

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.5) (2018) 51-55

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Coalesce based binary table: an enhanced algorithm

for mining frequent patterns

M. Sireesha 1, Srikanth Vemuru 2, S. N. TirumalaRao3

1Research Scholar, Asst. Prof, Department of CSE, Koneru Lakshmaiah Education Foundation,

Vaddeswaram, Guntur, Andhra Pradesh, India 522502. Narasaraopet Engineering College
2Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India 522502

3Professor, Department of Computer Science and Engineering, Narasaraopeta Engineering College

*Corresponding author E-mail: sireeshamoturi@gmail.com

Abstract

Frequent item set mining and association rule mining is the key tasks in knowledge discovery process. Various customized algorithms are

being implemented in Association Rule Mining process to find the set of frequent patterns. Though we have many algorithms apriori is

one of the standard algorithm for finding frequent itemsets, but this algorithm is inefficient because of several scans of database and more

number of candidates to be generated. To overcome these limitations, in this paper a new algorithm called Coalesce based Binary Table is

introduced. Through this algorithm the given database is scanned only once to generate Binary Table by which frequent-1 itemsets are

found. To progress the process, infrequent-1 itemsets are identified and removed from the Binary Table to rearrange the items in support

ascending order. To each frequent-1 itemset find Coalesce matrix and Index List to generate all frequent itemsets having the same support

count as representative items and the remaining frequent itemsets are obtained in depth first manner. The significant benefits with the

proposed method are the whole database is scanned only once, no need to generate and check each candidate to find the set of frequent

items. On the other hand frequent items having the same support counts as representative items can be identified directly by joining the

representative item with all the combinations of Coalesce matrix. So, it is proven that coalesce based Binary Table is panacea to cut short

the time in identifying the frequent itemsets hence the efficiency is improved.

Keywords: Frequent itemset; Association Rule; Coalesce matrix; Binary Table; Index list.

1. Introduction

Nowadays, a vast amount of data are available in science, engg.,

business and many other areas due to miniature of devices, rapid

advances in storage technology and digitization techniques. So, the

most challenging task is to extracting useful information from vast

amount of data. Data mining plays a crucial role in the knowledge

discovery process by finding hidden patterns, associations,

constructing analytical models, performing classification and

prediction, performing clustering and presenting the mining results

by using visualization tools and techniques. Data mining is also

called as Knowledge Discovery in Databases (KDD) why because

it integrates different techniques form different disciplines such as

neural networks, statistics, machine learning, database technology

and information retrieval, etc. [1]. Association Rule Mining is one

of the major algorithms to find hidden knowledge in transactional

database.

Association Rule Mining is the widely used technique for finding

frequent itemsets. Discovering frequent itemsets is the first step in

finding association rules. Then association rules can be directly

generated from frequent itemsets. These rules must have the

support and confidence greater than some predefined thresholds.

2. Related works

One of the first Algorithms for association rule mining was

AgrawalImielinskiSwami (AIS) Algorithm [2]. In AIS Algorithm

the candidate itemsets are generated and frequency is counted on-

the-fly basis when the database is scanned. New candidate itemsets

are generated by extending the large itemsets with other items in

the transaction. The drawback of AIS is it makes multiple passes

over the database that results in unnecessarily generating and

counting too many candidates that turn out to be small.

One of best known Algorithm for finding the frequent itemsets is

the Apriori Algorithm [3]. Apriori is a Breadth First Search

Algorithm which uses level wise search to find out the frequent

itemsets i.e frequent-k itemsets are used to generate frequent k+1

itemsets.

An Improved Apriori Algorithm (IAA) [4] based on the original

Apriori Algorithm is introduced by Huan Wu et al. by using a new

count based method in order to prune the candidate itemsets and

uses new record generation method in order to reduce the size of

the data scan.

To reduce the scanning time and to reduce the redundant generation

of candidate itemsets an improved Apriori Algorithm called

Transaction Reduction [5] is introduced by Jaishree Singh, Hari

Ram, and Dr.J.S.Sodhi. In this method an attribute Size Of

Reduction (SOT) is introduced. It reduces the scan time by cutting

down the unnecessary transactions. But it has an overhead of

creating new database after every generation of level wise relation.

A new Algorithm Transaction Reduction- Bit Array Matrix (TR-

BAM) [6], [7] is developed by Vijayalakshmi et al. The entire

database is scanned only once and then the data is represented in

the form of a Bit Array Matrix. The transactions which are repeated

in the database are represented by the Repetition Count (RC)

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

52 International Journal of Engineering & Technology

column and a new row sum is used to store the number of nonzero

elements in the column. The time consumed between original

Apriori and TR-BAM is greatly reduced when the value of support

increases.

Two new Algorithms called CountTableFI (CTFI) and Binary

CountTableFI (BCTFI) [8] are recommended by Marghny H. These

Algorithms represent the transactional database in the form of a

binary number and decimal number. In CTFI the original

transactional data is transformed into smaller transactional data

along with the information of frequent itemsets. CTFI Algorithm is

based on the set and subset properties. . In BCTFI, first the original

transactional database is transformed to binary data. By using this

binary data the original data is transformed to decimal number.

An improved Apriori Algorithm named BE-Apriori [9] based on

pruning optimization and transaction reduction is introduced by

Zhuang Chen, et al. By using this improved Algorithm, the number

of frequent itemsets becomes much less, therefore a significant

reduction in running time by reducing the transaction length.

To overcome the problem found in many Apriori-like Algorithms

i.e candidate set generation and test approach, a new Algorithm to

find frequent patterns of length ‘K’ without candidate generation is

Frequent Pattern growth (FP-growth) introduced by the Jiawei Han

et al.[10] based on Depth First Search method. The FP-growth

Algorithm, compresses the dataset using a compact data structure

called as a Frequent Pattern tree (FP-tree) and directly extracts

frequent patterns from an FP-tree by exploring the tree in a bottom-

up fashion, which avoids costly repeated database scans. Only two

database scans are enough for this Algorithm to find frequent

patterns and no candidate generation is required.

There are many alternatives and extensions to the FP-growth and

Apriori approaches. These two methods are finding frequent

itemsets from the transactional database in horizontal format.

Alternatively finding frequent itemsets can also be performed in

vertical format.

A novel vertical data mining Algorithm called Diffset [11] using

vertical data format was proposed, which only maintains the

differences in the TId’s of a candidate patterns from its generating

frequent patterns i.e it avoids storing the entire TIDset for every

member of a class. So, this method drastically reduces the size of

memory required by orders of magnitude to store intermediate

results that significantly increase the performance.

Mingjun Song, and Sanguthevar Rajasekaran recommended a novel

Algorithm called Transaction Mapping Algorithm by exploring the

vertical data representation for Frequent Itemsets Mining [12]. The

transaction tree is used to represent all the transactions in the

database. Each node in the tree has the name of the item and count

that keeps track of number of transactions that contain this item.

Jie Dong, and Min Han presented an effective Algorithm named

BitTableFI [13] to mine frequent itemsets, to compress the database

and for quick candidate itemset support count generation a special

data structure named BitTable is used horizontally and vertically.

“However, the Bit Table is only focusing on candidate itemset

generation and support counting issues, but it does not concentrate

on any other techniques like to reduce the size of the candidate

itemset and number of times scanning the database etc.

To reduce the cost of candidate generation and test [14] a new

Algorithm Index-BitTableFI [15] is presented. It uses the BitTable

horizontally and vertically. The Index-BitTableFI achieves good

performance by computing the subsume index i.e frequent itemsets

having the support count as representative items can be identified

directly by its subsume index”.

3. Apriori Algorithm for Finding Frequent

Itemset

“Apriority Algorithm is the well-known classical Algorithm for

association rule mining which is used to frequent itemset

generation. To find frequent itemsets, Apriori makes multiple

passes over the transactional database based on candidate set

generation and test strategy. This Algorithm uses the frequent

itemsets from the current level to construct candidate itemsets of

next level. This Algorithm uses the frequent itemsets generated in

the previous level with the length ‘K’ are used to construct

candidate itemsets of present level with the length K+1 i.e where

frequent K-itemsets from LK are used to construct candidate-K+1

itemsets of level LK+1 and these candidate itemsets support count

is calculated from the transactional database. This process is

repeated until no more candidate itemsets can be generated. In the

first pass, it scans the entire transactional database to calculate the

support count of each candidate. If the candidate support count is

greater than or equal to the used defined support threshold then the

candidate is placed in level wise relation L1.

To improve the efficiency of level wise relation and to reduce the

search space or to reduce the number of candidates to be generated

an important property called Apriori property or anti-monotone or

downward closure property is used. Apriori property states that if

an itemset is frequent then all nonempty subsets of a frequent

itemset must also be frequent. Or if any itemset with the length K is

not frequent all the supersets of that itemset with the length K+1

also cannot be frequent. So, this process deletes all the candidate-K

itemsets whose subsets with the length K-1 are not frequent”.

With the help of following example we can easily understand the

concept of Apriori. Table I shows an instance of transactional

database with nine transactions. Each transaction in a transactional

database is uniquely identified with TId (Transaction Identifier).

Let us consider minimum support threshold=2. Table II to Table VI

shows level wise relations from L1 to L5.

TId ITEMS

T1 ABCEF

T2 ACG

T3 E

T4 ACDEG

T5 ACEG

T6 E

T7 ABCEF

T8 ACD

T9 ACEG

T10 ACEG

TRANSACTIONAL DATABASE

C1 L1

Itemsets Support Itemsets Support

A 8 A 8

B 2 B 2

C 8 C 8

D 2 D 2

E 8 E 8

F 2 F 2

G 5 G 5

SET OF CANDIDATE – 1 ITEMSETS AND FREQUENT – 1 ITEMSETS IN L1

C2 L2

Itemsets Support Itemsets Support

AB 2 AB 2

AC 8 AC 8

AD 2 AD 2

AE 6 AE 6

AF 2 AF 2

AG 5 AG 5

BC 2 BC 2

BD 0 BE 2

BE 2 BF 2

BF 2 CD 2

BG 0 CE 6

CD 2 CF 2

CE 6 CG 5

International Journal of Engineering & Technology 53

CF 2 EF 2

CG 5 EG 4

DE 1

DF 0

DG 1

EF 2

EG 4

FG 0

SET OF CANDIDATE – 2 ITEMSETS AND FREQUENT – 2 ITEMSETS IN L2

C3 L3

Itemsets Support Itemsets Support

ABC 2 ABC 2

ABE 2 ABE 2

ABF 2 ABF 2

ACD 2 ACD 2

ACE 6 ACE 6

ACF 2 ACF 2

ACG 5 ACG 5

AEF 2 AEF 2

AEG 4 AEG 4

BCE 2 BCE 2

BCF 2 BCF 2

BCG 0 BEF 2

BEF 2 CEF 2

BEG 0 CEG 4

CEF 2

CEG 4

SET OF CANDIDATE – 3 ITEMSETS AND FREQUENT – 3 ITEMSETS IN L3

C4 L4

Itemsets Support Itemsets Support

ABCE 2 ABCE 2

ABCF 2 ABCF 2

ABEF 2 ABEF 2

ACEF 2 ACEF 2

ACEG 4 ACEG 4

BCEF 2 BCEF 2

SET OF CANDIDATE – 4 ITEMSETS AND FREQUENT – 4 ITEMSETS IN L4

C5 L5

Itemsets Support Itemsets Support

ABCEF 2 ABCEF 2

ABCEG 0

ACEFG 0

SET OF CANDIDATE – 5 ITEMSETS AND FREQUENT – 5 ITEMSETS IN L5

Drawbacks of Apriori

 When the size of the database is too large it takes more time to

scan the database. So, this Algorithm is inefficient because of

several scans of database.

 More number of candidate itemsets need to be generated

which increases the space complexity and requires a lot of

time to process.

4. Proposed Algorithm and Worked Example

To overcome these limitations, a new technique called Coalesce

based Binary “Table for finding frequent patterns is introduced in

this paper. The main advantage of this approach is that the number

of database scans are greatly reduced, thus in turn reduces the

amount of time required to find the frequent patterns. The main

contributions in this paper are as follows. In this Algorithm the

given transactional database is represented in the form of a Binary

Table. The frequent patterns and the support count of each frequent

pattern is obtained directly from the Binary Table. First the

transactional database is represented in the form of 0’s and 1’s

where 1 represents presence of an item and 0 represents absence of

an item. The Binary Table contains collections of rows and

columns. Each row represents one transaction in the given

transactional database and each column represents one item in the

given transactional database. The Binary Table is generated as

shown in Table VII. Let TD be a given Transactional Database

T={T1,T2,….Tp} be the set of transactions and I={I1,I2,…,Iq} be

the set of items.

 Tmn=1, if In ∈ Tm

TD=(Tmn)pxq= Tmn =0, if In ∉ Tm

Where m=1,2,3,…p and

 n=1,2,….q

TId ITEMS A B C D E F G

T1 ABCEF 1 1 1 0 1 1 0

T2 ACG 1 0 1 0 0 0 1

T3 E 0 0 0 0 1 0 0

T4 ACDEG 1 0 1 1 1 0 1

T5 ACEG 1 0 1 0 1 0 1

T6 E 0 0 0 0 1 0 0

T7 ABCEF 1 1 1 0 1 1 0

T8 ACD 1 0 1 1 0 0 0

T9 ACEG 1 0 1 0 1 0 1

T10 ACEG 1 0 1 0 1 0 1

BINARY TABLE REPRESENTATION FOR THE GIVEN TRANSACTIONAL

DATABASE

After representing the Binary Table the frequency or support count

of every item is calculated. One row with the name Support Count

(SC) is added to reflect this value to the Binary Table”. Now the

support count of one itemset is obtained by summing the number of

nonzero elements in each column as shown in Table VIII.

SC = ∑p
m=1 Tmn where n=1, 2, …, q and Tmn > 0

TID ITEMS A B C D E F G

T1 ABCEF 1 1 1 0 1 1 0

T2 ACG 1 0 1 0 0 0 1

T3 E 0 0 0 0 1 0 0

T4 ACDEG 1 0 1 1 1 0 1

T5 ACEG 1 0 1 0 1 0 1

T6 E 0 0 0 0 1 0 0

T7 ABCEF 1 1 1 0 1 1 0

T8 ACD 1 0 1 1 0 0 0

T9 ACEG 1 0 1 0 1 0 1

T10 ACEG 1 0 1 0 1 0 1

SC 8 2 8 2 8 2 5

BINARY TABLE WITH NEW ROW SUPPORT COUNT

If the transactional database contains infrequent-1 itemsets, then

update the transactional database by eliminating those infrequent –

1 itemsets in order to reduce the search space and then sort the list

of frequent-1 itemsets according to the support ascending order. If

more than one item having the same support count, then they will

be sorted according to lexicographical order. The sorted

transactions are shown in Table IX.

54 International Journal of Engineering & Technology

TID Items Sorted Items

T1 ABCEF BFACE

T2 ACG GAC

T3 E E

T4 ACDEG DGACE

T5 ACEG GACE

T6 E E

T7 ABCEF BFACE

T8 ACD DAC

T9 ACEG GACE

T10 ACEG GACE

TRANSACTIONAL DATABASE ACCORDING TO SUPPORT ASCENDING

ORDER OF ITEMS

To find out the frequency of each transaction add one new column

as Transaction Frequency (TF) column to the Binary Table. If a

transaction is repeated more than once then remove the duplicate

entries from the Binary Table and represent the frequency of that

transaction in the Transaction Frequency column. The Transaction

Frequency column is used to maintain count of that particular

transaction i.e how many times the transaction is repeating. If the

transaction is not repeated then the Transaction Frequency column

of that particular transaction is set to 1.

 TFm + 1, if Tsn = Ttn (s ≠ t)

1 , otherwise

TFm = Where n = 1, 2, ..,, q

 m, s, t = 1, 2, …, p

Then the given transactional database with Transaction Frequency

column is represented by Binary Table is shown in Table X.

B D F G A C E TF

1 0 1 0 1 1 1 2

0 0 0 1 1 1 0 1

0 0 0 0 0 0 1 2

0 1 0 1 1 1 1 1

0 0 0 1 1 1 1 3

0 1 0 0 1 1 0 1

BINARY TABLE WITH NEW COLUMN TRANSACTION FREQUENCY

“Algorithm

Input: Transactional Database TD, min_sup value

Output: Frequent Itemsets

Step-1: Scan the Transactional Database TD once to generate set of

frequent-1 itemsets from the Binary Table.

Step-2: Remove the infrequent-1 itemsets from TD.

Step-3: Sort the frequent-1 itemsets according to support ascending

order as a1, a2, …, ap in TD.

Step-4: Represent the Transactional Database TD with Binary

Table.

Step-5: Add Transaction Frequency column to the Binary Table to

represent the number of similar transactions

Step-6: For every element index[j] of Index List do

Step-7: Index[j].item=aj

Step-8: For every element index[j] in Index List do

Step-9: Index[j].coalesce=ɸ

Step-10: candidate = ∩t∈g(index[j].item)t;

Step-11: for each i > j do

Step-12: If the value of the ith bit in candidate is set then

Step-13: index[j].coalesce index[i].item;

Step 14: end if

Step 15: end for

Step 16: end for

Step 17: Write Index List;”

Algorithm 1: Evaluating Index List

In step-1 of Algorithm 1: first scan the Transactional Database TD

to find frequent-1 itemsets. In step-2 infrequent-1 itemsets are

removed form TD. In step-3 the items of TD are arranged in

support ascending order. In step-4 the given TD is represented in

the form of a Binary Table i.e the items corresponding to

transaction t are set to 1 and the remaining items are set to 0. The

Transaction Frequency column of step-5 represents the count of

similar transactions. In steps 6 –7 the sorted frequent itemsets are

assigned to Index List. Then the Index List is formed by steps 8-17.

The Coalesce matrix is formed by intersecting the transactions

whose contain index[j].item in steps 9-10. No need to calculate

Coalesce matrix for last item why because we arrange the frequent-

1 items in support ascending order. So, last item has the highest

support count.

With the help of above Algorithm calculate coalesce matrix for

every frequent-1 item one by one. For example if we take frequent

item D as an example the 4th transaction is intersected with 8th

transaction i.e 101111 ∩ 100110 then the result is 100110. This

result contains 3 one itemsets which corresponds to fifth and sixth

items forms coalesce of D, as DAC. Similarly we can form

coalesces of all other items. After the completion of Algorithm-1

the representative items and those coalesces are as below i.e

“finally the Index List contains (B, FACE), (D, AC), (F, ACE), (G,

AC), (A, C), (C, Φ), (E, Φ)

Input: Index List, min_sup

Output: Frequent itemsets

Step-1: For each element index[j] of Index List do

Step-2: Write Out index[j].item and its support;

Step-3: if index[j].coalesce ==Φ then

Step-4: if (sup(index[j].item) > min sup) then

Step-5: Depth_First(index[j].item, t(index[j].item));

Step-6: end if

Step-7: else

Step-8: for each element s _ item ⊆index[j].coalesce do

Step-9: Write Out index[j].item ∪ s _ item and its support;

Step-10: end for

Step-11: if (sup(index[j].item) > min sup) then

Step-12: tail  t(index[j].item)

Step-13: Depth_First(index[j].item, tail);

Step-14: for each element s _ item ⊆ index[j].coalesce do

Step-15: Depth_First(index[j].item∪s-item, tail);

Step-16: end for

Step-17: end if

Step-18: end else

Step-19: end if

Step-20: end for

Procedure Depth First (item set tail)

Step-21: if tail == Φ; then return;

Step-22: for each i ∈ tail do

Step-23: f - itemset  itemset ∪ i;

Step-24: if sup(f – itemset) >= min sup then

Step-25: Write Out f-itemset and its support;

Step-26: tail  tail \ i;

Step-27: Depth_First (f-itemset, tail);

Step-28: end if

Step-29: end for”

Algorithm 2: Coalesce based Binary Table

The pseudo code of Coalesce based Binary Table is shown in

Algorithm2. The Step-2 of Algorithm2: writes the item and its

corresponding support count. In Step-3 we find coalesce of that

item is empty or not. Suppose if the coalesce of that item is empty

then we check support of that item is >= minsup threshold with

Step-4. If support count is greater than minsup threshold depth first

extension is called in Step-5. “Suppose if the coalesce of that item

is not empty and the support count is not greater than minimum

support threshold then in order to form frequent itemsets the

representative item is combined with every nonempty subset of its

Coalesce matrix and the support of that frequent itemset is equal to

the support of the representative item in Steps 8-10.

Suppose if we consider frequent item B it’s support count is 2

which is equal to minimum support threshold. Coalesce matrix of

B is FACE. Then the following frequent itemsets will be generated

International Journal of Engineering & Technology 55

by combining B with all the nonempty subsets of it’s Coalesce

matrix BF=2, BA=2, BC=2, BE=2, BFA=2, BFC=2, BFE=2,

BAC=2, BAE=2, BCE=2, BFAC=2, BFAE=2, BFCE=2, BACE=2,

BFACE=2. It will not be expanded any more why because the

support count of B is equal to minimum support threshold. To

generate these 15 frequent itemsets with the Apriori we need to

generate all the candidates of the length less than or equal to 4.

Then calculate the support count of these 15 frequent itemsets by

scanning the entire database, so it requires more time. The support

count of other representative items D and F is also equal to

minimum support threshold, so the frequent itemsets generated for

the representative items D and F are as below DA=2, DC=2,

DAC=2, FA=2, FC=2, FE=2, FAC=2, FAE=2, FCE=2, FACE=2

Suppose if the coalesce of that item is not empty and support count

of that item is greater than minimum support threshold then we call

depth first search by removing the items in the Coalesce matrix.

The resulting frequent itemsets will also be extended in depth first

manner in Steps 11-12. The support count of any K-itemset is

formed by intersecting tid’s of it’s (K-1) subsets in Steps 13-16.

Suppose the next representative item of Index List is G and its

support count is five. Coalesce of G is AC. The frequent itemsets

generated by combining G with all the nonempty subsets of it’s

Coalesce matrix are GA=5, GC=5, GAC=5. According to support

ascending order, the set of items after G are ACE, but A and C are

already coalesce of G, so the remaining item after G is E. The

support count of G is greater than minimum support threshold, so it

can be extended in depth first order, then GE=4 is generated. The

frequent itemsets GA, GC, GAC can also be extended. By

extending these the frequent itemsets to be generated are GAE=4,

GCE=4, GACE=4. The remaining representative elements of Index

List are A, C and E. These items can also be extended in the similar

manner. Then the frequent items can be generated are as below.

D:2, DA:2, DC:2, DAC:2; F:2, FA:2, FC:2, FE:2, FAC:2,

FAE:2,FCE:2, FACE:2”.

5. Conclusion

In this paper, a new algorithm called Coalesce based Binary Table

was proposed. The original apriori algorithm and its several

variants were improved with the properties Coalesce matrix and

Index List. Here the Binary Table is used horizontally and

vertically to calculate the Index List and support count. With the

help of Coalesce matrix and Index List can easily identify the

support count of representative items and their combinations. It also

achieves good performance though large number of frequent

itemsets by reducing the total number of candidates to be generated.

Eventually the total amount of time consumed to generate frequent

itemsets lesser than the original apriori and its variants.

Reference

[1] Han.J, Kamber.M, “Data Mining: Concepts and Techniques”,

Morgan kaufmann Publishers, Book, 2000.

[2] R. Agrawal, T. Imielinski, A. Swami, “Mining associations between
sets of items in large databases, Proceedings of the ACM SIGMOD

1993 Conference Washington DC, USA, May 1993.
[3] R. Agarwal and R. Srikant, “ Fast Algorithm for mining association

rules”, Proceedings of the 20th international conference on very

large databases , Margunkaufmann , PP. 487-499.
[4] Huan Wu, Zhigang Lu, Lin Pan, RongshengXu, “An Improved

Apriori-based Algorithm for Association Rules Mining“, Sixth

International Conference on Fuzzy Systems and Knowledge
Discovery, pp. 51-55, 2009.

[5] Jaishree Singh, Hari Ram, Dr. J.S.Sodhi, “ Improving Efficiency of

Apriori Algorithm Using Transaction Reduction”, International
Journal of Scientific and Research Publications, Vol.3, 2013.

[6] V. Vijayalakshmi, Dr. A Pethalakshmi, “Mining of Frequent

Itemsets with an Enhanced Apriori Algorithm” International Journal
of Computer Applications(0975-8887) Volume 81 – No. 4.

November 2013.

[7] V. Vijayalakshmi, Dr. A Pethalakshmi, “An Efficient Count Based
Transaction Reduction Approach For Mining Frequent Patterns”,

Procedia Computer Science, Vol.47, PP. 52-61, 2015.

[8] Marghny .H, Mohamed .M, and Darwieesh, “ Efficient Mining

Frequent Itemset Algorithms ”, International Journal of Machine

Learninbg and Cybernatics, Vol. 5, PP. 823-833, 2013.
[9] Zhuang Chen, Shiban Cai, Qiulin Song, and Chonglai Zhu, “ An

Improved Apriori Algorithm Based on Pruning Optimization and

Transaction Reduction”, Artificial Intelligence, Management
Science and Electronic Commerce (AIMSEC), PP. 1908-19011,

Aug-2011.

[10] Jiawei Han, Jianpei, and Yiwenyini, “Mininig Frequent Patterns
without Candidate Generation”, Proceedings of the ACM SIGMOD

International Conference on Management of Data Pages , PP. 1-12,

2000.
[11] Mohammed J. Zaki and Karam Gouda, “Fast Vertical Mining using

Diffsets” Proceedings of the ASM SIGKDD ’03 Washiton, DC,

USA, Aug-2003.
[12] Mingjun Song, and SanguthevarRajasekaran, “A transaction

mapping Algorithm for frequent itemset mining “, in IEEE

transactions on knowledge and Data Engg.
[13] Jie Dong, Min Han “BitTableFI: An efficient mining frequent

itemsets Algorithm“, Knowlwdge-Based Systems, vol.20, pp.329-

335, 2007.
[14] Jaishree Singh, Hari Ram, Dr. J.S.Sodhi, “ Improving Efficiency of

Apriori Algorithm Using Transaction Reduction”, International
Journal of Scientific and Research Publications, Vol.3, 2013.

[15] Dr. Seetaiah Kilaru, Harikishore K, Sravani T, Anvesh Chowdary

L, Balaji T “Review and Analysis of Promising Technologies with
Respect to fifth Generation Networks”, 2014 First International

Conference on Networks & Soft Computing, pp.270-

273,August2014.
[16] Rajesh, M., and J. M. Gnanasekar. "Congestion control in

heterogeneous wireless ad hoc network using FRCC."

Australian Journal of Basic and Applied Sciences 9.7 (2015): 698-
702.

[17] S.V.Manikanthan and V.Rama“Optimal Performance Of Key

Predistribution Protocol In Wireless Sensor Networks” International
Innovative Research Journal of Engineering and Technology ,ISSN

NO: 2456-1983,Vol-2,Issue –Special –March 2017.

[18] T. Padmapriya and V. Saminadan, “Inter-cell Load Balancing
Technique for Multi- class Traffic in MIMO - LTE - A Networks”,

International Conference on Advanced Computer Science and

Information Technology , Singapore, vol.3, no.8, July 2015.

