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Abstract 
 

Real-time data stream clustering has been widely used in many fields, and it can extract useful information from massive sets of data. 

Most of the existing density-based algorithms cluster the data streams based on the density within the micro-clusters. These algorithms 

completely omit the data density in the area between the micro-clusters and recluster the micro-clusters based on erroneous assumptions 

about the distribution of the data within and between the micro-clusters that lead to poor clustering results. This paper describes a novel 

density-based clustering algorithm for evolving data streams called MCDAStream, which clusters the data stream based on micro-cluster 

density and attraction between the micro-clusters. The attraction of micro-clusters characterizes the positional information of the data 

points in each micro-cluster. We generate better clustering results by considering both micro-cluster density and attraction of micro-

clusters. The quality of the proposed algorithm is evaluated on various synthetic and real-time datasets with distinct characteristics and 

quality metrics. 
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1. Introduction 

The amount of data being generated as data streams from real-life 

applications has significantly increased over the past few years. A 

data stream (DS) is a potentially unbounded sequence of ordered 

data points p1, p2 ... pn arriving at time steps t1, t2 ... tn. Data 

streams are evolving, and are too complicated and voluminous to 

be processed and analysed with conventional processing methods. 

Due to the massive amounts of streaming data, it is not possible to 

store the whole data stream in main memory. One of the key chal-

lenging issues in clustering data streams is single pass clustering. 

i.e., the raw data can only be examined in one scan. Real-time data 

stream clustering is a significant and challenging problem in data 

analysis with ample applications such as banking, agriculture, 

healthcare, weather monitoring, education, stock trading, network 

monitoring, telecommunication, and website analysis [1]. 

Data stream clustering can extract valuable information from a 

huge volume of data. There are many families of data clustering 

algorithms: Hierarchical, Grid-based, Partitioning, Model-based, 

and Density-based clustering [2]. Among all the clustering algo-

rithms, Density-based clustering algorithms are a widely-used 

class of data mining techniques that can find irregularly shaped 

clusters, can handle noises, and cluster data without prior 

knowledge of the number of clusters it contains as the k-means 

algorithm does. 

Most density-based algorithms for clustering data streams use a 

two-stage online-offline framework [3]. The online component 

reads the data stream in real-time and keeps the summary statistics 

about the data streams in the form of micro-clusters (grids). A 

micro-cluster is a tuple (w, c, t), where w is the weight, c is the 

center, and t is the last updated time. The offline component re-

clusters the micro-clusters (grids) into final clusters (sometimes 

called as macro-clusters). On-demand, since the reclustering pro-

cess is not time critical, a modified conventional clustering algo-

rithm (e.g., a variant of DBSCAN [4]) is used in the offline phase 

for reclustering. The offline component performs reclustering 

based on the density within the micro-clusters, and it considers 

centers of micro-clusters as pseudo points. 

The rest of this paper is organized as follows: We briefly review 

the related work in section 2. In section 3 we discussed our pro-

posed algorithm MCDAStream, and then we presented the exper-

imental results in Section 4. Then we conclude the paper with 

Section 5. 

2. Related work 

Over the past few years, several density-based algorithms have 

been proposed for clustering potentially unbounded streams of 

data. These algorithms are categorized into two broad groups. (1) 

Density-based micro-clustering algorithms group, and (2) Density 

grid-based clustering algorithms group.  

Some of the existing density-based micro-clustering algorithms 

are: DenStream [5], OpticsStream [6], C-DenStream [7], 

rDenStream [8], SDStream [9], HDenStream [10], SOStream[11], 

HDDStream [12], PreDeConStream [13], FlockStream [14], 

LeaDen-Stream [15], DBStream[16]. All these algorithms use two 

stage online-offline framework. In the online phase, these 

algorithms adopt the concept of micro-clusters to compress the 

data streams efficiently. The micro-cluster (µC) is an extension of 

Cluster Feature Vector (CFV), and it was first proposed by Zhang 

et al. in[17]. Micro-clusters keeps the summary statistics about the 

data stream, and reclustering is performed on these µCs. In the 

reclustering step (offline phase) these algorithms merge/group 

adjacent micro-clusters into macro-clusters. For reclustering, only 
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the distances between the micro-clusters and their weights are 

considered. In this regard, micro-clusters which are closer to each 

other are grouped to the same macro-cluster. Most existing 

clustering algorithms adopt fading window model for clustering 

data streams.  

There are few other algorithms like DUCStream [18], DStream-I 

[19], DDStream [20], DStream-II [1], MR-Stream [21], PKS-

Stream [22], DCUStream [23], DENGRIS-Stream [24], ExCC 

[25], which are belongs to density grid-based clustering 

algorithms group. These algorithms adopt density-based and grid-

based methods for clustering the data streams. In these algorithms 

group, the data space is divided into grids (small segments), data 

points are mapped to these grids, and the clusters are created based 

on the density of the grids. For each data point in the grid, density 

coefficient is considered to capture the dynamic changes of the 

clusters. The density of the grids can be determined based on the 

aggregation of the weights of all the data points in the grid. In 

some grid-based algorithms, the density of the grid is determined 

based on the number of data points in the grid. Algorithms such as 

DStream-I [19] and DStream-II [1] adopt Characteristic Vector 

(CV) to maintain summary statistics about the data points in the 

grid. For some grid-based clustering algorithms, the concept of 

sporadic grids was introduced to handle outlier data.  

Most of the existing density-based clustering algorithms complete-

ly omit the data density in the area between the adjacent micro-

clusters (grids). Reclustering methods only consider the closeness 

of the micro-clusters into account and recluster the micro-clusters 

based on erroneous assumptions about the distribution of the data 

within and between micro-clusters. The concept of density estima-

tion in grid cells was used in the existing algorithms like DStream-

I [19] and MR-Stream [26]. This makes it possible that two micro-

clusters which are separated by low-density region will be merged 

into a macro-cluster as long as their distance is low.  

To address this problem, CHAMELEON [27] introduced inter-

connectivity concept that works only for clustering static datasets. 

This interconnectivity concept was extended in DStream-II [1] for 

clustering data streams based on grid density and attraction. The 

information about the grid attraction is collected in the online 

component, and it is used for reclustering in the offline component. 

The adjacent grid cells are grouped if the density attraction be-

tween the cells is high enough. This method is not directly appli-

cable for micro-clusters. To address the same problem, LeaDen-

Stream [15] introduced a concept in which micro-clusters are rep-

resented by mini-micro leaders based on the distribution of data 

points in the micro-clusters, and it uses this representation for 

reclustering. DBStream [16] is the first density-based clustering 

method that clusters the micro-clusters based on shared density 

between the micro-clusters. DBStream captures the shared density 

information in the online component via a shared density graph, 

and it uses the same information in the offline phase for recluster-

ing the micro-clusters. DBStream uses adjacency list for imple-

menting sparse shared density graph. This approach generates 

large quantities of outliers which increased cluster quality, but it 

requires high computation time for clustering process. To reduce 

the time complexity and to improve the efficiency of current den-

sity-based clustering methods, we propose a novel density-based 

algorithm for clustering data streams, called MCDAStream.  

3. Proposed work 

The MCDAStream algorithm clusters the data stream based on 

micro-cluster density and attraction. The attraction of micro-

clusters characterizes the positional information of the data points 

in each micro-cluster. Like many existing algorithms, 

MCDAStream has two phases: online phase for maintaining mi-

cro-clusters and offline phase for generating final clusters. Our 

algorithm adopts an attraction-based mechanism to capture the 

density information between the micro-clusters in the online phase, 

and it uses the same information in the offline phase to generate 

better clustering results accurately. 

3.1. Basic concepts and definitions 

To record the dynamic changes of a data stream, MCDAStream 

adopts a density decaying function (aging function) to the density 

of each data point. The density decaying function is an exponen-

tial function which is defined as f(t)= 2-λt where f is a decaying 

function and λ> 0 is the decay parameter. The clusters are formed 

automatically and dynamically by placing more weights on the 

most recent data without totally discarding the historical infor-

mation. According to this decaying function, the weight of the 

micro-clusters (grids) decreases exponentially with time t. 

 

Definition 1:(Weight of a data point (wp)): The weight of a data 

object p at current time tc is defined as follows: 

 

wp(tc) = wp(tp) * f(tc-tp) =2−λ(tc−tp) 

 

Where wp(tp) is the weight of the data point p at time tp and tc>tp. 

The initial weight of a data point is assumed to be 1. 

 

Definition 2:(Grid density (wg)): Density of a grid g at current 

time tc is defined as follows: 

 

wg(tc)= ∑ 2−λ(tc−tp)
p∈g  

 

The weight of a grid is updated at current time tc with the last 

updated time tg as follows: 

 

wg(tc) = wg(tg) * f(tc-tg)+ 1 

 

The total weight of the grid has an upper bound of
1

(1−2−λ )
 , and the 

average density is 
1

Ng(1−2−λ)
where Ng is the number of grids. A 

grid g is said to be a dense grid if its weight at time t is greater 

than
β

Ng(1−2−λ)
, where β > 0 is a controlling threshold. If the weight 

of a gird at time t is less than
β

Ng(1−2−λ)
, then it is called as a sparse 

grid. 

 

Definition 3:(micro-cluster (µC)): A micro-cluster (µC) at time t 

is determined as µC(w, c, t) for a group of data objects 𝑝𝑖1
, 𝑝𝑖2

 … 

𝑝𝑖𝑛
with timestamps 𝑇𝑖1

, 𝑇𝑖2
 … 𝑇𝑖𝑛

 as follows: 

 

1) w=∑ f(t −n
j=1 Tij

) is the weight, w ≥βµ, where β is the pa-

rameter to determine the threshold of an outlier relative to 

µCs and µ represents the minimum number of points. 

2) c=
CF1̅̅ ̅̅ ̅

w
 is the center of µC, and CF1̅̅ ̅̅ ̅= ∑ f(t −n

j=1 Tij
)pij

 is the 

weighted linear sum of the data points.t is the last updated 

time of µC 

3) If all the data points are merged into the same µC, then the 

maximum weight of the micro-cluster is defined as follows: 

 

µC[wmax]= lim
 tc→∞

1−2−λ( tc+1)

(1−2−λ)
 = 

1

(1−2−λ )
.  

 

Definition 4 (Characteristic Vector): The characteristic vector (CV) 

of a grid is a tuple (ng, tg, wg) where ng is the number of data 

points in the grid, tg is the last updated timestamp and wg is the 

weight of the grid. 

Definition 5 (Density threshold function (Δ)): Density threshold 

function [22] is designed for the sporadic grids. The sporadic grids 

are the grids which do not receive any data objects for a long time. 

If the grid weight is less than the density threshold function, then 

we can safely prune the grid from the grid list. The density thresh-

old function Δ is defined as follows: 

 

Δ(tc,tg)=
β

Ng

∑ 2−λitc−tg

i=0  =
β(1−2−λ(tc−tg+1) )

Ng(1−2−λ)
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Where tc is the current time, and tg is the last updated time of a 

grid. 

Definition 6 (Pruning time): For each micro-cluster µci, if no new 

data point is added to it, the weight of µci will decay gradually. If 

µci[w] < βµ, then µci becomes an outlier micro-cluster, and it 

should be deleted from the memory. We check the weights of all 

the micro-clusters as well as the weights of all the grids at a time 

we call tr. Pruning time tr is the minimum time for a µC/gird in 

time step t1 to be converted to an outlier in t2 (t2>t1) which is de-

termined as follows[5]: 

 

tr = 
1

λ
log2(

βµ

βµ−1
) 

3.2. The MCDAStream algorithm 

At each time steptc, the online component of MCDAStream reads 

a data point p from the data stream, and either merge it into an 

existing micro-clusters or maps it to the grid. To improve the 

runtime performance of the proposed algorithm we integrate grid-

based mechanism into the online phase. In the reclustering (offline) 

phase, MCDAStream generates the final clusters, on demand by 

the user. Algorithm 1 shows the complete outline of 

MCDAStream clustering method. The user-defined parameters r 

(radius), λ (decay parameter), β (controlling threshold), α (inter-

secting parameter) are part of the base algorithm. 

 
Algorithm 1 MCDAStream 

Input: A Data Stream (DS), λ, r, µ,α, β 

Output: Arbitrary shape clusters 

Method: 
1. tc 0 

2. tr[
1

λ
log2(

βµ

βµ−1
)]; 

3. while the data stream is active do 

4. read next data point p from DS at time step tc 

5. //finding nearest micro-clusters within fixed radius r 

6. µCs find nearest micro-clusters to p in µC_list 
7.  if | µCs | ≥ 1 then 

8.  merging(p, µCs); 

9.  else 
10.  mapping(p, g); 

11.  end if 

12.  if tc mod tr = 0 then 
13.  pruning( ); 

14.  end if 

15. tctc + 1 
16. end while 

17. // offline phase 

18. if clustering request arrives then 
19. for each i and j in µC_list where j>i do 

20. if attrij ≥ α. µ then // α is an intersecting threshold 

21. consider i and j for final clustering 
22. generate final clusters using a variant of DBSCAN; 

23. end for 

24. end if 
25. end if 

 

In the online phase of MCDAStream, first, we read a data point p 

from the data stream, and we find all the micro-clusters (µCs) 

which are within a fixed radius r from data point p. If one or more 

micro-clusters are found, then we update the weights and centers 

of all the micro-clusters incrementally by considering the fading 

function λ. The density attraction between the micro-clusters can 

be measured by counting the data points which are assigned to two 

or more micro-clusters. In this regard, micro-clusters which are 

closer to each other and which share an area of high density are 

grouped to the same macro-cluster. Updating the centers of micro-

clusters may lead to collapsing micro-clusters. If the distance be-

tween two adjacent micro-clusters is less than r, then collapsing of 

those micro-clusters can be prevented by reverting their centers to 

previous positions. The pseudo code of the merging procedure is 

given in Algorithm 2. If no micro-cluster is found within the radi-

us r from data point p (i.e., | pµCs | < 1), then we map the data 

point p to the grid (see Algorithm 3). 

Algorithm 2 merging (p, µC) 

1. merge p into µCs 

2.  for each micro-cluster i in µCs do 
3. // update micro cluster density, last updated time and center 

4.  µCi[w]  µCi[w] * 2−λ(tc−µCi[t])+1  

5.  µCi[c] 
CF1̅̅ ̅̅ ̅

µCi[w]
 

6.  µCi[t] tc 
7. //Update density attraction between the adjacent micro-clusters 

8.  for each j in µCs where j>i do 

9. attrijattrij * 2−λ(tc−attrij[t]) +1 

10. attrij[t] tc 
11.  end for 

12.  end for 

13. // prevent collapsing clusters 
14. for each i, j in µCs X µCs and j > i do 

15. if dist(µCi[c], µCj[c]) < r then 

16. revert µCi[c], µCj[c] to previous positions 
17. end if 

18. end for 

 

If there is no micro-cluster falls within the radius r from p, then 

unlike many existing algorithms, instead of creating a new outlier 

micro-cluster with point p, we map p to the grid g in the outlier 

buffer. This will increase the performance of the algorithm regard-

ing time complexity. When a data point p is added to the grid g, 

we update the grid characteristics (number of data points ng, last 

updated time tg, and grid weight wg). If the number of data points 

(ng) in the grid g reaches minimum points µ, then we check the 

grid density. If the grid g is a dense grid, then we form a new mi-

cro-cluster from the data points in the grid g. The related grid g of 

the new micro-cluster is removed from the grid list. The pseudo 

code of the mapping procedure is given in Algorithm 3. 

 
Algorithm 3 mapping(p, g) 

1. map the new data point p to the grid g; 

2. Update CV(ng, tg, wg); // update characteristic vector 

3. ngng+ 1; 

4. wg(tc) wg(tg) * 2−λ(tc−tg)+1;  

5. tgtc; 

6.  if ng≥ µ and wg≥
β

Ng(1−2−λ)
 then 

7. create new µC(w, c, t); // creating new micro-cluster 
8.  w wg; 

9. CF1̅̅ ̅̅ ̅∑ f(t −n
j=1 Tij

)pij
; 

10.  c 
CF1̅̅ ̅̅ ̅

w
 ; 

11.  ttc; 
12.  remove grid g from grid_list; 

13.  end if 

 

The pruning process is shown in Algorithm 4. At every tr time 

steps, MCDAStream executes this procedure to remove outlier 

micro-clusters and sporadic grids. We check the weights of all the 

micro-clusters and girds at time tr,The micro-clusters and the grids 

with the weights less than a threshold are removed from the µC 

list and grid list, respectively, to release the memory space and to 

improve the MCDAStream algorithms’ processing speed. 

 
Algorithm 4 pruning( ) 

1)  for all grid g in grid_list do 

2)  Δ(tc,tg)=
β(1−2−λ(tc−tg+1)

)

Ng(1−2−λ)
; 

3) //detecting and removing sporadic grids 

4)  if wg< Δ then  

5)  delete grid g from the grid_list; 
6)  end if 

7)  end for 

8) for each micro-cluster i in µC_list do 
9) //detecting and removing outlier µCs  

10)  if µCi[w] < β.µ then 

11)  delete µCi from µC_list; 

12)  end if 

13)  end for 
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The online component of MCDAStream maintains micro-clusters, 

which capture the density area of the data streams. The algorithm 

also captures the density attraction between the micro-clusters. 

However, to generate the final clusters from the micro-clusters, we 

use a modified conventional clustering algorithm. In the recluster-

ing phase, we use a variant of DBSCAN to form the final (macro) 

clusters.Each micro-cluster µC is considered as a pseudo point 

located at the center of µC with the weight w. To generate the 

final clustering results, we adopt the density-connectivity concept 

from DBSCAN algorithm [4]. 

4. Experimental results 

In this section, we present the experimental results of 

MCDAStream and compare its performance with the three public-

ly available density-based clustering methods DenStream [5], 

DStream-II[1] and DBStream[16]. We have implement-

ed/interfaced our proposed algorithm in a publicly accessible R-

extension called stream [28]. The Stream is an extensible frame-

work that provides an interface for experimenting, interfacing and 

implementing with algorithms for several data mining tasks. It 

includes a growing number of data stream generators and algo-

rithms for clustering data streams. 

4.1. Datasets 

For the evaluation of MCDAStream, both synthetic and real da-

tasets were used.  

Synthetic Datasets: We experimented with two synthetic datasets 

called Noisy Mixture of Gaussians and DS3 from CHAMELEON 

[27] clustering algorithm. Example points for the two synthetic 

datasets are shown in Figure 1. The Noisy Mixture of Gaussians 

dataset contains two-dimensional data points with 5% noise. The 

dataset DS3 introduced for CHAMELEON algorithm consists of 

8000 data points with six clusters of different shape, size, as well 

as random noise points. 

 

 
Fig. 1: A) Noisy Mixture of Gaussians. 

 

 
Fig. 1: B) DS3 of CHAMELEON Clustering Algorithm. 

 

Figure 2 shows example clustering results of MCDAStream for 

Noisy Mixture of Gaussians and DS3 datasets. Micro-clusters are 

shown as circles in red color with a dotted circle representing each 

MC’s assignment area. Blue crosses represent macro-clusters. 

Black lines connecting MCs describe the attraction between the 

micro-clusters. 

 

 
Fig. 2: A) Data Stream Clustering Result of MCDAStream on Noisy Mix-
ture of Gaussians Dataset with Three Random Gaussians. Circles Repre-

sent Micro-Clusters and Crosses Represent Macro-Clusters. 

 

 
Fig. 2: B) Data Stream Clustering Result of MCDAStream on DS3 Dataset. 

 

Real Dataset: To evaluate the MCDAStream and other existing 

algorithms capabilities with real-world data, we use a real dataset 

called the KDD CUP’99 (Network Intrusion Detection) dataset. 

KDD CUP’99 is a well-known and widely used dataset that was 

created for the Third International KDD Tools competition, and it 

is available from the UCI Machine Learning Repository [29]. It 

contains simulated network traffic with a wide variety of intru-

sions. It has 48,98,431 data points, and we considered all 34 nu-

meric features out of 42 available attributes for clustering. 

4.2. Clustering quality evaluation 

To evaluate the clustering quality of MCDAStream, we use a sim-

ple measure, called purity[5]. The clustering purity is computed 

only for the data objects arriving in a predetermined window 

(horizon) since the weight of the data objects decay over time 

At first, we experiment the clustering quality of MCDAStream on 

synthetic datasets. Figure 3 shows the purity results of 

MCDAStream compared to DBStream, DenStream, and D-Stream 

on Noisy Mixture of Gaussians and DS3 datasets. We can note 

that the clustering purity of MCDAStream is always higher than 

98% and it is higher than the existing clustering algorithms.  

We have also experimented clustering purity of MCDAStream on 

Network Intrusion Detection (KDD CUP’99) real dataset. Figure 4 

shows the average purity results of MCDAStream on Network 

Intrusion Detection (NID) dataset. MCDAStream runs very well 

regarding high average purity on real dataset compared to 

DBStream, DenStream, and DStream. 
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Fig. 3: A) Cluster Purity of MCDAStream on Noisy Mixture of Gaussians. 

 

 
Fig. 3: B) Cluster Purity of MCDAStream on DS3 of CHAMELEON. 

 

 
Fig. 4: Average Purity Results of MCDAStream on NID Real Dataset. 

 

 
Fig. 5: Execution Time vs. Length of Stream. 

4.3 Scalability results 

Execution Time: The efficiency of the MCDAStream clustering 

algorithm is measured by the execution time. The execution time 

of MCDAStream is effected by the number of data points pro-

cessed per time unit. We use the KDD CUP’99 dataset to evaluate 

the efficiency of MCDAStream against DBStream, DenStream, 

and D-Stream. Figure 5 shows the execution time in seconds for 

KDD CUP’99 dataset. We can note that the execution time of 

MCDAStream and other clustering methods grow linearly as the 

stream proceeds. We can also note that the MCDAStream has 

lower execution time compared to DBStream, DenStream, and D-

Stream. The time complexity of MCDAStream is minimized by 

using the grid-based method in the online phase. It allows us to 

reduce the merging time complexity from o(µC) to o(1). Search-

ing nearest micro-clusters within fixed radius r from point p can 

be done using linear search in O(ndk), where n is the number of 

points clustered, d is the dimensionality of the data, and k is the 

number of micro-clusters. 

Memory Usage: Space complexity of MCDAStream algorithm 

depends on the number of micro-clusters and grids that are stored 

in µC_list and grid list, respectively. The memory usage of 

MCDAStream is o(µC+g) which is measured by the number of 

micro-clusters and grids. 

In data steam clustering, each point is processed individually, and 

we have captured some statistics averaged over 500 point intervals 

for Noisy Mixture of Gaussians dataset. Table 1 shows the number 

of micro-clusters used by the algorithms MCDAStream, 

DBStream, and DenStream for Noisy Mixture of Gaussians da-

taset. These numbers are directly associated to the memory used 

by the respective algorithms. We can note that MCDAStream uses 

less memory compared to DBStream and DenStream algorithms. 

 
Table 1:Number of Micro-Clusters for Noisy Mixture of Gaussians Da-

taset 

No. of 
Points 

No. of micro-clusters 

MCDAStreamr = 

0.05 

DBStreamr = 

0.05 

DenStreamepsilon 

= 1 

500 33 54 57 
1000 48 67 89 

1500 63 70 96 

2000 74 77 106 

5. Conclusion 

In this paper, we have presented MCDAStream, an efficient densi-

ty-based algorithm for clustering data streams. The algorithm 

clusters the data stream based on micro-cluster density and attrac-

tion. The algorithm captures the density attraction between the 

micro-clusters in the online phase, and it uses the same infor-

mation for reclustering in the offline phase. Our MCDAStream 

clustering algorithm uses density micro-clustering and density 

grid-based clustering to find high-quality clusters with considera-

bly less computation time and memory. To evaluate the perfor-

mance of MCDAStream, experiments were conducted on both 

synthetic and real datasets. The experimental results show that the 

proposed clustering algorithm has high quality and low computa-

tion time compared to existing methods. 
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