

Copyright © 2018 Ugo Falchi. This is an open access article distributed under the Creative Commons Attribution License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1) (2018) 65-69

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i1.8810

Research paper

IT tools for the management of multi - representation

geographical information

Ugo Falchi *

Department of Sciences and Technologies, University of Naples “Parthenope” – Italy

*Corresponding author E-mail: ugo.falchi@uniparthenope.it

Abstract

The goal of this research was the creation of software tools for managing instances of a multi - representation geodatabase, able to define

multiple representations and topological constraints, in relation to modeled objects and structures according to the classification of the

Italian national technical specifications of the November 10, Italian Ministerial Decree 2011. After the development of a conceptual

scheme, encoded in its corresponding logical mode, various computer artifacts were designed and developed from scratch to perform the

upload, management and display of data: a Scheme Designer, which allows users to define the logical model and implement the physical

model of an instance of Oracle; a Loader, which allows users to populate the database; a GUI, which is a graphical interface to the tools

and Schema Designer Loader; a DB Navigator, which is the web interface to the database multi - representation.

Keywords: Conceptual Model; Geographical Database; Multi Representation; Topological Relations.

1. Introduction

Storage and management of geographic information (geometric

entities and attributes) can be done through different procedures.

The main types of the database Management System (DBMS)

used historically are the hierarchical, relational, and object - ori-

ented types.

In this project, after the development of a conceptual scheme,

encoded in its corresponding logical mode [1], a suite of software

tools has been created to navigate, create and manage instances of

the multi-representation geodatabase using the ORACLE RDBMS;

they allow to define multiple representations, topological con-

straints and generic relationships and structure according to Italian

national law. The goal is to overcome the limits of classical rela-

tional databases by integrating the existing reference model with

the concept of multi - representation.

Several research projects (eg MurMur [2] and Cronogeograph [3])

have been developed over the last few years and a conceptual

model of multi - representation geodatabase has been conceived to

guarantee data processing with spatial and temporal components

and with the simultaneous presence of four dimensions: structures,

space, time, multiple representations. These dimensions are char-

acterized by being orthogonal to each other. This property allows

you to execute individual operations freely and independently of

other dimensions.

Constraints, relationships, and metadata tables are transparently

handled into the geodatabase, so the user is not required to know

all the implementation details.

The final result can be used as a command line on Linux and

Windows systems, or a GUI interface on Windows. The product

was written in Java and consists of several executables.

The product does not intend to replace the current Relational Da-

tabase Management System (RDBMS), but is integrated into Ora-

cle with spatial extensions.

Some software products have been developed:

MR Scheme Designer, which allows users to define the logical

model and on the basis of this, implement the physical model of

an instance of Oracle:

• MR Loader, which allows users to populate the database;

• MR GUI, which is a graphical interface to the tools and

Schema Designer Loader;

• MR DB Navigator, which is the web interface to the data-

base multi - representation.

• MR Schema Designer and MR Loader were written in Java

(Oracle registered trademark); in order to simplify the oper-

ational management of work flows, a virtual machine has

been created containing all the server-side software.

From the database point of view, it should be noted that:

• The database is consistent with national law;

• Topological rules are developed at the database level;

• Relations have been defined to link database tables;

• The multi - representation concept was developed.

2. Steady state

The workflow followed for creating a multi - representation data-

base is as follows:

Step 1: Schedule log database schema: Definition of layers,

themes, and classes to populate the database;

• Definition of representations for each class;

• Definition of topological constraints;

• Definition of relationships.

Step 2: MR Diagram Designer tool to implement the physical

model based on the logic defined in step 1.

Step 3: MR Loader Tool to populate the ORACLE database.

Step 4: Explore the model with the MR DB Navigator tool.

Once step 3 is complete, it is possible to browse the ORACLE

database through the ORACLE client or connect the web browser

(MR DB Navigator) to its database.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

66 International Journal of Engineering & Technology

It should be pointed out that a fixed database schema is not pro-

posed, but have been implemented the tools for creating complex

databases with the concept of multi-representation. The tools also

work if this concept is not implemented, so to create generic geo-

graphic databases.

Database experts are asked to propose a database schema based on

their experience or functional analysis of software or various re-

quirements and customer requirements. Once defined this is im-

plemented and populated with the help of the tools. So the data-

base structure comparison and scheduling is not deleted, but is one

of the most stringent elements since no database schema is valid at

all.

It should be noted that the choices must come from a deep

knowledge of the state of the art: how to transpose, organize, use

the user's data, and the goals that we are aiming for the project.

3. Multi – representation database schema

Before using the developed software, it is necessary to implement

the logic database schema compliant with national regulations [4].

This is an extremely delicate and expensive phase in which the

geographic objects are defined and structured, specifying if we

want to associate different representations changing shape, scale

or both [5]. For each representation, a table containing the geome-

try and a set of attributes will be created, which can be imported

for example from a shape file containing the object information.

An object (feature) will then consist of a series of tables in the

different representations [8]:

• Shape

• Scale

• Time

A fundamental feature of the conceptual model [1] will be the

respect of national norms and the architecture: layer, theme, class.

If you want to associate different forms (representations) in a class,

then the classes that are part of it will be made up of geometries in

which the topology differs (simple: polygons, lines, points; com-

plexes: multipolygons, multilines, points).

Similarly, associating several scales to a theme, the classes that

will be part of it will be geometries with different granularity that

will specify the level of detail of the representation. Finally, it is

possible to define classes that have only one representation.

Each class will have its own attributes.

During the conceptual scheme implementation, a series of meta -

tables will be populated. For example, for each geographic table

created, the representation, time, form, and scale will be stored in

the database, as shown in table 1:

Table 1: XML File Example

Class Representation Form Time

St01te01cl1 St01te01cl1_Plg_A_1k Plg

St01te01cl1 St01te01cl1_Arc_A_1k Arc

St01te01cl1 St01te01cl1_Pts_A_1k Pts

St01te01cl1 St01te01cl1_Arc_A_5k Arc

3.1. Topological rules

After defining the structure of the database, the topological rela-

tionships are structured between the geographic tables.

The main purpose of the topology is to define a series of spatial

relationships between features present in one or more feature class.

The definition and implementation of such relationships within the

geodatabase allows for obtaining a data numerical model that is

more and more close to objects present in the real world [6].

Among the main geometric properties and the spatial relationships

that exist between the various elements present in the real world,

we remember the relationships of touch, equal, disjoint and over-

lap. However topological rules may also be very complex in rela-

tion to the objectives concerned.

Here are some examples of topological rules:

• DISJOINT: The boundaries and interiors do not intersect.

• TOUCH: The boundaries intersect but the interiors do not

intersect.

• OVERLAPBDYDISJOINT: The interior of one object in-

tersects the boundary and interior of the other object, but the

two boundaries do not intersect. This relationship occurs,

for example, when a line originates outside a polygon and

ends inside that polygon.

• OVERLAPBDYINTERSECT: The boundaries and interiors

of the two objects intersect.

• EQUAL: The two objects have the same boundary and inte-

rior.

• CONTAINS: The interior and boundary of one object is

completely contained in the interior of the other object.

• COVERS: The interior of one object is completely con-

tained in the interior or the boundary of the other object and

their boundaries intersect.

• INSIDE: The opposite of CONTAINS. A INSIDE B implies

B CONTAINS A.

• COVEREDBY: The opposite of COVERS. A COV-

EREDBY B implies B COVERS A.

• ON: The interior and boundary of one object is on the

boundary of the other object (and the second object covers

the first object). This relationship occurs, for example, when

a line is on the boundary of a polygon.

• ANYINTERACT: The objects are non-disjoint.

Each report is translated with a table and triggers are created to

prevent topological rules being violated. This level of control en-

sures that the data entered on the server is in compliance with the

specifications.

Relationships bind the classes so to respect the semantics. For

example, within a theme, a class with a smaller granularity will

have to fall within a class with greater granularity. Or two classes

in which the shape changes will have to intersect, as shown in

figure 1:

Fig. 1: Topological Relationships (Oracle.Com).

Formalizing existing relationships between objects, identifying

those that meet certain spatial conditions, and providing insights

into the formulation of hypotheses about the meaning of the re-

ported relationships is an important aspect in the territorial infor-

mation systems [7].

This aspect has been formalized into the workflow and inserted

into procedures. From the analysis of existing RDBMS, the most

complete is ORACLE which unlike other database engines, im-

plements several triggers that cover a great case histories of topol-

ogy. PostGIS approaches ORACLE in terms of the capabilities of

spatial functions implemented but still does not have the same

level of ORACLE space constraints.

International Journal of Engineering & Technology 67

In the table 2 there are some operators used by Oracle and Post-

GIS to check if two geometries have a certain topological relation-

ship.

Table 2: Some Operators

 Oracle Postgis

Disjoint
Sdo_Filter(G1, G2, 'Que-
rytype=Join') = ‘False’

Disjoint(Geom1,Geom2)
= True

Contains
Sdo_Contains(Geom1, Ge-

omy2) = ‘True’

Contains(Geom1,Geom2)

= True

Touches Sdo_Touch(G1, G2) = ’True’
Touches(Geo1,Geo2) =
True

Intersects

Sdo_Relate(Geo1, Geo2,

'Mask=Overlapbdyintersect') =

‘True’

Intersects(Geo1,Geo2) =
True

Equals
Sdo_Equal(Geom1, Geom2) =
True

Equals(Geo1,Geo2) =
True

....

The user can choose the type of topological report (from a list) and

then choose which tables (those defined above) will be subject to

the constraint.

3.2. Relationship

In addition to topological relationships, it is possible to define

generic relationships that can also be associated with tables that do

not contain geometric references. Dbf files can import to create

new alphanumeric tables; they can be linked by user-selected

fields of geographic tables or generic tables.

In the context of database design, the entity - relationship model

(also called entity - relationship model, entity – association model

or model E-R) was used as a model for conceptual representation

of data at a high level of abstraction.

The E-R model has long been one of the most robust approaches

to modeling application domains in the IT; for this reason, it has

often been used outside of the context of database design.

Associations (also referred to as relationships) are a link between

two or more entities. The number of linked entities is indicated by

the level of association; a good E/R scheme is characterized by a

prevalence of associations with grade 2. It is possible to bind an

entity with itself (through a ring association), to bind the same

entities with multiple associations.

The user will be presented in a form where he will be asked to

specify the operations to be performed during the data modeling,

choosing which behavior to take over the handling of the tables.

3.3. General rules for data entry

Operations to manipulate information within the tables must be

governed by structures that allow to comply with the semantics

defined in the previous steps. Triggers are used to implement these

controls.

Inserting new records within a table should only be allowed if the

data you want to enter does not violate the (topological or generic)

associated constraints. If not, the system will need to provide an

appropriate error message.

Modifying records in a table must be subject to a check-up control

of the existing relational constraints, so there is no inconsistent

data. For example, giving two geometric tables A and B, where B

elements must be included within the elements of A, and if R is

the table that correlates the elements of A and B, modifying a B

record should only be allowed if the new geometry continues to be

within the A-record geometry attached via table R. Otherwise, the

operation must be prevented and the result must be signaled by a

message.

The deletion of records belonging to a table linked by a relation-

ship must also produce an automatic deletion of the records that

relate to them in the relational table and, in the case that it includes

the semantics, also delete the records of the other tables to which

are binded.

4. Server and clients requirements

In order to simplify the operation a virtual machine was created

with all the necessary software package.

Modern computing is increasingly looking at new forms of distri-

bution of workloads within the networks, both to allow the maxi-

mum use of each resource and to economize the latent manage-

ment and costs of available resources. For this reason, the use of

technologies such as cloud computing and virtualization is becom-

ing more and more important.

"Virtualization" consists primarily to generate a simulated version

of an existing resource. It is easy to understand that whatever the

resource is available, this can be theoretically virtualized, both

software and hardware. It is often said that virtualization mainly

concerns the server environment.

The main advantages of virtualization are:

• Optimize the efficiency and availability of IT applications

and resources;

• Provide greater longevity to applications;

• Delete the old one-server / single application-based model

and run multiple virtual machines on each physical machine;

• Relieve IT administrators from expensive server manage-

ment tasks.

The suite of developed products need also the implementation of

an optimized client environment. Specifically, it need the imple-

mentation of a Java Virtual Machine.

The Java virtual machine, also known as Java Virtual Machine or

JVM, is the virtual machine that runs programs written in

bytecode.

Bytecode is a more abstract intermediate language of machine

language, used to describe the operations that make up a program.

It is called in this way because the operations have a code that

occupies only one byte, although the length of the entire statement

may vary because each operation has a specific number of pa-

rameters to operate. The parameters of these operations may con-

sist of logs or memory addresses, just like the machine language.

An intermediate language such as bytecode is very useful to those

who create programming languages because it reduces depend-

ence on hardware and help to create the interpreters of the lan-

guage itself.

Bytecode is generally produced by compiling sources written in

Java language. However, it is also possible to produce bytecode

from other languages; in fact, there are some partial or complete

implementations of compilers that work in this way.

The most popular language among those who use the bytecode is

Java. Java has both a virtual machine (Java Virtual Machine) that

interprets the bytecode code, and is a just-in-time compiler that

translates the bytecode into machine language.

JVM is defined by a specification, maintained by Sun Microsys-

tems. Any system that behaves in a consistent manner with this

specification should be considered as a particular implementation

of JVM. There are software implementations for virtually all mod-

ern operating systems, both free and commercial. In addition,

there are special implementations for particular hardware / soft-

ware environments (such as cell phones and handhelds), and even

hardware implementations.

The availability of Java virtual machine deployments for different

operating environments is the key to Java portability, proclaimed

in the slogan "write once, run everywhere". The virtual machine

actually creates a homogeneous execution environment that hides

to Java (and hence to the programmer) any specificity of the un-

derlying operating system.

68 International Journal of Engineering & Technology

5. MR schema designer

The tool allows to create the multi - representation database struc-

ture based on two xml files: one containing the template and the

other the specialization.

The template contains information about layer organization,

themes, database classes, based on national guidelines. For each

class, you also specify the list of attributes, type, and default ge-

ometry, as shown in table 3.

Specialization may include:

• default representations to be associated with each class;

• the specific representations to associate with a group of

classes;

• topological relationships that link the classes.

Table 3: Simple relations

<simpleRelations>

 <simpleRelation>

 <class st="09" te="01" cl="04" shape="plg" scale="3k" time="A"

field="A09010401" />

 <class st="09" te="01" cl="04" shape="plg" scale="1k" time="A"

field="A09010401" />

 </simpleRelation>

<simpleRelation>

 <class st="09" te="01" cl="05" shape="plg" scale="3k" time="A"

field="A09010501" />

 <class st="09" te="01" cl="05" shape="plg" scale="1k" time="A"

field="A09010501" />

 </simpleRelation>

 </simpleRelations>

In addition, the association between the temporal dimension val-

ues [6] and the codes associated with them must be defined. It is

also necessary to provide some mandatory information concerning

the name of the geometric field, the field name used to relate dif-

ferent representations belonging to the same class and the limits of

the bounding box used to contain the represented geometric ob-

jects.

6. General user interface: MR GUI

During the project, an interface (GUI) was developed to monitor

the features and embedded in MR designers and MR Loader tools.

The interface also allows you to navigate and interactively interact

with the layers, themes and classes that will populate the multi -

representation database.

The interface allows to create the ORACLE database based on an

XML file that defines the multi - representation logic scheme. The

same interface can be called to populate the ORACLE database.

These operations can be solved by using the above tools directly.

The goal of this product is to serve a non-specialist system user by

simplifying the database creation and population operation.

7. MR DB navigator

Using a proprietary framework, an interactive navigator has been

developed that allows interactive database browsing based on the

multi - representation database schema.

The WEB interface to the multi - representation database created

by the MR schema designer tool, suitably populated by the MR

Loader, can be displayed on the WEB from the MR DB Navigator

application.

MR DB Navigator is basically a navigable and interactive web

catalog with a GIS viewer. MR DB Navigator connects directly to

the ORACLE database and based on the data in the meta - tables

and into tables (classes, representations, etc.) exposes its content

in a user friendly environment, ie: layers, themes, classes, rela-

tionships and topological constraints.

8. Software testing

Along with the development activity, an intense testing was car-

ried out.

The activity is aimed to achieving a good product quality standard.

Especially when developing complex information systems, such as

the one that is the subject of this work, test activity is crucial due

to periodic reviews and quality check before being commissioned.

Testing was really important in the development cycle of this pro-

ject and has involved valuable human resources. The tests were

carried out by staff not involved in the development: this allowed

to operate aseptically and ensures that the software abnormalities

are detected more efficiently.

There are many test methods used to measure the robustness and

reliability of the software, each with its features, its pros and cons.

Scott Barber has tried to classify them and tell us what they fit

best in certain contexts:

1) Finding information and functional analysis by discussing

with users,

2) Design and test planning,

3) Implementation and execution,

4) The analysis of the results and finally the report.

The author provides a classification of the test modes based on

how the steps are followed.

A typical testing mode is called “waterfall model”. Thinking at

development methodologies, this would be analogous to the "cas-

cading method”, in which the phases flowing steadily downwards

sequentially. The approach is suitable for situations that are easily

manageable or where the context, times and modes are known.

Small implementations like patches or bug fixes are situations

where the approach work to the best.

The second category is an iterative path and the analogy with de-

velopment methodologies goes on. The approach involves some

cyclicity in the path and is necessary that the steps be taken up

again in case of criticality. The concept of iteration introduces the

necessary dynamism to handle more complex situations. Unlike

the development method, testing iteration can stop at any time and

bring the testers back to the design stage.

The third and final method, which is also the one adopted during

the project, is the agile one, in which the sequential phase is

dumped. Each activity, or transition to another, takes place only

when it detects the need, without any formalism or obstacle.

Like the same development methodology, the approach presup-

poses the availability of almost constant users, it is costly in terms

of commitment, but is best suited to highly critical situations

whose context is unknown.

9. Results

The software test phase has been carried out throughout the pro-

ject lifetime. In particular, a number of control operations have

been carried out throughout the development phase with a contin-

uous comparison with possible end users. The product (or semi-

finished product, ie the product being tested) has been checked to

detect any malfunctions and resolve them before the final release

of the software.

An important part of the job was the functional analysis and the

search for information useful to release a product that can meets

the needs of the users. Several potential users have been involved

in this phase, which have highlighted critical issues and situations

to be considered. Based on these interactions and functional re-

quirements, the test plan has been programmed.

Software tests can be performed either manually or automatically.

Both systems have been used in the project.

In automated tests, we have tried the software options using prede-

fined patterns. These tests involved controlling a series of normal

use situations. Their job is to exempt manual testers from repeti-

tive and "boring" jobs.

However, it was impossible to automate the processing methods

and therefore manual tests aimed to find bugs that repetitive tests

International Journal of Engineering & Technology 69

did not highlight. Automatic input is to lighten the manual testers

to get more time to run complex tests. Research has shown that it

is not advisable (for time-resource loss) to automate a test if it is

not repeated at least six times and that even the best automated test

developers can not cover more than 30% of the total tests.

The aim of the software test is to make a product as free as possi-

ble from bugs. The main obstacle to the test phase is that the test

may indicate errors, but cannot guarantee its absence. In principle,

we point out that error-free software does not exist or is not certi-

fied.

10. Conclusions

This project laid the basis for an organic approach to the problem

of implementing a geodatabase that complies with national tech-

nical regulations. An original approach has been proposed, capa-

ble of enhancing the features already present in some proprietary

software with the simultaneous management of time and space

parameters.

In addition, the concept of multi-representation within the struc-

ture of the data and the architecture of the tables has been intro-

duced.

In the future, attention will be paid to similar tools that have been

developed in Italy following the issuance of a specific law on the

production and management of geographic information.

Acknowledgement

This research was part of the “New Geodetic Reference System

and GNSS data quality” project supported by the University of

Naples “Parthenope”. In loving memory of Prof. Raffaele San-

tamaria, the former Director of the Department of Sciences and

Technologies, University of Naples “Parthenope”, for his fatherly

help and scientific support of our research activities.

References

[1] Falchi U, “A Conceptual Model for the Management of Multi -
Representation Geographical Information”, International Journal of

Engineering and Technology (IJET), (2016), vol 7 No 6, 2060-2068,

ISSN: 0975-4024.
[2] Parent, C.; Spaccapietra, S.; Zimányi, E, The MurMur project:

Modeling and querying multi-representation spatio-temporal data-

bases, Direct Science, Elsevier, Information Systems, (2006), 31,
733–769. https://doi.org/10.1016/j.is.2005.01.004.

[3] De Fent, D; Gubiani; Montanari, A, “Granular GeoGraph: a Multi-

granular Conceptual Model for Spatial Data”, Proceedings of the
13th Italian Symposium on Advanced Database Systems (SEBD),

(2005), Bressanone (BL), Italy, 368-379.

[4] Italian Ministerial Decree, November 10, 2011, (G.U. n. 48,

27/02/2012 - Supplemento ordinario n. 37).

[5] Balley, S, Parent, C, Spaccapietra, S, “Modeling geographic data

with multiple representations”, International Journal on GIS
(IJGIS), (2006), v18, 329-354.

[6] Vangenot. C, “Multi-representation in spatial databases using the

MADS conceptual model”, ICA Workshop on Generalisation and
Multiple representation, (2006), Leicester.

[7] Falchi, U, “Spatial data: from cartography to geodatabase”, Geode-

sy and Cartography, Volume 43, Issue 4, 142 – 146, (2017),
https://doi.org/10.3846/20296991.2017.1412613.

[8] MurMur, “Multi-representations and multiple resolutions in geo-

graphic databases”, Project 10723 - 1.1.2000 to 31.12.2002.

https://doi.org/10.1016/j.is.2005.01.004
https://doi.org/10.3846/20296991.2017.1412613

