

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 74-77

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Proactive model based testing and evaluation for

component-based systems

A. Surendar 1*, M. Kavitha 2, V. Saravanakumar 3

1Assistant Professor, Vignan's University, Guntur.

2R&D Head, Synthesishub, Salem.
3R&D Head, Bonfring Technology Solutions, Coimbatore.

*Corresponding author E-mail: surendararavindhan@gmail.com

Abstract

Embedded software systems are getting more and more complex. The demand for new features and functions led to an increasing

complexity in the design and development of these systems. There are frequent reports in the media about software systems crashing and

damages occurring due to software errors. One reason for this is that there are many software testing methods and techniques but they are

often non-practical and difficult to use. The aim of the study was to improve existing testing methods and their practicality especially

from the integrator viewpoint. Component-based system development, components of different granularities must be tested. Furthermore,

an optimization approach based on simulated annealing is presented which is used to derive an integration order with respect to the

proposed parameters in a powerful and reliable manner. The paper discusses explicit properties and the requirements that are to be

verified, imposed upon software-intensive systems by their environment and by their users.

Keywords: Embedded Systems, Component Based Systems.

1. Introduction

The aim of the study was to improve existing testing methods and

their practicality especially from the integrator viewpoint. The

objective was to improve interoperability between applications,

and familiarize software companies and their customers with

conformance testing. The integration of software components is an

important aspect of embedded system development. Component-

based technology has been extensively used for many years to

develop software systems in desktop environments, office

applications, and web-based distributed application. The

advantages are achieved by facilitating the reuse of components

and their architecture, raising the level of abstraction for software

construction, and sharing standardized services. The use of

components has partly shifted the designers’ attention from

algorithms to the interaction of algorithms (and their collections).

This is because any component may comprise more than one

algorithm, whereas precise description of algorithms used in a

component and component’s inner structure are very seldom

known to the designer.

2. Software quality

We mean by a software developer a software organization that

develops software for the use of end users. An integrator acquires

software parts from the developers and also develops own

components. The integrator integrates components into a system

and tests it as a whole before delivering it to a customer. A

software customer buys software from developers or integrators

and carries out acceptance tests. A software integration strategy is

needed to provide software testers a guideline to perform software

integration testing activities in a rational way. It usually describes

an order in which components are integrated and tested. The

search for efficient information representation and encapsulation

methods that would lead to natural software structuring, has been

a driving force for software engineering. The evolution of

information encapsulation methods started from modular

programming, followed by object-oriented programming and

design, and eventually reached the era of component-based

software. A component is usually, but not necessarily always, a

collection of objects that has limited autonomy, i.e. a component

can exist, and to certain extent operate in a stand-alone mode. For

its full-scale operation a component usually requires a specific

supporting infrastructure.

3. Oriental software engineering

The object-oriented approach has different characteristics when

compared with procedural programs, such as inheritance,

polymorphism, message passing, state-based behavior,

encapsulation, and information hiding. Furthermore, the execution

order of the methods is not necessarily predefined, and the

structure of the object-oriented programs is different from that of

procedural programs. The advantages of a component-based

approach are the possibility to master development and

deployment complexity, modularity, decreased time to market, the

quality and reusability of software and its components, the

composed services of components, and the scalability and

adaptability of software systems. Furthermore, software suppliers

can specialize in their strategic competitive edge and buy other

properties as ready-made COTS (commercial-off-theshelf)

components. Among many other challenges in component-based

software development, components must be put together to form

the entire software system. Therefore components must be

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 75

integrated which can be illustrated as a mechanical process of

wiring components together. In software integration is defined as

the process of combining software components, hardware

components, or both into an overall system. To interact with each

other, the interfaces of components are connected by

dependencies. If a component C2 uses one or more service(s) of

another component C1, the formulation C2”depends” on C1 is

used . The testing of these dependencies, called integration testing,

insures the consistency of component interfaces and whether the

components pass data and control correctly, which results in

successful integration of dependent components. In other words,

integration testing ensures the correct interaction between already

tested components. Software integration and integration testing

are often used synonymous and are not distinguishable in

literature.

4. Concepts of computing models

Ubiquitous (and pervasive) computing is based on the expansion

of the principles applied in real-time systems and plug-and-play

experiments. Computationally new concepts have emerged from

the domain of ubiquitous computing in relation with autonomic

computing. Considering the time issue, each autonomous

component may have its own time counting system and each of

those time counting systems may apply its own metrics. Strictly

speaking, the time instants and intervals defined in different time

counting systems (time models) can only be compared within

known uncertainty limits. Hence, one time dimension for the

whole computing system – that so far has been the conventional

approach in computer science and software engineering – cannot

solve the time awareness problem. A component-based system is

not monolithic: it contains components of different granularities

(e.g. lowest level components, business components, and

component based systems), which are integrated with other

components and into legacy systems with interfaces. In such

situations, testing and documentation are even more important

than in conventional software projects with monolithic

applications. When moving from legacy systems to component-

based systems, interfaces and interface testing are needed. The

components do not have to know each other's implementation,

only the content of the interfaces, i.e. syntax, semantics, and

instructions for using the interface.

5. Taxonomy of computations

For systematic progress in developing the time-aware interaction-

centered model it would be desirable to categorise the variety of

models of computation according to their characteristic features.

The earlier used dimensions of the feature spaces applied for

taxonomy could not explicitly emphasise the specific properties of

context-aware, proactive computing systems. Therefore we

suggest the following three dimensional approximation of the

feature space–action, interaction, and time-awareness. Further we

demonstrate that this feature space clearly distinguishes the

conventional models of computation based on the Church-Turing

algorithm theory, models of interactive computation, and models

for context-aware, interactive computing. Taxonomy in Figure 3

fixes relative positions of conventional models for algorithmic

computing, models for interactive computing, and models for

timeaware interactive computing. On such a generic level the

taxonomy is of little practical use, but if the same taxonomy be

used to position more specific products–e.g. Persistent Turing

Machines, Abstract State Machines, π-calculus, the Q-model–

some useful hints might be extracted for guiding the further

research into models for time-aware, proactive, interactive

computing. The suggested feature space stems from the expected

properties and requirements of the rapidly spreading new classes

of computer applications–such as ubiquitous computing that

includes autonomic and proactive components, computing systems

with dynamic ad hoc architecture, multi-agent systems, time- and

location aware computing systems etc.

6. Software integration

In order to evaluate the proposed parameters, two reference

systems are introduced. These real-life examples are taken from

the automotive industry. The first one represents an embedded

data logger for battery management and consists of 16

components and 23 dependencies. The most common used criteria

for evaluating an integration order is called test effort and

describes the effort for creating stubs needed during integration

testing. There are several approaches presented in literature to

compute the test effort. Code-based testing techniques (or white-

box testing techniques) study the source code and describe the

code coverage: for example, whether all the statements/branches

of the program are executed at least once. They do not tell whether

the program is doing what the requirement specification says it is

supposed to do. Code-based testing uses either control-flow

criteria or data-flow criteria for test case generation. Control-flow-

based testing techniques select test cases on the basis of the

program's control flow. Examples of control-flow-based testing

techniques are sentence coverage, branch coverage, condition

coverage, and path coverage. Dataflow-based testing techniques

explore the events related to the status of data objects (variables)

during the program's execution. The essential events are the

assignments of value and the uses of value, i.e. where the

variables are defined and where they are used. Examples of data-

flow testing techniques are all-definitions, all-c-uses, all-puses,

and all-du-paths (c means computation, p predicate, and du

definition-use pair). However, these techniques are quite

theoretical and complex to use in practice. Furthermore, the

customer and the integrator cannot usually use any of the code-

based testing techniques because the source code is not necessarily

available and even if it were there would be an enormous amount

of code lines to go through. A component-based system is not

monolithic: it contains components of different granularities (e.g.

lowest level components, business components, and component

based systems), which are integrated with other components and

into legacy systems with interfaces. In such situations, testing and

documentation are even more important than in conventional

software projects with monolithic applications.

7. Simulated annealing

Parameters and the corresponding metrics help system integrators

to evaluate a certain integration order; they will not provide an

order which meets the corresponding requirements. To overcome

this restriction, a novel approach for deriving an integration order

is presented. The approach described in the following section

optimizes an integration order with respect to a single parameter

as well as combinations of them. Since deriving an integration

order is a NP-hard problem, a heuristic optimization approach

based on simulated annealing (SA) was used. The method of

simulated annealing is a suitable solution for large scale

optimization problems. When adapted efficiently to optimization

problems, simulated annealing is often characterized by fast

convergence and ease of implementation for real-world problems,

Simulated annealing is based on the analogy between finding a

global minimum of a cost function for a combinatorial

optimization problem and the slow cooling down of metal to its

minimum energy state. The configuration represents a solution,

including the initial solution, of the problem. The components are

numbered i=0...C−1, where C represents the number of

components of the software system. The configuration spaces

denotes all possible permutations of C. Therefore a configuration

is a permutation of the number 0...C −1, interpreted as the order in

which components are integrated. The initial solution is selected

randomly. Rearrangement describes the mechanism for neighbor

generation. An essential requirement for simulated annealing is

76 International Journal of Engineering & Technology

that the rearrangement mechanism provides a move from the

initial state to the optimal state in a sufficiently small number of

steps. Based on the configuration definition, a rearrangement

function that swaps two arbitrary components can get from any

state (integration order) to any other state in (C − 1) steps.

The results indicate that the proposed approach provides at least

comparable results in comparison to the graph-based solutions in

case of specific stubs. In case of realistic stubs, which denote the

number of components to be stubbed, the simulated annealing

approach obtains significantly better results on both reference

systems.

8. Work model

Although a great deal of research has addressed the overall

process of component-based software engineering (CBSE) on

requirements engineering, design and evaluations, we do not have

as much research on testing CBSE. Testing CBS is a challenging

area of research. Existing knowledge in this field shows that

CBSE introduces new problems for testing and maintaining

software systems and we need new ways to validate software

components, especially when they are integrated into new

environments. There are a number of component-based testing

methods and techniques which have different paradigms,

characteristics and perspectives. The technique makes use of

complete information from components for which source code is

available and partial information from those for which source code

is not available. Their approach separated the testing of the

component-provider from the testing of the component-user, so it

presented two different techniques for each category. It models the

behavior of each component, specifies component interactions,

and annotates the state machines with test requirements to

construct a global behavioral model of the composed state charts.

Then, test cases are automatically derived from the annotated state

charts and global behavioral model, and executed to verify

component conformance behavior. Their results show that, in

most cases, state-based testing techniques are not likely to be

sufficient by themselves to detect most of the faults present in the

code, and they need to be complemented with other testing

methods. The above approaches use only one kind of behavioral

UML model for test generation, either sequence diagrams or state

machines. The approach in this dissertation is novel in that it

combines the information from component level UML sequence

diagrams and state charts to derive a graph-based test model for

the purposes of test input generation. They presented a test model

that depicts a generic infrastructure of component based systems

and identified key test elements. A Component Interaction Graph

is generated from the implementation, in which the interactions

and the dependence relationships among components are

illustrated. Test adequacy criteria were developed to cover context

dependence relationship and content dependence relationship.

While Wu’s test elements and test criteria are useful to test

component-based software, their work is in the stage of approach

development. This paper does not discuss and give 20 practical

ways on how to use their approach to generate actual test cases for

component based testing. Their test model mainly illustrates the

context/content-dependence relationships defined in the paper.

Additional work is required to effectively drive test generation

from the test model. In addition, the authors made several

assumptions in their work, including: (i) assuming that each

individual component has been adequately tested by the

component providers when testing component-based software; (ii)

assuming that each interface only includes one operation, and the

references to the interfaces and to the operation are identical.

These assumptions imply that their work considers only some

simplified situations, which could have limitations in applying

their approach to actual component-based testing practice. From

the above survey, we note that different kinds of UML diagrams

have been used for software testing from different perspectives.

UML state charts have been widely used to test the state-based

behavior of software. Similarly, UML interaction diagrams have

been used for integration testing. However, existing approaches do

not focus on exercising the composition behavior of interacting

components. More specifically, none of the above papers discuss

testing by integrating UML interaction and state chart diagrams to

uncover component interaction faults. The goal is to check

whether an extracted model satisfies a certain specification. My

test method, in contrast, defines input data to the object program

and observes the reactions of the program. The goal of my testing

is to find cases where the software reactions do not meet its

expected results. There has also been research on component-

based software engineering for embedded systems such as [26],

which focused on embedded software. There has been work on

using informal specifications to test embedded systems focusing

on the application layer. A common communication protocol

provides support for implementing reusable test components.

Especially in the case of embedded systems, a good host test

environment enables efficient software testing. When this

environment matches the target system as much as possible,

efficient host testing is possible. One way to support testing is to

use an operating system that is supported on both the target

hardware and in a host-testing environment, as simulated on a

desktop. Including support for test automation as a first-class

feature allows more effective analysis of the system, including

analysis of long running tests and deployed systems, and enables

efficient field-testing. Effectively implementing this requires

possibilities for dynamic configuration of test functionality during

execution. Abstracting test cases from the implementation

minimizes the effects of internal system changes to the 24 test

cases. This mostly applies at the system testing level, as in earlier

testing phases it is often necessary to observe more detailed

properties of the system.

9. Results

The described testing procedure has been conducted for all

software components of the Safety Platform that have inputs

controllable and outputs observable from within the application

program. Special and hardware dependent components, e.g.

drivers for digital inputs and outputs, have been either manually

tested or the testing has been performed indirectly through test

cases of the respective hardware unit.

Table 1: Component Testing

In practice, mostly “hill climbing” methods are used, as advanced

algorithms can be hard to implement due to computing

requirements, while other types do not operate with adequate

precision for modern systems, [136]. Tested algorithm is a “hill

climbing” variation known as Incremental Conductance algorithm,

[137]. The algorithm is based on assessment of the slope of

powervoltage curve of the photovoltaic panel.

International Journal of Engineering & Technology 77

Figure 1: Model response

Execution time of the MPPT algorithm has been measured during

open-loop real-time testing and is plotted against algorithm’s

output. Execution time jumps to 408 CPU cycles at start of

execution, oscillates between 395 and 404 cycles during transient,

rises to 406 cycles at end of transient and finally stabilizes on 395

cycles in steady state. This kind of measurement can be a starting

point for in-depth analysis of SUT real-time behaviour.

Figure 2: Execution time of the model based approach

10. Conclusion

The paper focuses on properties, development methods, analysis

methods, and tools for software-intensive systems directly

interacting with their environment. Many such systems are built

from autonomous components that may exhibit proactive

behaviour. Software-intensive systems differ from the other

engineering systems in that they are clearly more capable for

explicit proactive behaviour and rely on dynamic control structure

more often as compared to the non-software-intensive systems in

the artificial world. This paper states that applications of software-

intensive systems require properties that cannot be studied by

conventional mainstream methods of computer science, and

suggests that a new time-aware model of interactive computation

is to be developed. In order to meet this challenge, component-

based architectures where introduced to automotive embedded

systems. Despite the usage of eg. software product lines, a

significant portion of new components must be integrated in each

development step. In order to derive an integration order with

respects to the proposed parameters an optimization approach

based on simulated annealing was developed. In addition to

minimize the singe objectives test effort and schedule effort,

reasonable combinations were evaluated. It has been shown that

minimizing the test effort and minimizing test complexity, which

are contrary goals, can be performed by the proposed approach in

an sophisticated and reliable manner. Also adding the schedule

effort as objective yields favorable results. Optimizing the stub

complexity and the schedule effort, which are independent goals,

is also possible with good results.

References

[1] Panchumarthi GP & Surendar A, “A review article on Fin-FET
based self-checking full adders”, Journal of Advanced Research in

Dynamical and Control Systems, Vol.9, No.4, (2017).

[2] Garlan D, “Formal modeling and analysis of software architecture:
Components, connectors, and events”, Formal Methods for

Software Architectures, (2003), pp.1-24.

[3] Marijan S, “Control electronics of TMK2200 type tramcar for the
City of Zagreb”, Proc. International Symposium on Industrial

Electronics, ISIE, (2005), pp.1617–1622
[4] Fredriksson J & Land R, “Reusable component analysis for

component-based embedded real-time systems”, 29th International

Conference on Information Technology Interfaces, (2007), pp.615–
620.

[5] Gallagher L & Offutt J, “Test Sequence Generation For Integration

Testing Of Component Software 1”, The Computer Journal,
Vol.52, No.5, (2007), pp.514-529.

[6] Ganesan S, Alladi V, Wei J & Alladi K, “Designing embedded

real-time systems (ERTS) with model driven architecture (MDA)”,
SAE Technical Paper, (2004).

[7] Lamport L, “The Temporal Logic of Actions”, ACM Transactions

on Programming Languages and Systems, Vol.16, (1994), pp.872–
923.

[8] Markey N, Larsen KG & Bouyer P, “Model Checking One-clock

Priced Timed Automata”, Logical Methods in Computer Science,
Vol.4, No.2:9, (2008), pp.1–28.

[9] Vimalkumar MN, Helenprabha K & Surendar A, “Classification of

mammographic image abnormalities based on emo and LS-SVM
techniques”, Research Journal of Biotechnology, Vol.12, No.1,

(2017), pp.35-40.

[10] Manju K, Sabeenian RS & Surendar A, “A review on optic disc
and cup segmentation”, Biomedical and Pharmacology Journal,

Vol.10, No.1, (2017), pp.373-379.

