

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.5) (2018) 285-290

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

L2 cache performance analysis for MPSoC by

tag – comparision

Jenitha A 1*, Elumalai R 2

 1VTU Research Scholar, Bangalore, India

 2Dept. of Electrical and Electronics, NHCE, Bangalore, India

*Corresponding author E-mail: 28jenitha@gmail.com

Abstract

Memory systems in many applications are becoming increasingly large, contributing to many challenges in the memory management that

has led to many method to manage memory. The tag comparison consumes large amount of cache energy. Current methods provide tag

comparison cache or failure of the expected cache. Here is proposed an idea based on new call Comparing Tag stages, filter bloom is

presented to improve the efficiency of the cache to predict failure and partial tag comparison for the cold line of verification and full

comparison check for direct labels. Moreover, the administration of the cache that is filled with cache lines occurs when there is a cache

miss. Today's embedded applications use MPSoC. The MPSoC consists of the following ie more than one processors, shared memory

among the processors available and a global off-chip memory. Planning of the activities of an integrated application processor and

memory partition between processors are two main critical problem. Here, for an integrated application, both task scheduling and

partitioning the integrated available L2 cache to reduce the runtime approach is used.

Keyword: Bloom filter (BF), Cache, power consumption, tag comparison, Multiprocessor system on chip (MPSoC)

1. Introduction

Cache is defined as a relatively rapid and relatively small amount

of memory face resides between a processor and a relatively larger

amount of slow and economic memory, namely the main memory

part. Cache is a small fast memory, capable of storing the data

used most often. When the processor needs data from main

memory, it first checks whether the data requested by the

processor is present in the cache. If the data required by the

processor in the cache, the cache simply returns the data to the

processor. This type of operation allows the processor to prevent

access to main memory. Since access to the cache is faster than

accessing the main memory, the speed at which the data are

processed by the processor increases. Multilevel caches generally

operate by controlling the first-level cache smaller than 1 (L1), if

there is a success, the processor will proceed by taking the

required data from high speed L1 cache. If an error occurs in the

smaller cache, checking the next level 2 cache (L2) larger cache,

this process will continue even

Then the issue of multi-processor involvement they require

Cache coherence i.e. a software or hardware management for

look after missing of data or corruption of data, this also leads

in increase of power consumption in the L2 Cache energy.

Many studies were carried out in reduction of problem

associated with the L2 Cache. These studies can be classified

into basis of methods for minimizing the tag comparison Cache

hit and Cache miss prediction Two step of tag comparison is

done for predicting the Cache hit. Firstly Cache ways are

compared in the tag for the likely present in the Cache if the

prediction is positive consume power for the tag comparison

otherwise if prediction fails skip the remaining portion of the

tag comparison if not there will be a power consumption is

happened even the case of Cache miss which leads to the

additional latency cycle along with wastage of L2 Cache power.

Cache is a random access memory which is placed in the

between CPU or application and main memory. Cache generally

defined as a relatively small amount of fast memory, it is

expensive because of its bits per storage value were main memory

is inexpensive. Cache tries to store the data which is needed by

the processor, if processor request for the data to Cache it

simply gives up the data to the processor thus avoids the

processor to check with main memory for the data, increased in

rate of data processing by the processor increased because Cache

provides the data faster than the main memory.

The model system in the multiprocessor chip uses the memory

hierarchy with fastest L2 cache on the chip, and an inactive

memory hierarchy as slow memory allows the proper allocation of

variables between L2 cache than the multi-step labels on the chip

and there by reducing access to off-chip memory. Therefore, the

execution time of any program by the processor depends on the

amount of L2 cache assigned to that processor. Methods of

successful prediction commonly used comparing two steps from

the cache tag. In the first phase, the labels are compared with

cache forms that can control a cache hit problem. If it was a

successful prediction, you can save energy required for

comparison with other labels.

However, if there is a failure prediction, comparisons are made to

label the remaining labels in next cycle, thus leading to a further

latency cycle. Because the tag comparison is also performed if the

cache is lost there is high energy consumption. The prediction

methods attempts to predict the errors of cache misses cache,

according to the Bloom filter. If the prediction is correct then the

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:28jenitha@gmail.com

286 International Journal of Engineering & Technology

comparison labels are skipped thus saving energy. Improve the

accuracy of forecasting further reduces the amount of energy

consumed in the label comparison. However, as stated in the

cache miss prediction requires more energy consumption in the

head and the chip area.

2. Related work

Koji et al presented a method to predict the cache Predicts the

ultimate way in which to choose one to be correct, it means that

the cache successfully completed access. If the login fails, the

cache will seek other forms.

Powell et al used a method for prediction selectively direct path

mapping to reduce the dynamic energy of L1 cache, but the

performance keeping.

Z. Zhu et al presented the most recently used multiple method

which provides for the most recently used partial label. On the

basis of the result of the cache and the cache hit forecasting they

are used to design the cache memory with the minimum of energy

consumption.

Dai and Wang proposed a method to reduce the L2 cache tag to

access the writing process through the L1 cache. With this

method, the write cache offers better performance and a good

tolerance to soft errors in cache memory chips. When there is a

high cache of bankruptcy prediction methods suffer from high

struck penalty problem cache. As compensation, the failure

prediction method overcomes this limitation cache.

Zhang and others propose a cache architecture called the way to

stop the architecture of the cache can reduce the energy without

cache memory performance over the head. So cache to stop a 4-

way associative cache which stores the lowest four bits of every

tags in a fully associative cache memory data, called tag array

shutdown is used. Energy can be saved to know mismatch labels

and detention.

M Ghosh et al. Implemented a Bloom filter to find a "hit / miss

predictor" to identify the juvenile faults cache pipelining.

Keramidas et al. Proposed a filter which combines the

decomposition filter Bloom and the concept Cache Decay. The

cache predicts cold disintegration of the cache line of the cache

memory, that has a effect almost doubled. First, it reduces the

number of addresses that use the Bloom filter is necessary to

maintain and improve accuracy of prediction of failure based on

cache. Bloom filter. If the number of addresses in the Bloom filter

is lower, then the accuracy of the estimate is greater.

3. Preliminaries and motivation

3.1 L2 cache implementation

The proposed method is implemented and is illustrated in Figure

1. Which includes Tag Comparison Control (TC), the Bloom

Filter (BF), the Tag, the Data array, the Miss State Holding

Register (MSHR) and the Write Buffer [5]. The proposed method

of multistep tag comparison combines both cache hit and miss

prediction. The control logic for tag comparison called tag

comparison control takes into account the input address from the

L1 cache and determines how many steps it takes to make the

comparison tags. It also performs the countdown timeout, ex.

updating of the countdown based on the results of the comparison

tags. Then tag counter is updated based on the sampled accesses

(ie earlier for individually 128 retrieve in our experiments) which

is used to minimize the energy value by accessing the local TO

counters.

Figure 1 bottom most shows the Miss State Registration Register

(MSHR), which plays the proper role in implementation. From

this it is consider that MSHR performs the actual functions, e.g.

replacing of the message in cache, communication a cache

request to main memory and formerly setting the local TO counter

of the cache. In presentation to the actual functionalities in the

proposed means, the Bloom MSHR filter is updated for both cases

of frame loading (ie to restore the exact counters) and further

exposure (ie to minimize the counter). With a demand of L2

cache, the desired line arrives at L2 cache, it is then alternately

given to L1 cache and also written to the L2 cache. MSHR

updates the bloom filter by all of subsequent access to the BF. In

these cases, the MSHR request takes the priority everywhere the

next one and delays the next one by all of a clock cycle.

Fig. 1: Implementation of the method

3.2 Multistep method of tag comparison

The proposed method of multistep tag comparison consolidates

both cache hit and miss expectation. Its dynamic expression

progressively modifies the influence to maximize the flexibility

of the cache hit and miss expectations. The evaluate of hot hit

prediction to derive out which strategy cut back be applied first..

Fig. 2 shows two feasible courses of action used as a bit of the

considered dynamic multistep tag comparison [5]. At low or

medium hot hit rates, we can inhere as Fig. 2(a), to what place a

gradually labelled Bloom filter (pBF) is alternately associated in

break of the article that the amount of aid gets the time to be

filtered all Bloom filter (= total access × cache miss rate × cache

miss prediction accuracy) increments as the hot hit rate

diminishes (i.e., cache miss rate increases). This declines the

general label hit or miss which for the approximately pattern

executed to give reserve misses as the results interval consuming

energy. At valuable hot hit rates, as in Fig. 2(b) shows up, the hot

line search is performed earlier the inadequately tagged BF check

is finished. The hot line search will closely likely give reserved

hits, which permits both resulting Bloom filter checks and tag

comparison and reduces the energy consumption.

Threshold of hot hit proportion is performed as a part of the

proposed technique (acquired over the study) and is previously

compared with the contemporary hot hit ratio (figured over

runtime) and before the threshold is utilized to complete on a

runtime choice with recognize to which of the couple

configurations in Fig. 2 is connected. The best performing

threshold changes the programs as the cache access behaviour

varies during the programs.

3.3 Partially tag enhanced BF

On account of a singleton, the first filter won't demonstrate

whether the practically location is accessible in the cache. A

partial tag for each BF participant is proposed to look the

correspondence of roughly address on account of singleton entry.

Fig. 3 shows a inadequately tagged bloom filter [5].

A BF entry has a tuple , to what place C is the counter, Z is the

zero flag, S is the singleton flag, and P is the partial tag. The

amount of the partial tag is low, 3 bits

International Journal of Engineering & Technology 287

Fig. 2: Hot Hit Ratio Based Multistep Tag Comparisons (a) Medium/low
Hot Hit Ratio. (b) High Hot Hit Ratio

Fig. 3: Bloom filter with a partial tag

Fig. 3 shows a somewhat tagged counting bloom filter. A BF

participant has a tuple , to what place C represents the counter, Z

represents the zero flag, S represents the singleton flag, and P

represents the partial tag. The measure of the partial tag is 3 bits

which is small. Thus, compared to the original Bloom filter, the

partial tag-enhanced.

Bloom filter has an overhead of 4 bits (including the S flag) per

entry. On each entry/exit (program/de- program) of study to/from

the

Bloom filter, the corresponding partial tag is expected in bitwise

XOR operations as follows:

P Tag new = P Tag old XOR P Tag in //BF participant (program)

P Tag new = P Tag old XOR P Tag out //BF quit (de-program)

where P Tag old and P Tag new represents the old and newly

calculated partial tags, respectively. P Tag in and P Tag out

characterize the partial tags of the incoming (i.e., newly fetched)

and coming (i.e., evicted) cache lines, respectively. Such a partial

tag manipulation gives the partial tag of the currently existing

address in the situation of a singleton entry.

A pseudo code of the inadequately tagged bloom filter operation

when k=1 is shown in the Fig.4.

Fig. 4: Partial tag enhanced bloom filter operation

4. Proposed algorithm

4.1 Architecture overview

Fig. 5 demonstrates the study of MPSoC which consist of of the

accompanying components forthcoming specific disparate

processors, a commonplace L2 reserve partitioned bounded by the

untold processors and a overall off-chip memory that can be used

by these processors [4]. This procedure can likewise be utilized

for architecture where all processor has a isolated L2 cache with

the end goal that every processor can earn to the L2 cache of

different processors.

Fig. 5: Architectural model of five processors

Each embedded investigation can be abandoned into an situation

of tasks where the accessible processors respond at far one

individualistic tasks in parallel. This is amazingly valuable in

MPSoC and leads to overcome the execution time.

4.2 Task dependence sketch (TDG)

A design is a nodes and edges is that point the nodes together. A

TDG is a on the way to acyclic graph where each of the vertex is

expected as a task in entire of the embedded application and with

weighted edges. Ti and Tj are two different tasks in the TDG.

Fig. 6 shows a task dependence graph [4]. An edge from Ti to Tj

always represents a scheduling order where Tj is executed only

when necessary data is obtained from Ti after its execution.

The execution of task Tj cannot be started unless all the necessary

data communication is carried out.

Fig. 6 shows a TDG

288 International Journal of Engineering & Technology

Fig. 6: Task dependence graph

Fig. 7: (a) TDG. Schedule based on (b) no L2 cache, (c) equal partitioned

L2 cache, (d) non-equal partitioned L2 cache,

(e) integrated approach

The tasks are eventual by all of approximate divided L2 cache

surrounded by the two processors that are accessible as appeared

in Fig. 7(c). In this group of scheduling the L2 cache is separated

similarly in the two processors P1 and P2 after all of the tasks that

are mapped to the processors. Here tasks T1 is mapped to

processor P1 and undertaking T2 to processor P2. After the

execution of task T2, task T3 is subject to to processor P2. Since

task T4 is executed practically after the finishing of the tasks T1,

T2 and T3, T5 is mapped to P1 processor after the execution of

taskT1. At last task T4 and task T6 are given to processor P1 [4].

Fig. 7(d) demonstrates the scheduling of tasks which gave a pink

slip be utilized to additionally abate the applications

computational time by partitioning the discernible L2 cache in

complete proportion between the evident processors [4]. In the

TDG tasks are eventual with the end goal that task T4 begins its

execution simply subsequent to finishing the execution of task T3

by processor P2. So there is a dead time between task T1 and task

T4.

The principle issue is to abate the precisely time by forcing the

calculation time of task T2 and task T3. The solution utilized that

to diminish the straight time is to allocate more L2 cache to

processor P2 dependent in mind the end goal to decrease the

calculation time of task T2 and task T3. On the off chance that

generally told the L2 savings is situated P2 before the calculation

time of T1 will increment and accordingly the base am a native of

time of T4 will increment. To shuffle this sprinkling L2 something

for a rainy day is allocated to P1 to adjudicate the execution time.

Here the tasks are planned for a well known a by the number, to

the relate that T1 is supposing to P1 and T2 to P2. Since the

execution time of T2 is not as for all practical purposes as that of

T1, T3 is mapped to P2. After the execution. Initially the review

or processor require the reference to L2 Cache. At that involve tag

stylistic device is satisfied with Bloom filter which gives miss or

incompletely hit at that point tag comparision for partially has a

look see is done earlier the fractional search for blah line is done

completely and the tag comparision happens in the last. Bloom

filter is the eventuality checker which tells whether the fit is

characterize the everything or not. This gives the show has a

“true” or “false”, true for the data is probably present in the total ,

false for the data completely not a part of the group.

Here the use of Bloom filter for checking the tag-

comparison. the incoming address were loaded to the Bloom

filter in the form of hash functions Bloom filter checks or

compares with the incoming request tag address if it matches it

will say Cache hit partially, if does not matches it says Cache

miss that by avoiding the remaining tag line comparison of the

data in next cycle and Bloom filter check reduces additional

latency time and the energy consumption of the L2 Cache.

Fig. 8: Block Diagram of Tag Comparision

Fig. 9: Block diagram of RAM

5. Implementation

The proposed multistep method combines cache label comparison

of prediction and cache miss prediction methods (Bloom filter

with greater label). This approach increases the failure prediction

cache. Bloom filter tester is likely that indicates whether the set

belongs to the group or not. This is if the result is true or false, if

the condition is true means that data are probably in the group, if

the condition is false, the data are not fully part of the group. Here

the use of the filter is used to control flowering comparison

between the labels. The input address is loaded into the bloom

filter in the form of hash functions, then the filter control or

flowering compared with the tag address of the incoming call if it

matches partially cache hit, if the results do not match the cached

avoiding miss comparing the remaining data tag line in the next

cycle and the bloom filter control further reduces the latency time

and L2 cache consumption.

International Journal of Engineering & Technology 289

Fig. 10: Flow diagram of L2 Cache System

6. Experimental results

XILINX ISE 14.1 is used for the simulation of L2 cache

architecture for MPSoC

Fig. 11: Integrated scheduling heuristic

Fig. 12: Simulation result

Fig. 13. Schematic diagram

290 International Journal of Engineering & Technology

7. Conclusion

Bloom filter tester is likely that indicates whether the set belongs

to the group or not. This is if the result is true or false, if the

condition is true means that data are probably in the group, if the

condition is false, the data are not fully part of the group. Here the

use of the filter is used to control flowering comparison between

the labels. The input address is loaded into the bloom filter in the

form of hash functions, then the filter control or flowering

compared with the tag address of the incoming call if it matches

partially cache hit, if the results do not match the cached avoiding

miss comparing the remaining data tag line in the next cycle and

the bloom filter control further reduces the latency time and L2

cache consumption.

References

[1] Qualcomm, Inc. (2004). Snapdragon Dual Core CPU Processor

[Online]. Available: http://www.Qualcomm.Com/Snapdragon

[2] AnandTech. (2011, Mar. 19). The Apple iPad2 Review [Online].
Available: http://www.anandtech.com/show/4225/the-ipad-2-

review/4

[3] ARM Ltd. (2007). PL310 Cache ControllerTechnical Reference
Manual [Online]. Available: http://infocenter.arm.com [4] ARM

Ltd. (2011). CoreLink CCI-400 Cache Coherent Interconnect

(CCI) [Online]. Available: http://www.arm.com
[4] K. Aisopos, C. Chou, and L. Peh, “Extending open core protocol

to support system-level Cache coherence,” in Proc.

CODES+ISSS, 2008, pp. 167–172.
[5] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-

associative Cache for high performance and low energy

consumption,” in Proc. ISLPED, 1999, pp. 273–275.
[6] M. D. Powell, A. Agarwal, T. N. Vijaykumar, M. Falsafi, and K.

Roy, “Reducing set-associative Cache energy via way-
prediction and selective direct-mapping,” in Proc. Int. Symp.

Microarchitecture, 2001, pp. 54–65.

[7] Z. Zhu and X. Zhang, “Access-mode predictions for low-power
cache design,” IEEE Micro, vol. 22, no. 2, pp. 58–71, Mar.–

Apr. 2002.

[8] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting
cache for low-energy high-performance systems,” in Proc.

ISLPED, 2004, pp. 126–131.

[9] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai,
“Bloom filtering cache misses for accurate data speculation

and prefetching,” in Proc. Supercomputing, 2002, pp. 189–198.

[10] M. Ghosh, [4] Z. Zhu and X. Zhang, “Access-mode
predictions for low-power cache design,” IEEE Micro, vol. 22,

no. 2, pp. 58–71, Mar.–Apr. 2002.

[11] G. Keramidas, P. Xekalakis, and S. Kaxiras, “Applying Decay
to reduce dynamic power in set-associative caches,” in Proc.

Int. Conf. High- Performance Embedded Architectures

Compilers, 2007, pp. 38–53.
[12] L. Benini, D. Bertozzi, A. Guerri, and M. Milano, “Allocation

and scheduling for MPSOC via decomposition and no-good

generation,” in Proc. IJCAI, 2005, pp. 107–121.
[13] P. Panda, N. Dutt, and A. Nicolau, MemoryIssues in Embedded

Systemson- Chip: Optimization and Exploration. Dordrecht,

The Netherlands: Kluwer, 1999.

[14] P. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip

memory: The data partitioning problem in embedded processor-

based systems,” ACM Trans. Des. Automat. Electron. Syst., vol.
5, no. 3, pp. 682–704, Jul. 2000.

[15] Rajesh, M., and J. M. Gnanasekar. & quot; Constructing Well-

Organized Wireless Sensor Networks with Low-Level
Identification." World Engineering & Applied

Sciences Journal 7.1 (2016).

[16] S.V.Manikanthan and T.Padmapriya “Recent Trends In M2m
Communications In 4g Networks And Evolution Towards 5g”,

International Journal of Pure and Applied Mathematics, ISSN

NO:1314-3395, Vol-115, Issue -8, Sep 2017.
[17] S.V.Manikanthan and K.srividhya "An Android based secure

access control using ARM and cloud computing", Published in:

Electronics and Communication Systems (ICECS), 2015 2nd
International Conference on 26-27 Feb. 2015,Publisher:

IEEE,DOI: 10.1109/ECS.2015.7124833.

[18] T. Padmapriya and V. Saminadan, “Improving Throughput for
Downlink Multi user MIMO-LTE Advanced Networks using

SINR approximation and Hierarchical CSI feedback”,

International Journal of Mobile Design Network and Innovation-

Inderscience Publisher, ISSN : 1744-2850 vol. 6, no.1, pp. 14-

23, May 2015.

http://www.qualcomm.com/Snapdragon
http://www.anandtech.com/show/4225/the-ipad-2-
ble:%20http://infocenter.arm.com
http://www.arm.com/

