

Copyright © 2018K. Shyam Sunder Reddy, C. ShobaBindu. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (2) (2018) 270-275

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i2.9051

Research paper

MCDAStream: a real-time data stream clustering based on

micro-cluster density and attraction

K. Shyam Sunder Reddy 1*, C. ShobaBindu 2

1Research Scholar, JNTUA, Ananthapuramu

2Department of CSE, JNTU College of Engineering, Ananthapuramu

*Corresponding author E-mail: shyamd4@staff.vce.ac.in

Abstract

Real-time data stream clustering has been widely used in many fields, and it can extract useful information from massive sets of data.

Most of the existing density-based algorithms cluster the data streams based on the density within the micro-clusters. These algorithms

completely omit the data density in the area between the micro-clusters and recluster the micro-clusters based on erroneous assumptions

about the distribution of the data within and between the micro-clusters that lead to poor clustering results. This paper describes a novel

density-based clustering algorithm for evolving data streams called MCDAStream, which clusters the data stream based on micro-cluster

density and attraction between the micro-clusters. The attraction of micro-clusters characterizes the positional information of the data

points in each micro-cluster. We generate better clustering results by considering both micro-cluster density and attraction of micro-

clusters. The quality of the proposed algorithm is evaluated on various synthetic and real-time datasets with distinct characteristics and

quality metrics.

Keywords: Data Stream; Data Mining; Density-Based Clustering; Grid-Based Clustering; Micro-Clusters.

1. Introduction

The amount of data being generated as data streams from real-life

applications has significantly increased over the past few years. A

data stream (DS) is a potentially unbounded sequence of ordered

data points p1, p2 ... pn arriving at time steps t1, t2 ... tn. Data

streams are evolving, and are too complicated and voluminous to

be processed and analysed with conventional processing methods.

Due to the massive amounts of streaming data, it is not possible to

store the whole data stream in main memory. One of the key chal-

lenging issues in clustering data streams is single pass clustering.

i.e., the raw data can only be examined in one scan. Real-time data

stream clustering is a significant and challenging problem in data

analysis with ample applications such as banking, agriculture,

healthcare, weather monitoring, education, stock trading, network

monitoring, telecommunication, and website analysis [1].

Data stream clustering can extract valuable information from a

huge volume of data. There are many families of data clustering

algorithms: Hierarchical, Grid-based, Partitioning, Model-based,

and Density-based clustering [2]. Among all the clustering algo-

rithms, Density-based clustering algorithms are a widely-used

class of data mining techniques that can find irregularly shaped

clusters, can handle noises, and cluster data without prior

knowledge of the number of clusters it contains as the k-means

algorithm does.

Most density-based algorithms for clustering data streams use a

two-stage online-offline framework [3]. The online component

reads the data stream in real-time and keeps the summary statistics

about the data streams in the form of micro-clusters (grids). A

micro-cluster is a tuple (w, c, t), where w is the weight, c is the

center, and t is the last updated time. The offline component re-

clusters the micro-clusters (grids) into final clusters (sometimes

called as macro-clusters). On-demand, since the reclustering pro-

cess is not time critical, a modified conventional clustering algo-

rithm (e.g., a variant of DBSCAN [4]) is used in the offline phase

for reclustering. The offline component performs reclustering

based on the density within the micro-clusters, and it considers

centers of micro-clusters as pseudo points.

The rest of this paper is organized as follows: We briefly review

the related work in section 2. In section 3 we discussed our pro-

posed algorithm MCDAStream, and then we presented the exper-

imental results in Section 4. Then we conclude the paper with

Section 5.

2. Related work

Over the past few years, several density-based algorithms have

been proposed for clustering potentially unbounded streams of

data. These algorithms are categorized into two broad groups. (1)

Density-based micro-clustering algorithms group, and (2) Density

grid-based clustering algorithms group.

Some of the existing density-based micro-clustering algorithms

are: DenStream [5], OpticsStream [6], C-DenStream [7],

rDenStream [8], SDStream [9], HDenStream [10], SOStream[11],

HDDStream [12], PreDeConStream [13], FlockStream [14],

LeaDen-Stream [15], DBStream[16]. All these algorithms use two

stage online-offline framework. In the online phase, these

algorithms adopt the concept of micro-clusters to compress the

data streams efficiently. The micro-cluster (µC) is an extension of

Cluster Feature Vector (CFV), and it was first proposed by Zhang

et al. in[17]. Micro-clusters keeps the summary statistics about the

data stream, and reclustering is performed on these µCs. In the

reclustering step (offline phase) these algorithms merge/group

adjacent micro-clusters into macro-clusters. For reclustering, only

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 271

the distances between the micro-clusters and their weights are

considered. In this regard, micro-clusters which are closer to each

other are grouped to the same macro-cluster. Most existing

clustering algorithms adopt fading window model for clustering

data streams.

There are few other algorithms like DUCStream [18], DStream-I

[19], DDStream [20], DStream-II [1], MR-Stream [21], PKS-

Stream [22], DCUStream [23], DENGRIS-Stream [24], ExCC

[25], which are belongs to density grid-based clustering

algorithms group. These algorithms adopt density-based and grid-

based methods for clustering the data streams. In these algorithms

group, the data space is divided into grids (small segments), data

points are mapped to these grids, and the clusters are created based

on the density of the grids. For each data point in the grid, density

coefficient is considered to capture the dynamic changes of the

clusters. The density of the grids can be determined based on the

aggregation of the weights of all the data points in the grid. In

some grid-based algorithms, the density of the grid is determined

based on the number of data points in the grid. Algorithms such as

DStream-I [19] and DStream-II [1] adopt Characteristic Vector

(CV) to maintain summary statistics about the data points in the

grid. For some grid-based clustering algorithms, the concept of

sporadic grids was introduced to handle outlier data.

Most of the existing density-based clustering algorithms complete-

ly omit the data density in the area between the adjacent micro-

clusters (grids). Reclustering methods only consider the closeness

of the micro-clusters into account and recluster the micro-clusters

based on erroneous assumptions about the distribution of the data

within and between micro-clusters. The concept of density estima-

tion in grid cells was used in the existing algorithms like DStream-

I [19] and MR-Stream [26]. This makes it possible that two micro-

clusters which are separated by low-density region will be merged

into a macro-cluster as long as their distance is low.

To address this problem, CHAMELEON [27] introduced inter-

connectivity concept that works only for clustering static datasets.

This interconnectivity concept was extended in DStream-II [1] for

clustering data streams based on grid density and attraction. The

information about the grid attraction is collected in the online

component, and it is used for reclustering in the offline component.

The adjacent grid cells are grouped if the density attraction be-

tween the cells is high enough. This method is not directly appli-

cable for micro-clusters. To address the same problem, LeaDen-

Stream [15] introduced a concept in which micro-clusters are rep-

resented by mini-micro leaders based on the distribution of data

points in the micro-clusters, and it uses this representation for

reclustering. DBStream [16] is the first density-based clustering

method that clusters the micro-clusters based on shared density

between the micro-clusters. DBStream captures the shared density

information in the online component via a shared density graph,

and it uses the same information in the offline phase for recluster-

ing the micro-clusters. DBStream uses adjacency list for imple-

menting sparse shared density graph. This approach generates

large quantities of outliers which increased cluster quality, but it

requires high computation time for clustering process. To reduce

the time complexity and to improve the efficiency of current den-

sity-based clustering methods, we propose a novel density-based

algorithm for clustering data streams, called MCDAStream.

3. Proposed work

The MCDAStream algorithm clusters the data stream based on

micro-cluster density and attraction. The attraction of micro-

clusters characterizes the positional information of the data points

in each micro-cluster. Like many existing algorithms,

MCDAStream has two phases: online phase for maintaining mi-

cro-clusters and offline phase for generating final clusters. Our

algorithm adopts an attraction-based mechanism to capture the

density information between the micro-clusters in the online phase,

and it uses the same information in the offline phase to generate

better clustering results accurately.

3.1. Basic concepts and definitions

To record the dynamic changes of a data stream, MCDAStream

adopts a density decaying function (aging function) to the density

of each data point. The density decaying function is an exponen-

tial function which is defined as f(t)= 2-λt where f is a decaying

function and λ> 0 is the decay parameter. The clusters are formed

automatically and dynamically by placing more weights on the

most recent data without totally discarding the historical infor-

mation. According to this decaying function, the weight of the

micro-clusters (grids) decreases exponentially with time t.

Definition 1:(Weight of a data point (wp)): The weight of a data

object p at current time tc is defined as follows:

wp(tc) = wp(tp) * f(tc-tp) =2−λ(tc−tp)

Where wp(tp) is the weight of the data point p at time tp and tc>tp.

The initial weight of a data point is assumed to be 1.

Definition 2:(Grid density (wg)): Density of a grid g at current

time tc is defined as follows:

wg(tc)= ∑ 2−λ(tc−tp)
p∈g

The weight of a grid is updated at current time tc with the last

updated time tg as follows:

wg(tc) = wg(tg) * f(tc-tg)+ 1

The total weight of the grid has an upper bound of
1

(1−2−λ)
 , and the

average density is
1

Ng(1−2−λ)
where Ng is the number of grids. A

grid g is said to be a dense grid if its weight at time t is greater

than
β

Ng(1−2−λ)
, where β > 0 is a controlling threshold. If the weight

of a gird at time t is less than
β

Ng(1−2−λ)
, then it is called as a sparse

grid.

Definition 3:(micro-cluster (µC)): A micro-cluster (µC) at time t

is determined as µC(w, c, t) for a group of data objects 𝑝𝑖1
, 𝑝𝑖2

 …

𝑝𝑖𝑛
with timestamps 𝑇𝑖1

, 𝑇𝑖2
 … 𝑇𝑖𝑛

 as follows:

1) w=∑ f(t −n
j=1 Tij

) is the weight, w ≥βµ, where β is the pa-

rameter to determine the threshold of an outlier relative to

µCs and µ represents the minimum number of points.

2) c=
CF1̅̅ ̅̅ ̅

w
 is the center of µC, and CF1̅̅ ̅̅ ̅= ∑ f(t −n

j=1 Tij
)pij

 is the

weighted linear sum of the data points.t is the last updated

time of µC

3) If all the data points are merged into the same µC, then the

maximum weight of the micro-cluster is defined as follows:

µC[wmax]= lim
 tc→∞

1−2−λ(tc+1)

(1−2−λ)
 =

1

(1−2−λ)
.

Definition 4 (Characteristic Vector): The characteristic vector (CV)

of a grid is a tuple (ng, tg, wg) where ng is the number of data

points in the grid, tg is the last updated timestamp and wg is the

weight of the grid.

Definition 5 (Density threshold function (Δ)): Density threshold

function [22] is designed for the sporadic grids. The sporadic grids

are the grids which do not receive any data objects for a long time.

If the grid weight is less than the density threshold function, then

we can safely prune the grid from the grid list. The density thresh-

old function Δ is defined as follows:

Δ(tc,tg)=
β

Ng

∑ 2−λitc−tg

i=0 =
β(1−2−λ(tc−tg+1))

Ng(1−2−λ)

272 International Journal of Engineering & Technology

Where tc is the current time, and tg is the last updated time of a

grid.

Definition 6 (Pruning time): For each micro-cluster µci, if no new

data point is added to it, the weight of µci will decay gradually. If

µci[w] < βµ, then µci becomes an outlier micro-cluster, and it

should be deleted from the memory. We check the weights of all

the micro-clusters as well as the weights of all the grids at a time

we call tr. Pruning time tr is the minimum time for a µC/gird in

time step t1 to be converted to an outlier in t2 (t2>t1) which is de-

termined as follows[5]:

tr =
1

λ
log2(

βµ

βµ−1
)

3.2. The MCDAStream algorithm

At each time steptc, the online component of MCDAStream reads

a data point p from the data stream, and either merge it into an

existing micro-clusters or maps it to the grid. To improve the

runtime performance of the proposed algorithm we integrate grid-

based mechanism into the online phase. In the reclustering (offline)

phase, MCDAStream generates the final clusters, on demand by

the user. Algorithm 1 shows the complete outline of

MCDAStream clustering method. The user-defined parameters r

(radius), λ (decay parameter), β (controlling threshold), α (inter-

secting parameter) are part of the base algorithm.

Algorithm 1 MCDAStream

Input: A Data Stream (DS), λ, r, µ,α, β

Output: Arbitrary shape clusters

Method:
1. tc 0

2. tr[
1

λ
log2(

βµ

βµ−1
)];

3. while the data stream is active do

4. read next data point p from DS at time step tc

5. //finding nearest micro-clusters within fixed radius r

6. µCs find nearest micro-clusters to p in µC_list
7. if | µCs | ≥ 1 then

8. merging(p, µCs);

9. else
10. mapping(p, g);

11. end if

12. if tc mod tr = 0 then
13. pruning();

14. end if

15. tctc + 1
16. end while

17. // offline phase

18. if clustering request arrives then
19. for each i and j in µC_list where j>i do

20. if attrij ≥ α. µ then // α is an intersecting threshold

21. consider i and j for final clustering
22. generate final clusters using a variant of DBSCAN;

23. end for

24. end if
25. end if

In the online phase of MCDAStream, first, we read a data point p

from the data stream, and we find all the micro-clusters (µCs)

which are within a fixed radius r from data point p. If one or more

micro-clusters are found, then we update the weights and centers

of all the micro-clusters incrementally by considering the fading

function λ. The density attraction between the micro-clusters can

be measured by counting the data points which are assigned to two

or more micro-clusters. In this regard, micro-clusters which are

closer to each other and which share an area of high density are

grouped to the same macro-cluster. Updating the centers of micro-

clusters may lead to collapsing micro-clusters. If the distance be-

tween two adjacent micro-clusters is less than r, then collapsing of

those micro-clusters can be prevented by reverting their centers to

previous positions. The pseudo code of the merging procedure is

given in Algorithm 2. If no micro-cluster is found within the radi-

us r from data point p (i.e., | pµCs | < 1), then we map the data

point p to the grid (see Algorithm 3).

Algorithm 2 merging (p, µC)

1. merge p into µCs

2. for each micro-cluster i in µCs do
3. // update micro cluster density, last updated time and center

4. µCi[w]  µCi[w] * 2−λ(tc−µCi[t])+1

5. µCi[c] 
CF1̅̅ ̅̅ ̅

µCi[w]

6. µCi[t] tc
7. //Update density attraction between the adjacent micro-clusters

8. for each j in µCs where j>i do

9. attrijattrij * 2−λ(tc−attrij[t]) +1

10. attrij[t] tc
11. end for

12. end for

13. // prevent collapsing clusters
14. for each i, j in µCs X µCs and j > i do

15. if dist(µCi[c], µCj[c]) < r then

16. revert µCi[c], µCj[c] to previous positions
17. end if

18. end for

If there is no micro-cluster falls within the radius r from p, then

unlike many existing algorithms, instead of creating a new outlier

micro-cluster with point p, we map p to the grid g in the outlier

buffer. This will increase the performance of the algorithm regard-

ing time complexity. When a data point p is added to the grid g,

we update the grid characteristics (number of data points ng, last

updated time tg, and grid weight wg). If the number of data points

(ng) in the grid g reaches minimum points µ, then we check the

grid density. If the grid g is a dense grid, then we form a new mi-

cro-cluster from the data points in the grid g. The related grid g of

the new micro-cluster is removed from the grid list. The pseudo

code of the mapping procedure is given in Algorithm 3.

Algorithm 3 mapping(p, g)

1. map the new data point p to the grid g;

2. Update CV(ng, tg, wg); // update characteristic vector

3. ngng+ 1;

4. wg(tc) wg(tg) * 2−λ(tc−tg)+1;

5. tgtc;

6. if ng≥ µ and wg≥
β

Ng(1−2−λ)
 then

7. create new µC(w, c, t); // creating new micro-cluster
8. w wg;

9. CF1̅̅ ̅̅ ̅∑ f(t −n
j=1 Tij

)pij
;

10. c 
CF1̅̅ ̅̅ ̅

w
 ;

11. ttc;
12. remove grid g from grid_list;

13. end if

The pruning process is shown in Algorithm 4. At every tr time

steps, MCDAStream executes this procedure to remove outlier

micro-clusters and sporadic grids. We check the weights of all the

micro-clusters and girds at time tr,The micro-clusters and the grids

with the weights less than a threshold are removed from the µC

list and grid list, respectively, to release the memory space and to

improve the MCDAStream algorithms’ processing speed.

Algorithm 4 pruning()

1) for all grid g in grid_list do

2) Δ(tc,tg)=
β(1−2−λ(tc−tg+1)

)

Ng(1−2−λ)
;

3) //detecting and removing sporadic grids

4) if wg< Δ then

5) delete grid g from the grid_list;
6) end if

7) end for

8) for each micro-cluster i in µC_list do
9) //detecting and removing outlier µCs

10) if µCi[w] < β.µ then

11) delete µCi from µC_list;

12) end if

13) end for

International Journal of Engineering & Technology 273

The online component of MCDAStream maintains micro-clusters,

which capture the density area of the data streams. The algorithm

also captures the density attraction between the micro-clusters.

However, to generate the final clusters from the micro-clusters, we

use a modified conventional clustering algorithm. In the recluster-

ing phase, we use a variant of DBSCAN to form the final (macro)

clusters.Each micro-cluster µC is considered as a pseudo point

located at the center of µC with the weight w. To generate the

final clustering results, we adopt the density-connectivity concept

from DBSCAN algorithm [4].

4. Experimental results

In this section, we present the experimental results of

MCDAStream and compare its performance with the three public-

ly available density-based clustering methods DenStream [5],

DStream-II[1] and DBStream[16]. We have implement-

ed/interfaced our proposed algorithm in a publicly accessible R-

extension called stream [28]. The Stream is an extensible frame-

work that provides an interface for experimenting, interfacing and

implementing with algorithms for several data mining tasks. It

includes a growing number of data stream generators and algo-

rithms for clustering data streams.

4.1. Datasets

For the evaluation of MCDAStream, both synthetic and real da-

tasets were used.

Synthetic Datasets: We experimented with two synthetic datasets

called Noisy Mixture of Gaussians and DS3 from CHAMELEON

[27] clustering algorithm. Example points for the two synthetic

datasets are shown in Figure 1. The Noisy Mixture of Gaussians

dataset contains two-dimensional data points with 5% noise. The

dataset DS3 introduced for CHAMELEON algorithm consists of

8000 data points with six clusters of different shape, size, as well

as random noise points.

Fig. 1: A) Noisy Mixture of Gaussians.

Fig. 1: B) DS3 of CHAMELEON Clustering Algorithm.

Figure 2 shows example clustering results of MCDAStream for

Noisy Mixture of Gaussians and DS3 datasets. Micro-clusters are

shown as circles in red color with a dotted circle representing each

MC’s assignment area. Blue crosses represent macro-clusters.

Black lines connecting MCs describe the attraction between the

micro-clusters.

Fig. 2: A) Data Stream Clustering Result of MCDAStream on Noisy Mix-
ture of Gaussians Dataset with Three Random Gaussians. Circles Repre-

sent Micro-Clusters and Crosses Represent Macro-Clusters.

Fig. 2: B) Data Stream Clustering Result of MCDAStream on DS3 Dataset.

Real Dataset: To evaluate the MCDAStream and other existing

algorithms capabilities with real-world data, we use a real dataset

called the KDD CUP’99 (Network Intrusion Detection) dataset.

KDD CUP’99 is a well-known and widely used dataset that was

created for the Third International KDD Tools competition, and it

is available from the UCI Machine Learning Repository [29]. It

contains simulated network traffic with a wide variety of intru-

sions. It has 48,98,431 data points, and we considered all 34 nu-

meric features out of 42 available attributes for clustering.

4.2. Clustering quality evaluation

To evaluate the clustering quality of MCDAStream, we use a sim-

ple measure, called purity[5]. The clustering purity is computed

only for the data objects arriving in a predetermined window

(horizon) since the weight of the data objects decay over time

At first, we experiment the clustering quality of MCDAStream on

synthetic datasets. Figure 3 shows the purity results of

MCDAStream compared to DBStream, DenStream, and D-Stream

on Noisy Mixture of Gaussians and DS3 datasets. We can note

that the clustering purity of MCDAStream is always higher than

98% and it is higher than the existing clustering algorithms.

We have also experimented clustering purity of MCDAStream on

Network Intrusion Detection (KDD CUP’99) real dataset. Figure 4

shows the average purity results of MCDAStream on Network

Intrusion Detection (NID) dataset. MCDAStream runs very well

regarding high average purity on real dataset compared to

DBStream, DenStream, and DStream.

274 International Journal of Engineering & Technology

Fig. 3: A) Cluster Purity of MCDAStream on Noisy Mixture of Gaussians.

Fig. 3: B) Cluster Purity of MCDAStream on DS3 of CHAMELEON.

Fig. 4: Average Purity Results of MCDAStream on NID Real Dataset.

Fig. 5: Execution Time vs. Length of Stream.

4.3 Scalability results

Execution Time: The efficiency of the MCDAStream clustering

algorithm is measured by the execution time. The execution time

of MCDAStream is effected by the number of data points pro-

cessed per time unit. We use the KDD CUP’99 dataset to evaluate

the efficiency of MCDAStream against DBStream, DenStream,

and D-Stream. Figure 5 shows the execution time in seconds for

KDD CUP’99 dataset. We can note that the execution time of

MCDAStream and other clustering methods grow linearly as the

stream proceeds. We can also note that the MCDAStream has

lower execution time compared to DBStream, DenStream, and D-

Stream. The time complexity of MCDAStream is minimized by

using the grid-based method in the online phase. It allows us to

reduce the merging time complexity from o(µC) to o(1). Search-

ing nearest micro-clusters within fixed radius r from point p can

be done using linear search in O(ndk), where n is the number of

points clustered, d is the dimensionality of the data, and k is the

number of micro-clusters.

Memory Usage: Space complexity of MCDAStream algorithm

depends on the number of micro-clusters and grids that are stored

in µC_list and grid list, respectively. The memory usage of

MCDAStream is o(µC+g) which is measured by the number of

micro-clusters and grids.

In data steam clustering, each point is processed individually, and

we have captured some statistics averaged over 500 point intervals

for Noisy Mixture of Gaussians dataset. Table 1 shows the number

of micro-clusters used by the algorithms MCDAStream,

DBStream, and DenStream for Noisy Mixture of Gaussians da-

taset. These numbers are directly associated to the memory used

by the respective algorithms. We can note that MCDAStream uses

less memory compared to DBStream and DenStream algorithms.

Table 1:Number of Micro-Clusters for Noisy Mixture of Gaussians Da-

taset

No. of
Points

No. of micro-clusters

MCDAStreamr =

0.05

DBStreamr =

0.05

DenStreamepsilon

= 1

500 33 54 57
1000 48 67 89

1500 63 70 96

2000 74 77 106

5. Conclusion

In this paper, we have presented MCDAStream, an efficient densi-

ty-based algorithm for clustering data streams. The algorithm

clusters the data stream based on micro-cluster density and attrac-

tion. The algorithm captures the density attraction between the

micro-clusters in the online phase, and it uses the same infor-

mation for reclustering in the offline phase. Our MCDAStream

clustering algorithm uses density micro-clustering and density

grid-based clustering to find high-quality clusters with considera-

bly less computation time and memory. To evaluate the perfor-

mance of MCDAStream, experiments were conducted on both

synthetic and real datasets. The experimental results show that the

proposed clustering algorithm has high quality and low computa-

tion time compared to existing methods.

References

[1] Chen Y, Tu L, “Stream Data Clustering Based on Grid Density and
Attraction.” ACM Transactions on Knowledge discovery Data, 3(3):

Article No. 12, 2009.

[2] Han J. and Kamber, M. “Data Mining Concepts and Techniques.”
2nd Ed. Burlington: Morgan Kauffman, 2006.

[3] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F.

d. Carvalho, and J. a. Gama, “Data stream clustering: A survey,”
ACM Computing Surveys, vol. 46, no. 1, pp. 13:1–13:31, Jul. 2013.

[4] Ester M., Kriegel H., Sander J., and Xu X. “A Density-Based Algo-

rithm for Discovering Clusters in Large Spatial Databases with
Noise.” In: Proc. of 2nd International Conference on Knowledge

Discovery, pp. 226–231, 1996.
[5] Cao F, Ester M, Qian W, Zhou A. “Density-Based Clustering Over

an Evolving Data Stream with Noise.” In Proc. the SIAM Confer-

ence on Data Mining, April 2006, pp.328-
339.https://doi.org/10.1137/1.9781611972764.29.

[6] Tasoulis D K, Ross G, Adams N M. “Visualising the Cluster Struc-

ture of Data Streams.” In Proc. the 7th International Conference on
Intelligent Data Analysis, Sept. 2007, pp.81-

92.https://doi.org/10.1007/978-3-540-74825-0_8.

[7] Menasalvas E, Ruiz C, Spiliopoulou M. “C-DenStream: Using
Domain Knowledge on a Data Stream.” In Proc. the 12th Interna-

tional Conference on Discovery Science, Oct. 2009, pp.287-301.

https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1007/978-3-540-74825-0_8

International Journal of Engineering & Technology 275

[8] Jing K, Liu L, Guo Y et al. “A Three-Step Clustering Algorithm

over an Evolving Data Stream.” In Proc. the IEEE Int. Conf. Intel-

ligent Computing and Intelligent Systems, Nov. 2009, pp.160-164.

[9] Ren J, Ma R. “Density-Based Data Streams Clustering over Sliding

Windows.” In Proc. the 6th Int. Conf. Fuzzy systems and
Knowledge Discovery, Aug. 2009, pp.248-

252.https://doi.org/10.1109/FSKD.2009.553.

[10] Lin J, Lin H. “A Density-Based Clustering over Evolving Hetero-
geneous Data Stream.” In Proc. The 2nd Int. Colloquium on Com-

puting, Communication, Control, and Management, Aug. 2009,
pp.275-277.https://doi.org/10.1109/CCCM.2009.5267735.

[11] Dunham M, Isaksson C, Hahsler M. “SOStream: Self Organizing

Density-Based Clustering over Data Stream.” In Lecture Notes in
Computer Science 7376, Perner P (ed.), Springer Berlin Heidelberg,

2012, pp.264-278.

[12] Zimek A, Ntoutsi I, Palpanas T et al. “Density-Based Projected
Clustering over High Dimensional Data Streams.” In Proc. The

12th SIAM Int. Conf. Data Mining, April 2012, pp.987-998.

[13] Spaus P, Hassani M, Gaber M M, Seidl T. “Density-Based Project-
ed Clustering of Data Streams.” In Proc. the 6th Int. Conf. Scalable

Uncertainty Management, Sept. 2012, pp.311-324.

[14] Pizzuti C, Forestiero A, Spezzano G. “A Single Pass Algorithm for
Clustering Evolving Data Streams based on Swarm Intelligence.”

Data Mining and Knowledge Discovery, 2013, 26(1): 1-

26.https://doi.org/10.1007/s10618-011-0242-x.
[15] Amineh A, Teh Ying W “LeaDen-Stream: A Leader Density-Based

Clustering Algorithm over Evolving Data Stream.” Journal of

Computer and Communications, pp. 26-31, 2013.
[16] Hahsler M, and Matthew B. “Clustering Data Streams Based on

Shared Density between Micro-Clusters.” IEEE Transactions on

Knowledge and Data Engineering,
2016.https://doi.org/10.1109/TKDE.2016.2522412.

[17] Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data

clustering method for very large databases. In Proc. ACM SIG-
MOD International Conference on Management of Data, June 1996,

pp.103-114.https://doi.org/10.1145/233269.233324.

[18] Li J, Gao J, Zhang Z, Tan P N. An incremental Data Stream Clus-
tering Algorithm Based on Dense Units Detection. In Proc. the 9th

Pacific-Asia Conference on Advances in Knowledge Discovery and

Data Mining, May 2005, pp.420-425.
[19] Chen Y, Tu L. Density-Based Clustering for Real-Time Stream Da-

ta. In Proc. the 13th ACM SIGKDD Int. Conf. Knowledge Discov-

ery and Data Mining, Aug. 2007, pp.133-
142.https://doi.org/10.1145/1281192.1281210.

[20] Tan C, Jia C, Yong A. A Grid and Density-Based Clustering Algo-

rithm for Processing Data Stream. In Proc. the 2nd Int. Conf. Ge-
netic and Evolutionary Computing, Sept. 2008, pp.517-521.

[21] Ng W K, Wan L, Dang X H et al. Density-Based Clustering of Data

Streams at Multiple Resolutions. ACM Trans. Knowledge Discov-
ery from Data, 2009, 3(3).

[22] Ren J, Cai B, Hu C. Clustering over Data Streams Based on Grid

Density and Index Tree. Journal of Convergence IT, 2011, 6(1): 83-
93.

[23] Yang Y, Liu Z, Zhang J et al. Dynamic Density-Based Clustering

Algorithm over Uncertain Data Streams. In Proc. the 9th Int. Conf.
Fuzzy Systems and Knowledge Discovery, May 2012, pp.2664-

2670.https://doi.org/10.1109/FSKD.2012.6233800.

[24] Teh Ying W, Amini A, DENGRIS-Stream: A Density-Grid Based
Clustering Algorithm for Evolving Data Streams over Sliding Win-

dow. In Proc. International Conference on Data Mining and Com-

puter Engineering, Dec. 2012, pp.206-210.
[25] Kaur S, Bhatnagar V, Chakravarthy S. Clustering Data Streams us-

ing Grid-Based Synopsis. Knowledge and Information Systems,
June 2013.

[26] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-

Based Clustering of Data Streams at Multiple Resolutions,” ACM
Transactions on Knowledge Discovery from Data, vol. 3, no. 3, pp.

1–28, 2009.https://doi.org/10.1145/1552303.1552307.

[27] George K, Eui-Hong H, Vipin K., “CHAMELEON: A Hierarchical
Clustering Algorithm Using Dynamic Modeling” IEEE Computer,

pp. 68-75, August 1999.

[28] M. Hahsler, M. Bolanos, and J. Forrest, stream: Infrastructure for
Data Stream Mining, 2015, R package version 1.2-2.

[29] Bache K, Lichman M (2013). \UCI Machine Learning Repository."

URL http://archive.ics.uci.edu/ml.

https://doi.org/10.1109/FSKD.2009.553
https://doi.org/10.1109/CCCM.2009.5267735
https://doi.org/10.1007/s10618-011-0242-x
https://doi.org/10.1109/TKDE.2016.2522412
https://doi.org/10.1145/233269.233324
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1109/FSKD.2012.6233800
https://doi.org/10.1145/1552303.1552307

