

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 143-149

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Machine learning algorithms: a background artifact

J. Deepika 1*, T. Senthil 2, C. Rajan 3, A. Surendar 4

1Assistant Professor, Department of Information Technology, K.S.Rangasamy College of Technology

2Assistant Professor, Department of ECE, K S R Institute for Engineering and Technology
3Associate Professor, Department of Information Technology, K.S.Rangasamy College of Technology

4Assistant Professor, School of Electronics, Vignan’s Foundation for Science, Research & Technology

*Corresponding author E-mail: deepi.realmail@gmail.com

Abstract

With the greater development of technology and automation human history is predominantly updated. The technology movement shifted

from large mainframes to PCs to cloud when computing the available data for a larger period. This has happened only due to the advent

of many tools and practices, that elevated the next generation in computing. A large number of techniques has been developed so far to

automate such computing. Research dragged towards training the computers to behave similar to human intelligence. Here the diversity

of machine learning came into play for knowledge discovery. Machine Learning (ML) is applied in many areas such as medical, market-

ing, telecommunications, and stock, health care and so on. This paper presents reviews about machine learning algorithm foundations, its

types and flavors together with R code and Python scripts possibly for each machine learning techniques.

Keywords: Machine learning algorithms and types, supervised learning algorithms, unsupervised learning algorithms, R code, python script.

1. Introduction

ML denotes to the methods tangled in distributing through

massive facts in the greatest intellectual way to arise better

understandings. ML algorithms are defined to be culturing an

objective function (f) which better draws input identifier (g) to

an output identifier (h) as in equation 1[1].

h = f(g) (1)

This future output prediction is not that much easier to do

manually. Hence an automated system is expected to do the pro-

cess [1]. Thus use of machine learning algorithms come into the

scene. For every new input (g) the output (h) is predicted genu-

inely using machine learning algorithms. This state is said to be

predictive molding/predictive analytics. The major operation is

to assess he most possible predictions with the present data. Each

data is segregated as training set and testing set as in figure 1.

Five basic steps for a ML task

1. Data accumulation: Data gathered from various

sources are used for analysis.

2. Data preprocessing: Before getting into the actual pro-

cessing of data, preprocessing is mandatory. This step

is used to noise or other unwanted data from the gath-

ered data.

3. Prototype training: This step contains selecting the

suitable algorithm and depiction of data in a pattern

(model) format. The preprocessed data is often divided

into two parts namely training and testing data.

4. Pattern evaluation: In this step, the resultant pattern is

validated for its correctness.

5. Performance enrichment: This step involves picking

another different pattern with better efficiency. How-

ever substantial time is required in data gathering and

training.

Despite any model/pattern, the above said five steps are manda-

tory to configure the ML technique.

1.2. Types of machine learning algorithms–scenario

based

1.2.1. Supervised learning (SL) or prognostic models

This is used to assess the upcoming result with the help of

chronological data [2]. These models are instructive as much

concentration is emphasized in training phase [5]. For instance,

SL is applied if a selling firm wishes to find its customers list. It

could also be used in prediction of earthquakes, cyclones etc. to

determine the Insurance credit. Few examples of these prediction

algorithms are: Nearest neighbor, NaiveBayes, DecisionTrees

(J48, Random Forest), Regression etc.

1.2.2. Unsupervised learning (UL) or evocative models

UL is suitable to train vivid models with no target and no sole

feature is significant compared to one another [3]. For instance,

UL is applied in case if a vender desires to find which product

does the customer buys frequently. Moreover, in medicinal busi-

ness, UL may be applied to envisage the diseases that may prone

to occur laterally with diabetes. Few examples of UL based algo-

rithms are Apriori algorithm, Simple K- means clustering

1.2.3. Reinforcement learning (RL)

RL is applied when the system is trained to yield decisions au-

tomatically with the business requirements only with a sole mot-

to to exploit better effectiveness (performance) [2]. The underly-

ing idea is a software agent is trained in an environment for

problem solving. This repeated learning procedure promises

lower human proficiency thus saving human effort [6]. One best

example of RL algorithm is Markov Decision Process. RL fun-

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

144 International Journal of Engineering & Technology

damentally includes learning by relating using the situation. Thus

it differs from SL in its characteristic.

Fig. 1: Training and testing model in machine learning system

1.1Parametric and nonparametric algorithms

2.1. Parametric algorithms

In parametric algorithms, the function can be simplified to any

recognized form called as parametric ML systems [3]. Generally,

parametric procedures are divided into 2 steps:

1. Choosing an appropriate procedure of the function

2. Acquire the quantities of the function

Few examples of parametric ML algorithms are Linear Regres-

sion and Logistic Regression [13].

2.2. Non-parametric algorithms

On the other hand, processes with negative conventions for relat-

ing the parameters are called as nonparametric ML algorithms

[3]. Without creating expectations, they are made free for train-

ing process. These are frequently agiler, attain restored accuracy.

Though, the time for training the data is substantially very high.

Some instances of nonparametric algorithms include Support

Vector Machines (SVM) and Neural Networks (NN) [25].

2. Notion, divergence and tradeoffs

In general, ML algorithms are evident from notion, divergence

and tradeoffs. Notion are shortening prospects for easy learning

of the target function. In general, parametric algorithms are easy

to learn and understand compared to nonparametric algorithms

[2]. They possess less analytical routine on composite problems.

Decision trees are considered to be less bias algorithm example

and linear regression are considered to be high bias algorithm

example.

Divergence is the quantity estimate where the target function

drive to alteration with diverse training data. With training data,

the algorithm must possess some divergence, without nil vari-

ance. The aim of any prognostic modelling ML algorithm is

achieving low bias and low divergence. Likewise, the devised

algorithm is expected to perform better. Figure 2 lists the various

categories of ML algorithms. Each of these are discussed in the

preceding sections.

Fig. 2: Categories of machine learning algorithms

3. Linear algorithms

4.1. Linear regression

Linear regression is one well tacit algorithms in the area of statis-

tics and machine learning. It is being used over 200 years. Pre-

dictive analysis is chiefly apprehensive when the error is mini-

mized or when the prediction is accurate, at the expense of ex-

plainability. The linear regression is signified using an equality

describing a line fitting the association amid the input (g) and the

output (h), using coefficients weighting as in equation 2.

For example:

h = X0 + X1 * g (2)

The output (h) can be predicted based on given input (g) and the

major task is assigning perfect coefficients X0 and X1.

A better practice while using linear regression is removing corre-

lated variables and noise from the given data, if possible. The K-

Nearest Neighbors(KNN) algorithm stands as a finest instance of

high-variance algorithm, and Linear Discriminant Analysis(LDA)

stands as a finest instance of low-variance algorithm [24]. The

parameterization of ML algorithms must handle notion and di-

vergence. Notion and divergence are opposite poles where in-

creasing the notion will decrease the divergence and vice versa.

Python script for implementing linear model

International Journal of Engineering & Technology 145

#Import necessary libraries like pandas, numpy

from sklearn import linearr_model

xx_train=input_variables
yy_train=target_variables

xx_test=input_variables

Generate regression object
linearr = linearr_model.LinearRegression()

Train the model and assess score

linearr.fit(xx_train, yy_train)
linearr.score(xx_train, yy_train)

print ('Coefficient:', linearr.coef_)

print ('Intercept: \n', linearr.intercept_)
Output Prediction

predicted_output= linearr.predict(xx_test)

R Code for implementing linear model
#Load datasets

xx_train <- input_variables

yy_train <- target_variables
xx_test <- input_variables

h <- cbind (xx_train, yy_train)

Train the model and assess score

linearr <- lm (yy_train ~ ., data = h)

summary (linearr)

#Output Prediction
predicted_output= predict (linearr,xx_test)

4.2. Logistic regression algorithm

Logistic regression is yet another ML technique in statistics. It is

used for dual cataloging problems (difficulties with 2 class val-

ues). In this method, output prediction is distorted using a lo-

gistic function which is capable of transforming any value into

the range 0 to 1. This probabilistic conversion simplifies to

break ideals to 0 and 1 and guess a class value. This is more

useful for those problems requiring greater justifications for pre-

diction. Similar to linear regression, logistic regression fails to

work in case of unrelated attributes and duplicate attributes.

Python script for implementing LogisticRegression

#Import necessary libraries

from sklearn.linearr_model import LogisticRegression
Make object

Model1 = LogisticRegression()

Train the model and assess score
Model1.fit (W,z)

Model1.score(W, z)

print ('Coefficient: ', Model1.coef_)
print ('Intercept: ', Model1.intercept_)

Output Prediction

predicted_output= Model1.predict(xx_test)
R Code for implementing LogisticRegression

h <- cbind (xx_train,yy_train)

Train the model and assess score
logistic_reg <- glm(yy_train ~ ., data = xx, status='binomial')

summary(logistic_reg)

Output Prediction
predicted_output= predict (logistic_reg, xx_test)

4.3. Linear discriminant analysis(LDA) algorithm

As stated in the above section, Logistic Regression works better

only for 2-class classification problems. In cases where classifi-

cation algorithm with additional classes if present, then LDA

algorithm is best suited (a brute-force approach). It contains al-

gebraic assets of data, projected for each class. Every distinct

input variable includes the following:

1. The Mean.

2. The Variance.

Estimates are completed by scheming a different cost of every

class and predictions are made based on the thus attained biggest

value.

4. Non-linear algorithms

5.1. Classification and regression trees algorithm

Decision Trees are better used for predictive modelling machine

learning that are represented as a binary tree from algorithms and

data structures. Each node signifies a particular input (x) and a

splinter point. The leaves possess an output (y) for making pre-

diction. Predictions are done based on dragging all beside the

tree nodes via fragments till arriving the leaf. The leaf nodes

output the class value. Generally, decision trees are believed to

learn fast and even much very faster for making predictions.

With much lesser pre-processing of data decision trees offer

accurate for a broad range of problems. Decision trees possess

high-divergence and be able to return further precise predictions

in a group [10]. The technique adopts a Gaussian distribution

(bell curve). Hence, it works better if outliers are removed from

the data beforehand.

Python script for implementing Decision Trees

#Import necessary libraries like pandas, numpy

from sklearn import tree

Generate object
Mode1l = tree. DecisionTreeClassifier (criterion='Infogain')

Train the model and assess score

Model1.fit (W, z)
Model1.score(W, z)

#Output Prediction

predicted_output= Model1.predict(xx_test)
R code for implementing DecisionTrees [4]

library(rpart)

h <- cbind(xx_train,yy_train)
cultivate tree

fitt <- rpart(yy_train ~ ., data = xx,method ="class")

summary(fitt)
#Output Prediction

predicted_output= predict (fitt,xx_test)

5.2. Naive bayes classification

NaiveBayes is a modest and powerful procedure suited in prog-

nostic modeling. Two kinds of probabilities are encompassed

from the calculations obtained through training data. They are as

follows:

1. The probability value of every separate class.

2. The conditional probability value of every class speci-

fied for all x value.

After the individual and conditional probabilities are calculat-

ed, Naïve Bayes is adopted for predictions using Bayes Theorem

for each independent input x values. Nevertheless, for real-

valued data Gaussian distribution is used for approximating these

probabilities [13]. Once if probabilities are calculated correctly,

the method is identically efficient for huge complex problems.

Python script for Gaussian NaiveBayes algorithm

#Import necessary libraries
from sklearn naiveBayes import GaussianNB

Generate SVM object model

Train the model and assess score
Model1.fit (W, z)

#Output Prediction

predicted_output= Model1.predict(xx_test)
R code for Gaussian NaiveBayes algorithm [4]

library(e1071)

h <- cbind (xx_train, yy_train)
Bfit <-naiveBayes(yy_train ~ ., data = h)

summary(Bfit)

#Output prediction
predicted_output= predict (Bfit, xx_test)

146 International Journal of Engineering & Technology

5.3. KNearest neighbors(KNN) algorithm

KNN algorithm uses the whole training dataset for using K ut-

most alike occurrences (the neighbors). The method uses the

Euclidean distance metric to estimate the likeliness. Yet, KNN

entails much larger memory to accommodate all data. Classify-

ing the data based on the closeness may lead to very high dimen-

sionality breakdown. This is stated as curse of dimensionality

[24]. So, output prediction must be done only based on the rele-

vant input variable.

Python script for KNN algorithm

#Import necessary libraries

from sklearn neighbors import KNNClassifiers

Generate KNN object model
KNNClassifiers (nn_neighbors = 7)

Train the model and assess score

Model1.fitt (W, z)

#Output Prediction
predicted_output= Model1.predict(xx_test)

5.4. Learning vector quantization (LVQ)

The great impact of KNN is that always the modelling function

depends on the entire data. LVQ is a non-natural neural network

algorithm [13]. LVQ is represented as a group of codebook vec-

tors. At the primary stage itself, the vectors are designated arbi-

trarily and improved to review the best output for a number of

repetitions. The best appropriate neighbor is recognized using

distance computation among individual codebook vector and the

novel data case. The class cost for the unsurpassed matching part

is later resumed as prediction. Preeminent outcomes are attained

by rescaling the data between 0 and 1. KNN yields best results

with dataset by accepting LVQ to diminish the memory of stor-

ing larger dataset.

R code for implementing LVQ

#LVQ

set.seed(7)

library(caret)
data(iris)

control <- trainControl(method="repeatedcv", number=10,

repeats=3)
grid <- expand.grid(size=c(5,10,15,20,25,30,35,40,45,50),

k=c(3,5))

model <- train (Species~., data=iris, method="lvq",
trControl=control, tuneGrid=grid)

print(Model1)
plot(Model1)

5.5. SVM algorithm

SVM are possibly one among the prevalent ML algorithms.

SVM possess a hyperplane that best distinct the points in the

provided input variable space using class (class 0 or class 1) [8].

The diffidence among the hyperplane and the neighboring data

points is the margin. Basically, an optimization algorithm finds

the coefficient values [9]. It bids preeminent classification per-

formance and offers best efficiency for perfect classification.

Still, the method does not promise any stout guess on data and

apt the data onto the input space [21] [22]. Data points cannot be

classified in case where more than one SVM class accepts or

rejects the data points.

Python script for implementing SVM

#Import necessary Libraries

from sklearn import svm
Generate SVM object

Model1 = svm.svc()

Train the model and assess score
Model1.fitt(W, z)

Model1.score(W, z)

#Output Prediction

predicted_output = Model1.predict(xx_test)

R code for implementing SVM [17]

library(e1071)

h <- cbind(xx_train, yy_train)
fitt <-svm(yy_train ~ ., data = h)

summary(fitt)

Output Prediction
predicted_output = predict (fitt, xx_test)

5. Ensemble algorithms

6.1. Bagging and random forest

Random Forest is yet another popular and most powerful ensem-

ble machine learning algorithms. Bootstrap is an influential sta-

tistical technique for approximating a magnitude on data. Bag-

ging uses a similar approach but inherits numerous examples of

training data from which the models are constructed. The predic-

tions are made on the average of every individual model [13].

The models thus shaped are dissimilar yet much accurate.

Each tree is lodged & grown as follows:

• In N amount of situations, few sample are picked at ar-

bitrary however with replacement which are consid-

ered to be training set for growing the tree.

• With M inputs, a distinct number m<<M is acknowl-

edged for the best split to be done. This m value must

persistent for the forest growing.

• Every tree is grownup for its leading promising height

with no pruning.

R code for implementation of RandomForest algorithm

#Random Forest

Load the party package.

It will automatically load other required packages.

library(party)

library(randomForest)

library(forestFloor)
library(AUC)

Create the forest.

output.forest <- randomForest(nativeSpeaker ~ age + shoeSize
+ score, + data = readingSkills, keep.inbag = T,keep.forest = T)

View the forest results.

print(output.forest)
Call:

randomForest(formula = nativeSpeaker ~ age + shoeSize +

score, data = readingSkills, keep.inbag = T, keep.forest = T)
print(importance(output.forest,type = 2))

 getTree(output.forest,3,labelVar = TRUE)

 ff = forestFloor(output.forest,readingSkills,binary_reg =
T,calc_np=T)

Col = fcol(ff,cols=2,outlier.lim = 2.5)

#2D Visualisation

plot(ff,col=Col,plot_GOF = T)

#3D Visualisation

show3d(ff,1,col=Col,plot_GOF = T)
library(rgl)
rgl.snapshot("picture.png")

6.2. Boosting and adaboost

Boosting is an ensemble technique that generates a robust classi-

fier out of feeble classifiers. A model is constructed from the

training data, then engendering a next model by correcting the

errors in previous model [14].

AdaBoost is a successful boosting algorithm recognized for bina-

ry classification that are used with smaller decision trees [7] [16].

The tree’s performance for each training example is used to

shape the subsequent tree without error [15]. The models are

produced consecutively with updated weights on the training

instances. The process is continued for many iterations until the

last static model is obtained. Once all the trees are completed, the

individual tree’s performance is weighted on the training data

International Journal of Engineering & Technology 147

[12]. Outliers are to be removed as error correction is empha-

sized at each renewal.

R Code for implementing Boosting algorithm

R supports many boosting algorithms. However, here one such

execution that uses decision trees as base classifiers are used.

Therefore, the rpart package much be weighed down. Together

the ada package could be used. With X be the matrix of features

and class labels 0-1 then the command is

boostModel1 <- ada (x=X, y=class_labels)

6. Dimensionality reduction (DR) algorithms

Data are being captured in greater extent in day to day life. For

these situations, DR algorithms could be used along with various

other algorithms like Decision Tree, RandomForest, PCA, Factor

Analysis for prediction.

Scenario: The Wine Data Set from the UCI Machine Learning

Repository is considered. This data set contains the results of

chemical analysis of 178 different wines from three cultivars.

There observations contain the quantities of 13 constituents

found in each of the three types of wines. The wine dataset is

included in the HDClassif package, so let’s install that and exam-

ine the dataset.

PCA using R

install.packages("HDclassif")
library(HDclassif)

data(wine)

str(wine)
install.packages("stats")

library(stats)

wine_pca <- prcomp(wine, center = TRUE, scale = TRUE)
summary(wine_pca)

#Visualizing the data set
biplot(wine_pca)

7. Neural networks (NNs)

NNs are well suited with big data analysis. However, the compu-

tational cost is very high for handling such data [19] [20]. NNs

are just the interconnected nodes that corresponds to the input

signals.

R Code Example for Neural Networks

library(iris)
field(infer)

library(neuralnetwork)

nn <- neuralnetwork (case~name+parity+induced+spontaneous,
data=infer, hidden=2, error.fct="ment", linear.output=FALSE)

nn field(nn)

resultant matrix

nn$resultant.Matrix

output <- cbind (nn$covariate, nn$net.resultant [[1]])

 dimensionnames(output) <- list (NULL, c ("age", "pari
ty","induced","spontaneous","nn-output"))

 head(output)

 head(nn$generalized.weights[[1]])
 plot(nn)

8. Rule systems

Rule-based systems or Rule system uses a distinct way to access

data that are used artificial intelligence applications, domain-

specific expert system. For instance, an expert system aids doc-

tors for easy diagnosis of diseases. They find their applications

towards natural language processing [23]. Rule are extracted

automatically from the data to take decisions using many indirect

methods. Few rule based algorithms are Cubist, OneRule, Ze-

roRule, etc.

R code for Cubist algorithm

library(cubist_rule)

library(mllbench)

data(iris)

iris$chas <- as.numeric(iris$chas) - 1
set.seed(1)

Train <- sample (1: nrow(iris), floor(.8*nrow(iris)))

Train_Predictors <- iris[Train, -10]
Test_Predictors <- iris[Train, -10]

Result <- iris$medv[Train]

Test_Outcome <- iris$medv[Train]
Tree1 <- cubist_rule (xx = Train_Predictors,

yy = Test_Outcome)
Tree1 summary(Tree1)

9. Deep learning algorithms

Deep learning is a machine learning technique that tries to model

high-level abstractions in data using multiple processing layers

[18]. For instance, with an image data the output is represented

as vector values per pixel, edges or, regions of particular shape,

etc. Deep learning works better with competent algorithms in

classification or clustering. Numerous deep learning designs

such as deep- neural networks, Convolutional Neural Net-

works(CNN), deep-belief networks and recurrent-neural net-

works applied to many domains like computer-vision, speech-

recognition, NLP, audio-recognition and bio-informatics. Few

deep learning algorithms are Bolzman Machine, Deep Belief

Networks, CNN, Stacked Auto Encoders, etc.

R code for CNN to recognize handwritten images

train_data <- read.csv ("imageset.csv")

mm = matrix(unlist(train_data [10,-1]), nrow = 28, byrow =

TRUE)

 image(mm,color=grey.colors(0-255))
 rotate <- function(x) t(apply(x, 2, rev))

paramater(row=c(2,3))

lapply(1:6,
function(x) image(rotate(matrix(unlist(train_data [x,-1]),nrow

= 28, byrow = TRUE)), color=grey.colors(0,255),

xlab=train_data[x,1]))
parameter (row=c(1,1))

library (caret)

Train<- Split (train_data$label, k=0.8, list=FALSE)
Train<-train_data .data[Train]

Test<-train_data .data [Train]

write.csv (train, file = "image1.csv", row.names = FALSE)
write.csv (test, file = "image2.csv", row.names = FALSE)

library(h2o)
local.h2o <- h2o.initilaize(ip = "localhost:8080", port = 23444,

startH2O = TRUE, nthreads=-1)

train<- read.csv ("image1.csv")
test <- read.csv ("image2.csv")

 train_data[,1]<-as.factor(train_data [,1])

ttrData<-as.h2o(train)
ttsData<-as.h2o(test)

result.dl <- h2o.deeplearning(h = 2:785, yy = 1, ttrData, active

tion = " ", hidden=repres(150,5),epochs = 30)
predict.dl<-h2o.predict(object=result.dl, newdata=ttsData[,-1])

predict.dl.df<-as.data.frame(predict.dl)

summary(predict.dl)
testnew_labels<-test[,1]

 summary(diagram(table(test_labels, predict.dl.df[,1])))

test<-read.csv("image2.csv")
 test_h2o<-as.h2o(test)

 ddf.test <- as.data.frame(predict.dl.test)

ddf.test <- data.frame(ImageId =
seq(1,length(df.test$predict)),

Label = df.test$predict)

write.csv(ddf.test, file = “summary.csv”, row.names=0)
 h2o.shutdown (prompt = 0)

148 International Journal of Engineering & Technology

10. Conclusion

ML is an extremely influential tool for solving many of the real-

world problems. The primary aim of ML researchers is to pro-

pose a better and smart learning systems that reduces human

effort. However, ML is emphasized towards data handling and

analysis rather than time/cost complexity. These automated ML

algorithms obviously reduces human error and effort. As ML

algorithms are entirely big data-oriented they are continually

grander and trustful thus used for direct programming. The sole

overhead involved is to have structured data so that every indi-

vidual ML algorithm might handle itself.

References

[1] Chang A, “R for Machine Learning, Prediction: Machine Learn-

ing and Statistics”, MIT OpenCourseWare, (2012), pp.1-8.

[2] Singh A, Thakur N & Sharma A, “A review of supervised ma-

chine learning algorithms”, 3rd International Conference on

Computing for Sustainable Global Development (INDIACom),

(2016), pp.1310-1315.
[3] Archana S & Elangovan K, “Survey of Classification Techniques

in Data Mining”, International Journal of Computer Science and

Mobile Applications, Vol.2, (2014), pp.65-71.
[4] Sun B, Chen S, Wang J & Chen H, “A robust multi-class Ada-

Boost algorithm for mislabelled noisy data”, Knowledge-Based

Systems, Vol.102, (2016), pp.87-102.
[5] Chapelle O, Sindhwani V & Keerthi SS, “Optimization Tech-

niques for Semi-Supervised Support Vector Machines”, Journal

of Machine Learning Research, Vol.9, (2013), pp.203–233.
[6] Chen D, Tian Y & Liu X, “Structural nonparallel support vector

machine for pattern recognition”, Pattern Recognition, Vol.60,

(2016), pp.296-305.
[7] Blanco F, Ávila JC, Jiménez GR, Carvalho A, Díaz AO & Bueno

RM, “Online adaptive decision trees based on concentration ine-

qualities”, Knowledge-Based Systems, Vol.104, (2016), pp.179-

194.

[8] Fatima M & Pasha M, “Survey of Machine Learning Algorithms
for Disease Diagnostic”, Journal of Intelligent Learning Systems

and Applications, Vol.9, (2017), pp.1-16.

[9] Xu J, Wu Q, Zhang J & Tang Z, “Exploiting Universum data in
AdaBoost using gradient descent”, Image and Vision Computing,

Vol.32, (2014), pp.550-557.

[10] Das K & Behera RN, “A Survey on Machine Learning: Concept,
Algorithms and Applications”, International Journal of Innova-

tive Research in Computer and Communication Engineering,

Vol.5, No.2, (2017), pp.1301-1309.
[11] Miller LD & Soh LK, “Cluster-Based Boosting”, IEEE Transac-

tions on Knowledge and Data Engineering, Vol.27, (2015),

pp.1491-1504.
[12] Baig M, Awais MM & El-Alfy EM, “AdaBoost-based artificial

neural network learning”, Neurocomputing, Vol.16, (2017),

pp.22–41.
[13] Praveena M & Jaiganesh V, “A Literature Review on Supervised

Machine Learning Algorithms and Boosting Process”,

International Journal of Computer Applications, Vol.169, No.8,
(2017), pp.32-35.

[14] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V &
Vanderplas J, “Scikit-learn: Machine learning in Python”, Journal

of Machine Learning Research, (2011), pp.2825-2830.

[15] Xiao Q, Liang Y, Lu L, Yan S & Tai YW, “Exploring Heteroge-
neous Algorithms for Accelerating Deep Convolutional Neural

Networks on FPGAs”, Proceedings of the 54th Annual Design

Automation Conference, (2017).
[16] Hiregoudar SB, Manjunath K & Patil KS, “A Survey: Research

Summary on Neural Networks”, International Journal of Re-

search in Engineering and Technology, Vol.03, Special Issue.03,
(2014), pp.385-389.

[17] Sharma V, Rai S & Dev A, “A Comprehensive Study of Artificial

Neural Networks”, International Journal of Advanced Research
in Computer Science and Software Engineering, Vol.2, No.10,

(2012), 278 -284.

[18] Utkin V & Zhuk YA, “An one-class classification support vector
machine model by interval-valued training data”, Knowledge-

Based Systems, Vol.120, (2017), pp.43-56.

[19] Vijayarani S & Dhayanand S, “Liver Disease Prediction using

SVM and Naïve Bayes Algorithms”, International Journal of Sci-
ence, Engineering and Technology Research, Vol.4, (2015),

pp.816-820.

[20] Wang J, Jebara T & Chang SF, “Semi-supervised learning using
greedy max- cut”, Journal of Machine Learning Research, Vol.14,

No.1, (2013), pp.771-800.

[21] Peng X, Rafferty K & Ferguson S, “Building support vector ma-
chines in the context of regularized least squares”, Neuro compu-

ting, Vol.211, (2016), pp.129-142.
[22] Surendar, A., Arun, M., Basha, A.M. “Micro sequence identifica-

tion of bioinformatics data using pattern mining techniques in

FPGA hardware implementation” (2016), Asian Journal of Infor-
mation Technology, 15 (1), pp. 76-81.

[23] Panchumarthi, G.P., Surendar,A.”A review article on Fin-FET

based self-checking full adders”,(2017) Journal of Advanced Re-
search in Dynamical and Control Systems, 9 (4), 8 p.

[24] Priyanka Reddy, G.S., Surendar, A.”A review article on perfor-

mance comparison of CNTFET based full adders”,(2017) Journal
of Advanced Research in Dynamical and Control Systems, 9 (4),

pp. 9-20.

[25] Selvi, N., Surendar, A. “Efficient power reduction and glitch free
mux based digitally controlled delay line”,(2015), International

Journal of Applied Engineering Research, 10 (10), pp. 9655-9659.

[26] Vishnu, S., Vignesh, S., Surendar, A.”Design and implementation
of ZETA micro-inverter for solar PV application”(2017), Interna-

tional Journal of Mechanical and Production Engineering Re-

search and Development, 7 (4), pp. 215-222.
[27] Lakshmi, K., Surendar, A. ”Verification of axiprotocol using sys-

tem Verilog”, (2017), International Journal of Mechanical Engi-

neering and Technology, 8 (5), pp. 588-595.
[28] Surendar, A., Kavitha, M. “Secure patient data transmission in

sensor networks”, (2017), Journal of Pharmaceutical Sciences and

Research, 9 (2), pp. 230-232.
[29] Surendar, A.”FPGA based parallel computation techniques for

bioinformatics applications”,(2017) International Journal of Re-

search in Pharmaceutical Sciences, 8 (2), pp. 124-128.
[30] Surendar, A.”Evolution of gait biometric system and algorithms-

A review” (2017) Biomedical and Pharmacology Journal, 10 (1),

pp. 467-472.
[31] Vimalkumar, M.N., Helenprabha, K., Surendar, A.”Classification

of mammographic image abnormalities based on emo and LS-

SVM techniques”,(2017) Research Journal of Biotechnology, 12
(1), pp. 35-40.

[32] Manju, K., Sabeenian, R.S., Surendar, A.”A review on optic disc

and cup segmentation”,(2017) Biomedical and Pharmacology
Journal, 10 (1), pp. 373-379.

[33] Surendar, A., Rani, N.U.”High speed data searching algorithms

for DNA searching”,(2016) International Journal of Pharma and
Bio Sciences, 2016 (Special Issue), pp. 73-77.

[34] Surendar, A., Arun, M.”Efficient DNA sequence analysis for re-

duced gene selection using frequency analysis”, (2016) Journal of
Chemical and Pharmaceutical Sciences, 9 (4), pp. 3367-3373.

[35] Surendar, A., George, A.”A real-time searching and sequencing

assembly platform based on an FPGA implementation for Bioin-
formatics applications”,(2016) International Journal of Pharma

and Bio Sciences, 7 (4), pp. B642-B647.

[36] Surendar, A., Arun, M.”FPGA based multi-level architecture for
next generation DNA sequencing”,(2016) Biomedical Research

(India), 2016, pp. S75-S79.

[37] Surendar, A., Arun, M., Basha, A.M.”Micro sequence identifica-
tion of bioinformatics data using pattern mining techniques in

FPGA hardware implementation”,(2016) Asian Journal of Infor-
mation Technology, 15 (1), pp. 76-81.

[38] Prabu, G., Surendar, A.”Virus detection by using a pattern match-

ing algorithm for network security”,(2015) International Journal
of Applied Engineering Research, 10 (10), pp. 9565-9569.

[39] Surendar, A., Arun, M., Periasamy, P.S.”Hardware based algo-

rithms for bioinformatics applications - A survey”,(2013) Interna-
tional Journal of Applied Engineering Research, 8 (6), pp. 745-

754.

[40] B. Saichandana, G. Rachana sri, A. Surendar and B. Suniltej
“controlling of wall lamp using arduino”, International Journal of

Pure and Applied Mathematics, Volume 116 No. 24 2017, 349-

354, ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-
line version)

[41] A. Surendar and Usha Rani Nelakuditi, “Editorial - New Devel-

opments in Electronics, Cloud and IoT”, Electronic Government,
An International Journal, Vol. 13, No. 4, 2017, ISSN

online: 1740-7508 ISSN print: 1740-7494,pp -287-289

International Journal of Engineering & Technology 149

[42] Surendar, A. "Improving Age Invariant Face Recognition System

Using Facial Features." Research Journal of Pharmacy and Tech-

nology10.6 (2017): 1762-1766.

[43] Sahu, Anil Kumar, Rashid Sheikh, and A. Surendar. "Ultra low

power design approach of asynchronous delta sigma modula-
tor." International Journal of Engineering & Technology 8.1.1

(2018): 84-87.

[44] Surendar, A., M. Kavitha, and V. Saravanakumar. "Proactive
model based testing and evaluation for component-based sys-

tems." International Journal of Engineering & Technology 8.1.1
(2018): 74-77.

