Graphite Saturable Absorber for Q-Switched Fiber Laser

Authors

  • Yushazlina R. Yuzaile
  • Noor A. Awang
  • Zahariah Zakaria
  • Noor U.H.H Zalkepali
  • Amirah A. Latif
  • Atiqah N. Azmi
  • Fatin S. Abdul Hadi

How to Cite

Yuzaile, Y. R., Awang, N. A., Zakaria, Z., Zalkepali, N. U., Latif, A. A., Azmi, A. N., & Hadi, F. S. A. (2018). Graphite Saturable Absorber for Q-Switched Fiber Laser. International Journal of Engineering and Technology, 7(4.30), 334-337. https://doi.org/10.14419/ijet.v7i4.30.22303

Received date: November 29, 2018

Accepted date: November 29, 2018

Published date: November 30, 2018

DOI:

https://doi.org/10.14419/ijet.v7i4.30.22303

Keywords:

Graphite, Mechanical Exfoliation, Q-Switching, Q-Switched Fiber Laser, Saturable Absorber

Abstract

This paper reported a successful demonstration on Q-switched fiber laser by using graphite as saturable absorber (SA). The graphite is deposited on the fiber ferrule through a simple mechanical exfoliation method. The modulation depth of the graphite SA is 19.2% with a saturation intensity of 85 MW/cm². The maximum achievable pulse repetition rates and pulse width are 42.41 kHz and 3.40 μs respectively. Meanwhile, its optical signal-to-noise ratio is about 50.81 dB. The Q-switched pulses have the maximum pulse energy of 5.84 nJ. These outcomes demonstrated that a stable output of passively Q-switched fiber laser is produced and can be applied for various optical fiber applications.

References

  1. [1] Ahmad H, Awang NA, Paul MC, Pal M, Latif AA & Harun SW (2012), All fiber passively mode locked zirconium-based erbium-doped fiber laser. Optics & Laser Technology 44, 534-537.

    [2] Shang L, Ning J & Yang X (2012), An experimental study of an acousto-optic q-switched yb3+-doped all-fiber laser Optik 123, 1061-1062.

    [3] Gaponenko MS, Onushchenko AA, Kisel VE, Malyaevich AM, Yumashev KV & Kuleshov NV (2012), Compact passively q-switched diode-pumped tm:ky(wo4)2 laser with 8 ns/30 μJ pulses. Laser Physics Letters 9, 291-294.

    [4] Kurkov AS, Sadovnikov YE, Marakulin AV & Sholokhov EM (2010), All fiber er-tm q-switched laser. Laser Physics Letters 7, 795-797.

    [5] Seguin F & Oleskevich TK (1993), Diode pumped q-switched fiber laser. Optical Engineering 32, 2036-2041.

    [6] Lee GP & Newson TP (1996), Diode pumped high power simultaneously q-switched and self mode-locked erbium doped fiber laser. Electronic Letters, 32, 1685-1686.

    [7] Richardson DJ, Nilsson J & Clarkson WA (2010), High power fiber lasers: current status and future perspectives. Journal of Optical Society of America 27, 63-92.

    [8] Ahmad H, Hassan SNM, Ahmad F, Zulkifli MZ & Harun SW (2016), Broadband tuning in a passively q switched erbium doped fiber laser (edfl) via multiwall carbon nanotubes / polyvinyl alcohol (mwcnt/pva) saturable absorber. Optics Communications 365, 54-60.

    [9] Hakulinen T & Okhotnikov OG (2007), 8 ns fiber laser q switched by the resonant saturable absorber mirror. Optics Letters 32, 2677-2679.

    [10] Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M & Set SY (2004), Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters 29, 1581-1583.

    [11] Set S Y, Yaguchi H, Tanaka Y & Jablonski M (2004), Laser mode locking using a saturable absorber incorporating carbon nanotubes. Journal of Lightwave Technology 22, 51-56.

    [12] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX, Loh KP & Tang DY (2009), Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials 19, 3077-3083.

    [13] Haris H, Harun SW, Muhammad AR, Anyi CL, Tan SJ, Ahmad F, Nor RM, Zulkepely NR & Arof H (2016), Passively q-switched erbium-doped and ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber. Optics & Laser Technology 88, 121-127.

    [14] Yu Z, Song Y, Tian J, Dou Z, Guoyu H, Li K, Li H & Zhang X (2015), High-repetition-rate q-switched fiber laser with high quality topological insulator Bi2Se3 film. Optics Express 22, 11508-11515.

    [15] Woodward R, Kelleher E, Howe R, Hu G, Torrisi F, Hasan T, Popov S & Taylor J (2014) Tunable q-switched fiber laser based on saturable edge-state absorption in few- layer molybdenum disulfide (MoS2) Optics Express 22, 31113-311122.

    [16] Ahmad H, Suthaskumar M, Tiu ZC, Zarei A & Harun SW (2016), Q-Switched erbium-doped fiber laser using MoSe2 as saturable absorber. Optics & Laser Technology 79, 20-23.

    [17] Li L, Wang Y, Fu Z, Wang X & Yang G (2017), High energy er-doped q-switched fiber laser with WS2 saturable absorber Optics Communications 406, 80-84.

    [18] Wang X, Luo Z, Liu H, Zhao M, Liu M, Zhu Y, Xue J, Luo A & Xu W (2015), Gold nanorod as saturable absorber for q-switched yb-doped fiber laser. Optics Communications 346, 21-25.

    [19] Ahmad H, Ruslan NE, Ali ZA, Reduan SA, Lee CSJ, Shaharuddin RA, Nayan N & Ismail MA (2016), Ag-nanoparticle as a q switched device for tunable c-band fiber laser. Optics Communications 381, 85-90.

    [20] Xu J-L, Li X-L, Wu Y-Z, Hao X-P, He J-L & Yang K-J (2011), Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser. Optics Letters 36, 1948-1950.

    [21] Gao C, Wang R, Zhu L, Gao M, Wang Q, Zhang Z, Wei Z, Lin J & Guo L (2012), Resonantly pumped 1.645 μm high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber. Optics Letters 37, 632-634.

    [22] Lagatsky AA, Sun Z, Kulmala TS, Sundaram RS, Milana S, Torrisi F, Antipov OL, Lee Y, Ahn JH, Brown CTA, Sibbett W & Ferrari AC (2013), 2 μm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters 102, 013113.

    [23] Liu J, Wu S, Yang Q-H & Wang P (2011), Stable nanosecond pulse generation from a graphene-based passively q-switched yb-doped fiber laser. Optics Letters 36, 4008-40010.

    [24] Sobon G, Sotor J, Pasternak I, Grodecki K, Paletko P, Strupinski W, Jankiewicz Z & Abramski KM (2012), Er-doped fiber laser mode-locked by CVD-graphene saturable absorber. Journal of Lightwave Technology 30, 2770-2775.

    [25] Zhang M, Kelleher EJR, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari AC, Popov SV & Taylor JR (2012), Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics Express 20, 25077-25084.

    [26] Sutter PW, Flege JI & Sutter EA (2008), Epitaxial graphene on ruthenium. Nature Materials 7, 406-411.

    [27] Wang K, Tai G, Wong KH, Lau SP & Guo W (2011), Ni induced few layer graphene growth at low temperature by pulsed laser deposition. AIP Advances 1, 022141.

    [28] Stankovich S, Dikin DA, Piner RD, Kohllhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST & Ruoff RS (2007), Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558-1565.

    [29] Li X, Wang X, Zhang L, Lee S & Dai H (2008), Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232.

    [30] Liu N, Luo F, Wu H, Liu Y, Zhang C & Chen J (2008), One-step ionic liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials 18, 1518-25.

    [31] Lin GR & Lin YC (2011), Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium doped fiber laser. Laser Physics Letters 8, 880-86.

    [32] Lin YH & Lin GR (2012), Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser. Laser Physics Letters 9, 398-404.

    [33] Lee J, Lee J, Koo J & Ju HL (2016), Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser. Applied Optics 55, 303-309.

    [34] Yang C-Y, Wu C-L, Lin Y-H, Tsai L-H, Chi Y-C, Chang J-H, Wu C-I, Tsai H-K, Tsai D-P & Lin G-R (2013), Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers. Optical Materials Express 3, 1893-1905.

    [35] Lin Y-H, Yang C-Y, Lin S-F & Lin G-R (2015), Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers. Optical Materials Express 5, 236-253.

    [36] Bonaccorso F, Sun Z, Hasan T & Ferrari AC (2010), Graphene photonics and optoelectronics. Nature Photonics 4, 611-622.

    [37] Liu Z-B, He X & Wang DN (2011), Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Optics Letters 36, 3024-3026.

    [38] Xu J, Liu J, Wu S, Yang Q-H & Wang P (2012), Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Optics Express 20, 15474–15480.

    [39] Jung M, Koo J, Park J, Song Y-W, Jhon YM, Lee K, Lee S & Lee JH (2013), Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. Optics Express 21, 20062-20072.

    [40] Lee J, Koo J, Debnath P, Song Y-W & Lee JH (2013), A q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Physics Letters 10, 035103.

    [41] Kobtsev S, Kukarin S & Fedotov Y (2008), Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Optics Express 16, 21936-21941.

    [42] Ahmad H, Soltanian MRK, Narimani L, Amiri IS, Khodaei A & Harun SW (2015), Tunable s-band q-switched fiber laser using Bi2Se3 as the saturable absorber. IEEE Photonics Journal 7, 1502508.

Downloads

How to Cite

Yuzaile, Y. R., Awang, N. A., Zakaria, Z., Zalkepali, N. U., Latif, A. A., Azmi, A. N., & Hadi, F. S. A. (2018). Graphite Saturable Absorber for Q-Switched Fiber Laser. International Journal of Engineering and Technology, 7(4.30), 334-337. https://doi.org/10.14419/ijet.v7i4.30.22303

Received date: November 29, 2018

Accepted date: November 29, 2018

Published date: November 30, 2018