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Abstract 
 

The growth of telecommunication technology application intensity generates the problem of mutual influence concerning the systems 

which generate them. This influence distorts the signals providing information interaction, which allows us to talk about the mutual inter-

ference created by them. 

It is proposed to use basic functions in the work in the work to combat short-term interference in comparison with signal duration. One of 

the function fragments can be calculated from the others. In its turn, one should use basic functions in order to combat narrow-band inter-

ference, some fragments of the Fourier spectra of which can be calculated from the others. 

It was shown that it is useful to use the eigenfunctions of symmetric operators determined non-negatively as the transmitted signals. Re-

lations are obtained that express certain fragments of signals through others. 

In order to combat narrow-band interference, it is proposed to use the intrinsic functions of subband nuclei as basic functions. They ob-

tained the relations, which allow us to recover the distorted fragments of their spectra. 

Thus, they developed the theoretical basis to counter short-term and narrow-band interference during the transmission of information. 

 
Keywords: The Application of Signals in the form of Eigenfunctions of Symmetric Operators Determined Non-Negatively; The Combat with Narrow-Band 

and / or Short-Duration Interference in Comparison with Signal Durations. 

 

1. Introduction 

A signal is a certain function of time, the parameters of which 

encode the information intended for certain users (communication 

signals). Signals are applied widely in telecommunications, 

telemechanics, the remote control of objects, etc. An observed 

tendency of information exchange intensity increase between dif-

ferent users has led to the need of some signal distortion problem 

solution by others, which are called interference in this context. 

Quite often, distortions are subjected to either separate time frag-

ments of signals or the fragments of their spectra. In the first case, 

the thing is about the effects of short-lived interference, while in 

the second one we deal with the interference centered in Fourier 

spectra. Short-term interference arises with the fading in their 

transmission channels quite often as compared to signal duration, 

for example, in the case of multipath propagation of radio waves 

or repeated reflections in terms of urban development. The ap-

pearance of narrow-band interference can also be conditioned by 

various causes, among which the main place is occupied by elec-

tromagnetic radiation sources. It is important that distortions occur 

unpredictably due to the effects of other signals, although they can 

be fixed during the transmission / reception of their own signals. 

Thus, the fight against these disturbances becomes increasingly 

important. One of the approaches to its solution can be the use of 

such signals, which allow the restoration of some fragments over 

the rest part of the signal or some spectrum fragments along the 

rest ones. 

At present, such a problem has not been studied in detail by litera-

ture. 

Therefore, it is not possible to analyze the state of its solution. It 

can only be noted that one of the approaches to the development 

of information signals is the use of certain bases [1,2], which al-

low to create signal-code constructions possessing the required 

properties. This approach is considered in this paper, which pro-

poses signal generation method, the fragments of which can be 

reconstructed (computed) by other fragments. A special basis was 

proposed, which also allows the reconstruction of Fourier spec-

trum fragments. Theoretical conclusions are illustrated by compu-

tational experiment results. 

Methods and results 

Then let ( ),  0x t t T  , is real-valued continuous time function (a 

signal) with a bounded Euclidean norm 

 

2 2

0

( )
T

|| x || x t dt   .                                                                   (1) 

 

Let 

 

1 1 2 1 2 1
( ) ( ),  0 ;  ( ) ( ),  0x t x t t T x t x t T t T T T         .               (2) 

 

The task is to develop a fairly general approach to a class of sig-

nals development that allow to calculate one of the fragments 

defined in (2) to be calculated in the presence of another one. Such 

calculations should be performed on the basis of some functionals, 

which are presented below in a general form  

 

1 1 2 2 1
( ) ( , ( ),  0 ), 0x t F t x T  t T      ,                                           (3) 

 

2 2 1 1 2
( ) ( , ( ),  0 ), 0x t F t x T  t T      .                                           (4) 

http://creativecommons.org/licenses/by/3.0/


International Journal of Engineering & Technology 17 

 
Statement 1. The signals that allow the restoration of some frag-

ments by the rest ones can be formed on the basis of symmetric 

operator eigenfunctions. 

Proof Without the loss of generality, let's consider the construction 

of such signals and functionals to restore the initial signals from 

their fragments (3). 

 

Let ,  0 ,A(s,u) s u T   is a symmetric kernel 

 

( , ),  0 ,A(s,u) A u s s u T                                                             (5) 

 

Of some integral operator that satisfies the conditions of uniform 

expansion in a series [3] 

 

1

( ) ( )
k k k

k

A(s,u) g s g u




                                                                 (6) 

 

According to orthonormal eigenfunctions 

 

0

( ) ( , ) ( ) ,  0 ;  1,2,...
T

k k k
g s A s u g u du s T k     ;                           (7) 

 

 

0

( , ) ( ) ( ) 0,
T

k i k i
g g g t g t dt i k   ;.                                               (8) 

 
2 (g , ) 1

k k k
|| g || g   .                                                                    (9) 

 

It is essential for further discussion that the eigenfunctions of the 

symmetric kernel develop a complete orthonormal basis of the 

space 
2

L [3]. 

Let's make the following for definiteness 

 

1
( ) c ( ),  0x t g t t T   .                                                                (10) 

 

Here c is some constant. 

Then, in accordance with the definition (7), it is not difficult to 

obtain the following relation 

 
1

1 1 11 1 1
0

( ) ( , ) ( ) ( )
T

x t A t u x u du y t   ,                                                (11) 

 

Where 

 
2

1 12 2
0

( ) ( , ) ( )
T

y t A t u x u du  ;                                                            (12) 

 

11 1
( , ) ( , ),   0 ,A s u A s u s u T   ;                                                    (13) 

 

12 1 1 2
( , ) ( , ),   0 ;   0A s u A s u T s T u T      .                                 (14) 

 

It is clear that the relation (11) is the Fredholm integral equation of 

the second kind [4] with respect to the fragment (3). The possibil-

ity of its solution calculation is determined by integral kernel 

properties in (11) and by the value 
1
 . In order to complete the 

proof of the statement, let's develop the representation for a de-

sired signal fragment, which, under certain conditions, permits to 

perform the corresponding calculations. 

It is obvious that the kernel in (11) is also a symmetric one. This 

allows us to use the representation of the form (6) 
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1
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k k k

k
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



   ;                                       (15) 
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g s A s u g u du s T k     ;                     

(16) 
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k i k i
g g g t g t dt i k   ;                                            (17) 
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1
1

k
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It is clear that the signals under consideration in the framework of 

the theory of spaces 
2

L  are the elements of lineals [5]. Therefore, 

due to the completeness of the kernel eigenfunction basis (2.13), 

the following representations are true: 
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Whose coefficients are the scalar products of the following form 

 

1 1 1
( , )

k k
x g  ;

1 1 1
( , )

k k
y g  .                                                       (21) 

 

The substitution of the representations (15), (19) and (20) into the 

equation (2.11) gives the following identity 

 

1 1 1 1 1 1
1

[ ( ) ) ( ) 0,  0
k k k k

k

g t t T   




     ,                                     (22) 

 

A necessary and a sufficient condition for the achievement of this 

is the fulfillment of the following equalities 

 

1 1 1 1
( ) ,  1,2,...

k k k
k      .                                                        (23) 

 

Suppose that none of kernel eigenvalues (13) coincides with 
1
  

 

1 1
,  1,2...

k
k    .                                                                     (24) 

 

Then, taking into account the equalities (2.23), the representation 

(2.19) takes the following form for the required signal fragment 

 

1 1 1 1 1
1

( ) ( ) / ( )
k k k

k

x t g t  




  .                                                      (25) 

 

Thus, the resulting relation determines one of the signal fragments 

of the form (10) through the other. The proof is complete. 

The following is true. 

Statement 2 Let the kernel (6) is a positive definite [4] and its 

eigenvalues are ordered in a descending order 

 

1 2
.... 0   

,                                                                            (26) 

 

At that the maximum of which
1
  is a unique one. Then the fol-

lowing inequalities are performed for the eigenvalues of the kernel 

(15) 

 

1
0

k
   ; 

1 1
, 1,...

k
k   .,                                                            (27) 

 

At that the equality sign in the last inequality corresponds to the 

coincidence of kernel eigenfunctions (6) and (15). 

Proof it is easy to show that at any 
1

T T the kernel (13) is deter-

mined positively. Indeed, let 

 

1 1 1
( ),  0 ; ( ) 0,

k
z(t) g t t T z t T t T      .                                     (28) 

 

Then, due to a positive definiteness of an original kernel, it is not 

difficult to obtain the following inequality  

 
1 2

1 1 2 1 2 1 2 11 1 2 1 1 1 2 1 2
0 0 0 0

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) 0
T TT T

k k
d T A t t z t z t dt dt A t t g t g t dt dt      . 

 

In accordance with the relations (16) and (18), we obtain the fol-

lowing inequalities 
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1 1
) 0, 1

k
d(T k    ,                                                                  (29) 

 

Which is a necessary and a sufficient condition for a kernel posi-

tive definiteness (13). On the other hand, the variational inequality 

is performed for any normalized signal ,  0 ;  || || 1y(t) t T y    
 

1 1 2 1 1 1 2 1 2 1 2 1 2 1 2
0 0 0 0

( , ) ( ) ( ) max ( , ) ( ) ( )
T T T T

A t t g t g t dt dt A t t y t y t dt dt      . (30) 

 

The comparison of (30) and (29) shows that the inequalities (27) 

are satisfied. This completes the last statement proof. 

Consequence. If the eigenfunctions of the kernels (6) and (15), 

advising the maximum eigenvalues, do not coincide, then the rela-

tion (25) is a correct mathematical representation of a signal frag-

ment of the form (10) with any duration satisfying the inequality 

1
T T

. 

Thus, the representation (25) can serve as a theoretical basis to 

calculate the fragments of signals of the form (10) concerning the 

remaining fragment. It is clear that the implementation of such 

calculations requires the discretization of kernel definition do-

main. In accordance with this, the kernels are approximated by the 

means of the following matrices  

 
2

ik
{ } ( ) { ( , )},  , 1,..,A a t A i t k t i k N       ;                                (31) 

 

11
{ }, , 1,..., N

ik
A a i k M                                                             (32) 

 
2

12
( ) { ( ,( ) )},  1,..., ;  1,...,A t A i t M n t i M n N M        .         (33) 

 

In accordance with this, it is advisable to consider the sampled 

signals 

 

( ),  1,.., ;
k

x x k t k N N t T     ;                                               (34) 

 
' ' ' '

1 1 1 2 1
( ,.., , ,.., ) ( , ) ;  

M M N
x x x x x x x M t T


     ,                             (35) 

 

Where the prime denotes transposition. 

The choice of sampling step is carried out on the basis of specific 

kernel analysis, ensuring, for example, the properties of positive 

definiteness for the resulting matrices. It is important that the ma-

trices (31) are symmetric ones, whose eigenvector sets form com-

plete orthonormal bases in the sense of N-dimensional real vector 

space [6], [7]. 

The eigenvalues of the matrices (31) and (32) below are indicated 

by the same symbols as for the kernels they approximate for sim-

plicity, if this does not cause difficulties in their interpretation. 

If the signal samples are selected on the basis of the matrix (31) 

eigenvector corresponding to the maximum eigenvalue 

 

1
x cq ,                                                                                       (36) 

 

Then it is not difficult to show that equation (2.11) turns into the 

matrix relation 

 

1 11 1 12 2
( )I A x A x   .                                                                     (37) 

 

If the eigenvectors of the matrices (31) and (32) corresponding to 

the maximal eigenvalues do not coincide, then the representation 

of the equation (37) solution has the following form 

 
1

1 1 11 12 2
( )x I A A x   .                                                                   (38) 

 

The obtained relations can be generalized when multiple ones are 

present among the eigenvalues of the matrix (31). Without the loss 

of generality, let's assume that the following equalities are per-

formed 

1 2
...

M
       .                                                                     (39) 

As is well known [6], each of these eigenvalues will correspond to 

orthogonal eigenvectors. Therefore, any linear combination of the 

following form 

 

1

M

m m
m

x c q


  .                                                                                (40) 

 

Will also be the eigenvector of the matrix (31) corresponding to 

the eigenvalue (39), so that the relation (37) takes the following 

form 

 

11 1 12 2
( )I A x A x   .                                                                      

(41) 

 

The variables included here are defined above. In its turn, if the 

eigenvectors of the matrices (31) and (32) corresponding to the 

maximal eigenvalues do not coincide, then the representation of 

the equation (41) solution has the following form 

 
1

1 11 12 2
( )x I A A x   .                                                                   (42) 

 

Let's note that it is not difficult to obtain the relations for the re-

construction of any of the fragments occupying a continuous sub-

domain inside the domain of an original signal determination by 

analogy. In this case, the definitions of the kernel (13) and the 

function (12) and their discretized analogs must be changed in an 

obvious way. 

It should only be kept in mind that it is difficult to determine the 

conditions for the fulfillment of type (24) inequalities by the anal-

ogy with Statement 2 in the presence of several identical eigenval-

ues. 

In order to illustrate the proposed approach to the development of 

signals with recoverable fragments, let us use the computational 

experiments. As the elements of symmetric matrices for the dis-

crete approximation of the considered reconstruction problem, we 

use the following ones: 

 
2exp( 4 / );

ik
a ik N                                                                      (43) 

 

cos(4 ( ) / );
ik

a i k N                                                                 (44) 

 

sin(4 ( ) / ) / ( ( ))
ik

a i k N i k    ;                                               (45) 

 

sin(32 ( ) / ) / ( ( ))
ik

a i k N i k    .                                             (46) 

 

Table 1 below shows the results of their eigenvalue calculations at 
256N  , Table 2 - at 255N  , and Table 3 at 252N  . The data 

of the tables indicate that it is possible to reconstruct the fragments 

of their eigenvectors shorter than 252 samples for the matrix (46), 

whereas the segments of the eigenvectors of the matrices (43) and 

(44) can be reconstructed from one sample. 

Thus, in order to determine the lengths of the signal fragments 

available for reconstruction, first of all it is necessary to establish 

the dependence of the eigenvalues on the durations of the original 

eigenfunctions (the sizes of the nuclear determination domains) 

for each of the nuclei. 

 
Table 1: 256N   

k  1 2 3 4 5 6 

(2.43) 9,9421 2,2840  0,4544 0,0819  0,0134 0,0020 

(2.44) 128,0000 128,0000 0,0000 0,0000 0,0000 0,0000 

(2.45) 0,9999 0,9976 0,9594 0,7216 0,2747 0,0430 
(2.46) 1,0000 1.0000 1.0000 0,9994 0,9925 0,9367 
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Table 2: 255N   

k  1 2 3 4 5 6 

(2.43) 8,7604 2,0763 0,4498 0,0742  0,0133 0,0018 

(2.44) 127,5000 0,1571 0,0000 0,0000 0,0000 0,0000 
(2.45) 0,9999 0,9976 0,8298 0,7218 0,0430 0,0097 

(2.46) 1,0000 1,0000 1,0000 0,9995 0,9930 0,9403 

 
Table 3: 252N   

k  1 2 3 4 5 6 

(2.43) 0,0798 0,0131 0,0118 0,0019  0,0004 0,0002 

(2.44) 0,0004 0,0001 0,0000 0,0000 0,0000 0,0000 

(2.45) 0,3582 0,1708 0,0211 0,0082 0,0016 0,0005 
(2.46) 0,9996 0,9944 0,9511 0,7424 0,3417 0,0818 

 

Development of signals based on the eigenfunctions of sub-band 

nuclei 

As an important concretization of the proposed approach to the 

development of signals that allow one to recover the fragments 

from the rest ones, let us consider the use of subband nuclei intro-

duced in [8]. The expediency of their use is conditioned in particu-

lar to the fact that they are based on the optimization of the proce-

dures for subband analysis and signal synthesis and, as will be 

shown below, they allow to develop the reconstruction procedures 

of Fourier spectra certain fragments by the rest ones. 

In order to preserve the integrity of the presentation, it seems nec-

essary to give some information here from the theory of subband 

nuclei. 

According to [8], the subband nucleus is determined for the fre-

quency interval (a band) 

 

2 1 1 2 2 1
[- , ) [ , ),  0                                                    (47) 

 

Based on Fourier transformation 

 

( ) exp( ) / 2
z

A t jzt dz 




  ,                                                       (48) 

 

Which results in 

 

0 0
( ) 2 ( )cos( ( ),  (0) (0) 2 /

s
A t A t t A A D    

 
      ,             (49) 

 

Where 

 

0
( ) sin( ( )) / ( )A t D t t       ;                                                 (50) 

 

2 1
( ) / 2D    ;

s 2 1
( ) / 2    .                                             (51) 

 

Let's note that the kernels of the form (50) were considered earlier 

due to the study of a class of functions with double orthogonality 

(see, for example, [9], [10]). 

It follows from the definition (48) that the subband core (49) is a 

symmetric and a positive definite one. Therefore, all the conclu-

sions stated in the previous section are valid for it. 

Now, let us consider the reconstruction problem of the signal 

spectra of the form (10) affected by narrowband interference. 

 On the basis of definitions (7) and (48), it is not difficult to obtain 

the following representation for the eigenfunctions of a subband 

nucleus. 

 

( ) ( )exp( ) / 2
k k k

z

g t G z jzt dz 


                                                 (52) 

 

Through the segment of their Fourier transformations (a trans-

formant, a spectrum) 

 

0

( ) ( )exp( )
T

k k
G z g t jzt dt  .                                                        (53) 

 

The following relations are true [8] 

 

2| ( ) | / 2 1,  1,...
k

z

G z dz k 


                                                (54) 

 

And the following equations are fulfilled with a high accuracy 

 

0. 
k

k J   ,                                                                              (55) 

 

Where 

 

2[ / ] 4J TD   .                                                                         (56) 

 

The following is true. 

Statement 3 The fragments of kernel eigenfunction spectrum (49) 

corresponding to nonzero eigenvalues outside the frequency inter-

val (47) can be calculated by the fragments inside it on the basis of 

the following relation  

 

( ) ( )(1 exp( ( ))) / 2 ( )
k k k

z

G y G z jT y z j y z dz 


    
.             (57) 

 

Proof The relation (57) is obtained by multiplying the left and 

right part of the representations (52) by exp )( jyt  and the integra-

tion in accordance with the definition (53) with respect to the vari-

able t within  0 t T  . It is obvious that the relation (57) deter-

mines the method of analytic continuation of eigenfunction spectra 

from the chosen interval (47) to the entire frequency axis. In other 

words, it is possible to calculate the fragments of eigenvector 

spectra outside a selected frequency interval from by a fragment 

inside it, which completes the proof of the Statement 3. 

The problem of spectrum fragments reconstructuring within the 

selected frequency interval (47) is solved with more difficulties. 

Let 

 

( ) exp( / 2) ( )
k k

G y jTy G y ,                                                          (58) 

 

1 1
/ 2 / 2Ty u T u     ,                                                          (59) 

 

1 1
/ 2 / 2Tz v T v     ,                                                          (60) 

 

1
( ) (2 / )

k k
F u G u T  , D TD .                                                 (61) 

 

Let's note that the representation (58) in (53) corresponds to the 

replacement (a simple shift by / 2T ) of integration variable. At 

that we obtain the following relation from (57) 

 

( ) ( )sin( ) / ( ( ))
D

k k k
D

F u F v u v u v dv 


   ,                                    (62) 

 

Which shows that the functions (61) are the eigenfunctions of its 

integrand kernel. 

As was shown in the previous section, the possibility to restore 

certain fragments of the functions (61) by other fragments is de-

termined by the properties of the kernel eigenvalues in equation 

(62). 

The discretization of definition domain by both variables with the 

following increment  

 

/D D N   ,                                                                              (63) 

 

Allows to obtain a matrix approximating a core 

 

{ },  , 1,...,2
ik

S s i k N  ,                                                              (64) 

 

With the following elements 

 

sin ( )) / ( )
ik

s ( D i k i k    .                                                     (65) 
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Taking into account (63), it is easy to see that the representations 

(65), (45), (46) are identical. Therefore, the results of the Tables 1, 

2 and 3 can also be interpreted within the framework of function 

fragment recovering task (61). Let's note that the possibilities of 

this are determined by the magnitude of the product of the follow-

ing form D TD . In particular, the comparison of the data from 

the Tables 2 and 3 shows that its increase can lead to the dimen-

sion decrease of eigenvector recovered segment of the matrix (64). 

2. Discussion 

The problem of signal generation is considered in the paper. Some 

of signal fragments can be reconstructed by the others. It is shown 

that the class of such signals is not empty and can be realized on 

the basis of the eigenfunctions of symmetric integral operators. 

Fredholm integral equations of the second kind are obtained, 

which are satisfied by recoverable fragments and the conditions 

are set for the existence of their solutions. The computational as-

pects of recovery are considered. They presented the results of 

computational experiments illustrating the effect of original nu-

cleus properties (approximating matrices) on the fragment dura-

tions available for recovery. 

The class of integral operators based on subband nuclei was con-

sidered as an important concretization of the proposed approach 

[8]. These integral operators are the generalization of the operators 

considered in [9]. The eigenfunctions of these kernels make it 

possible to generate the signals not only with restorable fragments 

from other fragments, but also to recover the fragments of their 

Fourier spectra. The relations are obtained that make it possible to 

implement such reconstructions. 

The relevance of the obtained results is conditioned by the fact 

that the number of electromagnetic radiation sources is increased 

significantly at present, which make distorting effect on each oth-

er. In particular, control and communication signals, generated by 

extraneous sources, are subject to the effects of electromagnetic 

radiation. The approach developed in the article to the develop-

ment of signals is the contribution to electromagnetic compatibil-

ity problem solution during the realization of interaction at a dis-

tance. 

3. Conclusions 

In order to increase the vitality of information transmission sys-

tems under the influence of short-term interference, it is proposed 

to use the signals, some fragments of which can be recovered from 

the remaining fragments. It is shown that the eigenfunctions of 

symmetric positive definite operators can be used as such signals. 

The relations are obtained that allow to perform restoration. They 

determined the factors that influence the duration of recoverable 

fragments. 

It was shown that the vitality of information transmission systems 

under the influence of narrow-band noise is enhanced by the use 

of subband nucleus eigenfunctions as the signals and the relations 

for the reconstruction of their spectrum fragments are obtained. 
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