gov/etdeweb/biblio/6028832‎.
  27. G. N. Tiwari, Solar energy: fundamentals, design, modelling and applications. Alpha Science Int’l Ltd., 2002. Avaible ‎on: https://scholar.google.com/scholar.
  28. ‎A. Chaker, « Internal efficiency of a spherical solar distiller ». Rev. Energy. (2001) 53-58, p: 53, 85.
  29. G. N. Tiwari, S. Kumar, P. B. Sharma, et M. E. Khan, « Instantaneous thermal efficiency of an active solar still », Appl. ‎Therm. Eng., vol. 16, no 2, p. 189‑192, 1996.‎ https://doi.org/10.1016/1359-4311(95)00053-G.
  30. E. Zayouti; L. Bouirden; A. Aharoune, M. Banouni, « Solar Distillation: Improvement of water Vapor Condensation in ‎Solar Distillers. », Interna-tional Forum on Renewable Energies, Tètouan-Maroc, 2002.‎
  31. ‎Halloufi Ouadi, « « Study of the performance of a solar distiller by a solar preheating system of brackish water », ‎Master ‘s thesis in climate engi-neering, Universite Mentouri Constantin, 2010.‎
  32. N. Boukerzaza, A. Chaker, et Z. Haddad, « Influence of global irradiation on the operating characteristics of the ‎distiller », Renew. Energy Rev. ICRESD-07 Tlemcen CDER Alger Algerie, p. 229‑234, 2007.‎

Downloads

How to Cite

Abdoul Aziz , T. D. ., Boureima , D. ., Hartwig , C. P. ., Kombassé, B. . ., & Rosina , O. M.-S. P. . (2025). Impact of Sky Conditions on The Performance of The Solar Still. International Journal of Engineering and Technology, 14(2), 1-9. https://doi.org/10.14419/1m7cbq60

Received date: June 17, 2025

Accepted date: July 18, 2025

Published date: July 24, 2025